Final Exam Review

CS 2308 / CS 5301
Spring 2020
Jill Seaman

Final Exam

- Thursday May 7, 11:00am-1:30pm
- Online: Canvas Quiz (I plan to be on zoom)
- Open book, open notes
- Comprehensive (covers entire course)
- 25% of your final grade (both classes)

- No collaboration of any kind
- No using other apps or browsing the internet

Exam Format

- 100 points total:
 - 48 pts:
 - Multiple choice
 - 20-24 questions
 - 52 pts:
 - Writing programs/functions/classes/code
 - Finding errors in code
 - 6 questions (1 per unit)

Content

7 topics:
- Unit 1 Functions, Arrays, & Structs
- Unit 2 Searching, sorting & analysis
- Unit 3 Pointers & dynamic memory allocation
- Unit 4 Intro to Classes
- Unit 5 Linked Lists + List ADT
- Unit 6 Stacks & Queues
- Linux
Unit 1: Functions, Arrays & Structs

- Know how to program with functions, arrays and structures.
- Passing parameters by reference (and value)
- Scope rules
- Be able to process arrays (& arrays of struct)
 - Be able to find the minimum/maximum value!
 - See review exercises
- Be able to trace code
- Be able to find errors in code

Unit 2: Searching, Sorting & Analysis

- Searching
 - Linear Search
 - Binary Search
- Sorting
 - Bubble Sort
 - Selection Sort
- See review exercises:
 - Sample exercises to demonstrate algorithms
 - Be able to modify the searching algorithms

Analysis of Algorithms: efficiency

- Efficiency
 - Growth rate functions, which are faster/slower
 - Use big-O notation
 - Efficiency of
 ‣ searching/sorting algorithms
 ‣ array access and traversal (new!)
 ‣ linked list operations (new!)
 - See the Final Exam Review Exercises for good coverage on this, including the new! ones

Unit 3: Pointers & Dynamic Memory Alloc

- Pointer variables: how to define + initialize
- Address of (&) and Dereferencing (*) operators
- Pointers and arrays
 - an array variable is the address of its first element
 - array[index] = *(array + index)
- Dynamic memory allocation
 - new + delete operators
 - allocate new arrays (duplicateArray, etc.)
- Pointers as parameters (call by reference, arrays)
Unit 4: Intro to Classes
- Procedural vs object oriented programming
- Encapsulation, Data hiding, Interface
- Fundamentals of classes and objects:
 - Members: variables and functions
 - private vs public
 - declaration and implementation of classes
 - class declaration
 - defining member functions
 - instances and the dot operator
 - inline member function definitions
 - constructors and destructors
 - arrays of objects

C++ Programming on Linux
- Basic shell commands, know how to use
- edit, compile, run (nano, g++, a.out)
- Compiling multiple files:
 - How to split up code, what goes where
 - g++ a.cpp b.cpp
 - separate compilation
 - g++ -c a.cpp
 - g++ -c b.cpp
 - g++ a.o b.o
 - makefile: understand the ones used for the assignments, know how to use them

Unit 5: Linked Lists
- Pointers to Struct: declaration, access (s->x)
- LL Organization: nodes, head pointer, empty list, NULL
- Linked list tasks: T1-T11:
 - create empty list, create a new node
 - add to front of list
 - append to end of non-empty list
 - traversing a linked list (display, count, sum, etc)
 - how to advance 2 pointers together (n and p)
 - delete given n and p, special cases
 - insert given n and p, special cases
 - linked list destruction
- Arrays vs Linked Lists (see ListADT, last 2 slides)

Unit 6: Stacks and Queues
- ADT, LIFO and FIFO
- 4 basic operations of each data type:
 pop
 enq
 isEmpty
 push
 deq
 isFull
- Be able to show contents of stack or queue after a series of operations
- Be able to implement the operations (code in C++) using a static array or a linked list.
- Be able to use a driver to access a stack or queue.
Sample Problems

See the lecture notes titled:
Final Exam Exercises
on the class website (soon)

How to Study

- Start with the topics from this set of slides.
- Use the regular semester lectures to make sure you understand the topics (quiz yourself, use the Squarecap questions).
- Use the textbook to make sure you understand the lectures about the topics.
- **Do** the review exercises on the Final Exam Exercises slides. Do book exercises. Practice!!
- Go over the exams and assignment solutions and quizzes (fix yours).
- Discuss with others! (and get some sleep)

Office Hours during finals

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>5/5</td>
<td>1:30-3:00pm</td>
</tr>
<tr>
<td>W</td>
<td>5/6</td>
<td>1:30-3:00pm</td>
</tr>
<tr>
<td>Th</td>
<td>5/7</td>
<td>1:30-3:00pm</td>
</tr>
<tr>
<td>M</td>
<td>5/11</td>
<td>1:30-3:00pm</td>
</tr>
<tr>
<td>F</td>
<td>5/15</td>
<td>1:30-3:00pm</td>
</tr>
</tbody>
</table>