

CS 2308: Foundations of Computer Science II
Fall 2018

Section 003
Section 004

Instructor: Dr. Jill Seaman
Comal 210D
js236@txstate.edu

Course Webpage: http://www.cs.txstate.edu/~js236/cs2308

Office Hours:
M, W: 11:00am – 12:30pm
T, R: 2:00pm – 3:00pm and by appt.

Meeting Time/Place:
Section 003: MW 2:00PM-3:20PM DERR 234
Section 004: MW 3:30PM-4:50PM DERR 234

Open Labs:
DERR 231: Linux Lab
MCS 590: Windows Lab
MCS 594: Lab tutors

List of required recommended/readings:
Chapters 1-7, 11.1-11.8 (review of CS 1428) (recommended)
Chapters 8, 9, 11, 13, 18, 19 (required)
See course website for a daily schedule.

Required In-Class Response system: We will be using the Squarecap classroom response system in class. You will be able to submit answers to in-class questions using a smartphone, tablet, or laptop. To sign up, visit www.squarecap.com on your web browser (Google Chrome is the preferred browser). Squarecap requires a paid subscription ($12 for one semester).

Course Description: Fundamentals of object-oriented programming. Introduction to abstract data types (ADTs) including lists, stacks, and queues. Searching and sorting. Pointers and dynamic memory allocation. A continuation of CS 1428.

Prerequisites: C or higher in CS 1428: Foundations of Computer Science I

Course Objectives: At the end of the course, the students should be able to:
1. Describe and demonstrate at least two different algorithms for searching and at least
two different algorithms for sorting.
2. Implement a divide-and-conquer algorithm to solve an appropriate problem (binary search).
3. State the time/space efficiency of various algorithms (using one of 6 categories of mathematical functions).
4. List the 6 categories of mathematical functions used in analyzing algorithms in order from slowest to fastest growing.
5. Read and write C++ code that uses pointer variables and memory operations (new, &, *, delete), including pointers to arrays, structures, and objects and the -> operator.
6. Write C++ code that resizes an array using dynamic memory allocation.
7. Write C++ code that deletes dynamically allocated memory to avoid memory leaks.
8. Describe the basic concepts of object-oriented programming.
10. Describe how the class mechanism supports encapsulation and information hiding.
11. Develop (implement) programs using multiple classes and arrays of objects.
12. Develop and use appropriate algorithms, especially for processing lists (insert, remove, search, sort, etc.)
13. Describe structured programming in terms of modules and functions.
14. Develop (implement) programs with source code separated into multiple files, including header (.h) files.
15. Create, compile, and run a C++ program in a unix style command-line environment.
16. Develop (Implement) C++ programs that create and use simple linked-lists, including code to insert into, delete from, and traverse a linked list structure.
17. Compare and contrast the costs and benefits of dynamic and static data structure implementations.
18. Describe the principle of the Abstract Data Type (ADT) and, in particular, explain the benefits of separation of interface and implementation.
19. Implement user-defined data structures in a high-level language.
20. Implement the list, stack, and queue ADT using arrays and linked lists.
21. Write programs that use each of the following data structures: linked lists, stacks, and queues.

Grading:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>15%</td>
</tr>
<tr>
<td>Programming Assignments</td>
<td>20%</td>
</tr>
<tr>
<td>Exam I</td>
<td>15%</td>
</tr>
<tr>
<td>Exam II</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam (comprehensive)</td>
<td>35%</td>
</tr>
</tbody>
</table>

Grading: Participation: 15% Squarecap & Attendance
Programming Assignments: 20% lowest of 6 is dropped
Exam I: 15% Oct 15 (Mon)
Exam II: 15% Nov 19 (Mon)
Final Exam (comprehensive): 35%

Participation: Bring a web-enabled device to every class to access the Squarecap system. You will be asked questions each day in class (2 points each). We will also track attendance (2 points per day). Your participation grade is computed as follows:
\[
\text{avg} = \frac{\text{your squarecap points} + \text{your attendance points}}{\text{total possible points}}
\]
Participation = the minimum of: \(\text{avg} \times 100 / 80 \) and 100%.
This means you can miss up to 20% of the points and still get 100%.
Makeup Policy: Missed Squarecap questions, attendance, and programming assignments cannot be made up. Exams may be made up in exceptional circumstances, with approval from the instructor.

Reading assignments: There will be assigned reading from the book for each lecture class. A reading schedule will be posted on the class website. You should come to class each day prepared to answer Squarecap questions over the assigned reading for that day.

Late policy for programming assignments: see the class webpage.

Notifications from the instructor: Notifications related to this class will be sent to your Texas State e-mail account. Be sure to check it regularly.

TRACS: We will use the TRACS website for the following:
- Grades (Gradebook tool)
- Programming assignment submissions (Assignments tool)
- Resources (code you can use in your programming assignments)
- Attendance (use in class to report your attendance)

Everything else will be on the class webpage (including lecture presentations)

HELP: Other than the instructor’s office hours, you may obtain assistance here:

- **MCS 590:** Computer Science Department Lab Tutors are available in MCS 594 to help with your programming assignments.
- **CLC (Collaborative Learning Center):** Free walk-in tutoring provided by students in the H–LSAMP Scholars Program. 4203 and 4204 RF Mitte Building.
- **SLAC (Student Learning Assistance Center):** walk-in tutoring lab and **Supplemental Instruction**: a nontraditional form of tutoring that focuses on collaboration, group study, and interaction for assisting students undertaking "traditionally difficult" courses. A trained peer who has successfully negotiated the course (the SI Leader) will facilitate 3 one-hour study sessions per week for group study. Our SI Leaders are: Jack Wagner (jrw210) for section 003 and Samantha Aziz (sda69) for section 004.

Withdrawals/drops: You must follow the withdrawal and drop policy set up by the University and the College of Science and Engineering. You are responsible for making sure that the drop process is complete.
http://www.registrar.txstate.edu/registration/dropping-or-withdrawing.html

Last day to drop with automatic “W”: October 29, 2018.

Classroom Behavior: The main rule is to not disrupt or distract other students during class! Additionally please treat other students and the instructors with respect.

Academic Honesty: You are expected to adhere to the University's Academic Honor Code as described here: http://www.txstate.edu/effective/upps/upps-07-10-01.html.
• You may work together on your programming assignments. If you submit a program that is the result of group work, you must list the names of all contributors in the file header. Each student must submit their own program, even if it is the same as another students’.

• Do not include code obtained from the internet or any other source in your programming assignment (except what is provided by the instructor during the current semester). Do not post your solution anywhere on the internet. The penalty for either of these violations will be a 0 for that assignment.

Accommodations for students with disability:
Any student with needs requiring special accommodations should contact the office of disability services at the LBJ student center. Students who qualify for extra time for exams must take their test with ATSD and must schedule their test at the same time the test is given in class. Note: you must submit your request with ATSD at least 2 business days before the exam date!

Course Content: There are 6 main topics or units:
 Unit 1: Functions, Arrays, & Structs
 Unit 2: Searching, Sorting, & Analysis
 Unit 3: Pointers & Dynamic Memory Allocation
 Unit 4: Intro to Classes
 Unit 5: Linked Lists
 Unit 6: Stacks & Queues

For each unit I will provide the following (posted on the class website):
• Reading assignments from the book.
• Lecture slides (for your reference)
• A Programming Assignment

Use of Squarecap in this class:
• 2 points per question (1 for correctness, 1 for answering)
• 1-5 questions per day (none on test days)
• Some discussion questions will be asked twice (once before and once after discussion), for a total of 4 points each.

Exam coverage:
 Exam 1 covers Units 1-3.
 Exam 2 covers Units 4-6.
 Final Exam covers Units 1-6
Each Exam will have about 25 multiple choice questions and 3-5 programming questions.