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Abstract— This report1 presents a synopsis of an experiment
conducted for anticipating micro chaos in human postural bal-
ance using deep learning. We base foundation of our experiment
on [4, 3]. Preliminary results demonstrate our method achieve
nearly perfect accuracy. However, this assessment doesn’t jus-
tify goodness of our model. Since anticipation of wrongdoing is
highly time dependent, we redesign accuracy and other metrics
like precision and recall to be time dependent.

I. DATA

We implemented procedures advocated in [4] to build
our dataset. We run the simulation for 10, 000 steps and
save simulated data in the disk. We used initial angle
randomly from a range between (-5,5) exclusively. We collect
arm length(χ(t)) and angle(Φ(t)) as our features which
we subsequently split into feedback and response set as
indicated in Eq.1 and Eq.2.

χ(t) =

{
feedback(x(t− τ)), where t ∈ [0, n)

response(x(t)), where t ∈ [τ, n)
(1)

Φ(t) =

{
feedback(φ(t− τ)), where t ∈ [0, n)

response(φ(t)), where t ∈ [τ, n)
(2)

This increase our feature space to another 4 dimensions.
We chose discretization steps to be dt = 0.01 seconds.
This simulation model simulates 1 data point for every 10
milliseconds, that means at 23rd steps this model has already
elapsed 230 milliseconds time and produce 23 data points,
which is delay feedback time for our simulator, in terms of
time steps delay is 23.

Fig.1 represents data creation process. We repeat this
process for 4 features x(t), x(t− τ), φ(t) and φ(t− τ) and
combine, which leads to the dimension of data being (92, 4).
We run simulation for 10, 000 iterations for sets of average
balance time {25.5, 40, 113, 240}. Since discretization
steps are 0.01seconds, this produces an average of
balance time/0.01 samples for each balance time, which
are {2550, 4000, 11300, 24000} for {25.5, 40, 113, 240}
respectively. For each simulation, we process data as mention
in Fig.1. On average, we will have (n − τ − 2w + 1, w)
number of data for label-0 and label-1 expressed in
terms of ordered tuple. Since we know estimated average

1This is a preliminary report.
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Fig. 1. Visualizing data creation process. We exclude the last section of
size 23(signal shown in red color) since we don’t want this in our feature
space. Feature space is further divided into No-Fall-Region and Fall-Region,
which we labelled as 0 and 1. In this way we frame our problem as a binary
classification problem. We are asking given a window size of w = 92 is
there a fall going to happen in next [230 miliseconds,920miliseconds] closed
range? Note: here (n − 2w + 1) >> (w), no fall region is significantly
larger than fall region.

n, w = 92 and τ = 23(in terms of time steps) we
can easily compute number of batches. Which leads to
{(2344, 92), (3794, 92), (11094, 92), (23794, 92)} data size
for {25.5, 40, 113, 240} respectively, for 1 simulation. We
see there is a huge imbalance between label-0 and label-1
in data. To achieve balance, we will run max of each tuple
size for each case and balance the data by keeping lesser
part. We call this one round of simulations, which includes
extra simulations for each balance time. This is actually the
difference of max(label-0, label-1) size for each case. So 1
round of simulations includes {2253, 3703, 11003, 23703}
number of simulation for balancing data in order.
This balancing process will make final data size
{(2344,2344),(3794,3794),(11094,11094),(23794,23794)}
for each balance time in order. We run this process for
10000 rounds, increasing each data size by 10000 times.
After combining all balance time data into a single group
we will have (23440000, 37940000, 110940000, 237940000)
number of batches for each label. This leads to final data
size of 2×410260000 batches, which approximate to around
820 Millioin batches(approx 82 thousands per round of
simulations). We treat this data as a training data. To achieve
a validation and test we will repeat same experiment but we
do not balance these sets. This way our validation set will
be significantly smaller(approx 41Million) than trainnig



set.

II. ARCHITECTURE

Our ideal model should be able to learn the pattern leading
to fall(or chaos) accurately. Since our data has periodic
randomness, which at the last region(where actual fall took
place within 320 to 920 milliseconds) also shows a similar
pattern with unnoticeable difference. With this in mind, we
want to capture the information more accurately, which we
do so by using stacked bidirectional LSTM layers. These
layers can learn pattern from both directions, which preserve
information from both past and future. We implement fairly
simple architecture as shown in Fig-2. To overcome over-
fitting due to simulated data(as they have high correlation
from one simulation to another) we use a single dropout
layer, just after maximally parametrised dense layer. We
choose RMSProp as our optimizer, since it prevent gradient
exploding and vanishing problem by balancing the gradient.
Since we present this problem as a fall-vs-no-fall anticipa-
tion, binary-cross-entropy is our default choice for the loss
function. We notice that our model converge within few
numbers of epochs (12-15); we set large epoch size but adopt
early stopping strategy.

INPUT LAYER (92 X 4)

BIDIRECTIONAL - LSTM (64)

BIDIRECTIONAL - LSTM (128)

DENSE (64), Activation ReLU

DROPOUT (0.5)

DENSE (32), Activation ReLU

DENSE (16), Activation ReLU

DENSE (8), Activation ReLU

DENSE (1)

Fig. 2. We adopt fairly simple model with two layers of bidirectional
recurrent unit(LSTM) to capture pattern in our data. We further use several
layers of dense layer along with a dropout layer to prevent over-fitting.

III. EVALUATION STRATEGY

We want our model to be sensitive and accurate for fall
anticipation. We want our model to expect event correctly

in terms of time. For example, a terrible model would be a
model predicting fall very early where actual fall happens
in the distant future. Similarly, another example would be
a model predicting no fall where actual fall happens in
immediate time step. We want to penalize our measurement
metrics heavily over such cases. We consider these aspects
and re-model the concept of accuracy, True negative, True
positive, False positive and False negative by penalizing these
metrics. Based on these ideas, we compute new accuracy,
precision, recall and f-ratio.

Fig. 3. Showing penalty functions(Weibbul function with different value
of β). As we increase the value of β effect of penalty function becomes
negligible, so whenever it is large(β → ∞) metrics behave like ordinary.
However, decreasing size of β heavily penalizes the metrics. Note x axis
represents time and y axis represents probability. We divide time into (0,1)
continuous region by dividing current time step by total time period. From
application perspective, instead of using real-time in seconds, we use current
window index by total window sizes for each ith simulation.

We would like to introduce some notations to understand
the evaluation strategy. We present our mode as Θ. Similarly
ith simulation set as (Xi, Yi), where (X0

i , Y
0
i ) represent

no fall reason and (X1
i , Y

1
i ) represent fall region for ith

simulation. Here, Y 0
i = 0 and Y 1

i = 1 for all i in total
number of simulations. We define σ as a sigmoid function
to map our model output to probability(P). Then,

Ŷ =

{
1 if P ≥ 0.5 where, P = σ(Θ(X))

0 else
(3)

Here, Ŷ 0
i corresponds to prediction for no fall region

and Ŷ 1
i corresponds to fall region for ith prediction. We

then compute True Positive Sequence(TPi), True Negative
Sequence(TNi), False Positive Sequence(FPi) and False
Negative Sequence(FNi) for ith simulation.



TPi =

{
1 if Ŷ 1

i = Y 1
i

0 else
(4)

TNi =

{
1 if Ŷ 0

i = Y 0
i

0 else
(5)

FPi = 1− TNi

FNi = 1− TPi
(6)

Based on the work of [2, 1] stick balancing follows
Weibbul type function(W ) as shown in Eq.7. This survival
curve is an approximation of probability for stick not falling
given point of time. We expect our model to stick with
this nature of Weibbul-curve, that means significantly lower
confidence for predicting an event as fall at the beginning of
time. So, to measure the practicality of our model, we can
use this Weibbul function as penalty function to compute
modified metrics(accuracy, precision and recall).

Fig.3 shows plots for different values of β for the weibbul
function in Fig.3. From the plot we can see that, as we in-
crease(to very large value) β the curve tries to overlap x and y
axis. If we use W with β →∞ and penalize the metrics, then
we end up calculating ordinary metrics(accuracy, precision
and recall). Similarly, if we choose β → 0 then we end up
complete penalization of metrics, which is not good. Inspired
by the work [2, 1], we choose β = 1.8105 as optimal value.

W =


e−(kt)β Where, k = 0.368, β = 1.8105

e−(kt)β , β →∞,No Penalty
1− x,Linear Penalty

(7)

ωTPi =

N1
i∑

n=0

(
(TP )i,n − (FN)i,n × P 1

i,n ×W (1− n/N1
i )

)

ωTNi =

N0
i∑

n=0

(
(TN)i,n − (FP )i,n × P 0

i,n ×W (n/N1
i )

)

ωFPi =

N0
i∑

n=0

(
(FP )i,n + (FP )i,n × P 0

i,n ×W (n/N1
i )

)

ωFNi =

N1
i∑

n=0

(
(FN)i,n + (FN)i,n × P 1

i,n ×W (1− n/N1
i )

)
(8)

Eq.8 shows computation of weighted TP,TN,FP and FN,
denoted as ωTP , ωTN , ωFP , ωFN respectively. Where, i is
ith simulation, Ni is number of windows in ith simulation,
N0

i , N
0
i is number of windows in no-fall and fall region in

ith simulation, where Ni = N0
i +N0

i . Now, based on Eq.8
we can compute precision and recall as shown in Eq.9, where

S represents number of simulation done for testing.

ωAccuracy = 1
S

S∑
i=0

(
ωTPi+ωTNi

ωTPi+ωTNi+ωFPi+ωFNi

)

ωPrecision = 1
S

S∑
i=0

(
ωTPi

ωTPi+ωFPi

)

ωRecall = 1
S

S∑
i=0

(
ωTPi

ωTPi+ωFNi

)

ωF = 1
S

S∑
i=0

(
2×Precisioni×Recalli
Precisioni+Recalli

)
(9)

Metrics Mode Precision Recall Accuracy F1-Score
default with score 0.85 0.92 0.96 0.89
default without score 0.85 0.92 0.96 0.89
linear with score 0.78 0.88 0.94 0.83
linear without score 0.80 0.92 0.95 0.85

weibbul with score 0.76 0.86 0.93 0.81
weibbul without score 0.79 0.92 0.95 0.85

TABLE I
Experimental results shown in average for 1000 simulations for each

balance time of (25.5s,40s,113s,240s). Note: Mode with and without score

refers to penalizing scheme using model confidence(or probability).

IV. RESULTS

We present summary of our experiment in Fig-4,Fig-5 and
Table-I. Fig-5 present more condensed information of our
experiment. Based on which we can say that penalization
with score(or probability that model predicts) on average
lower our performance metrics. However, if we consider a
perfect model, these scores will be 100%. If we use classical
metrics, these metrics won’t tell us anything about wrong
predictions in different time steps and their severity.

V. CONCLUSION

In this experiment, we implemement mathematical stick
balancing model as a source of our data. Our objective is to
predict chances of stick fall within next second. Our fairly
simple model can easily do this job with impressive accuracy
of > 95%. This achievement raises doubts regarding its
practicality. We formulate a time based metrics to correctly
explain the practicality of the model. These metrics heavily
reduce the model performance measure if model does wrong
prediction ahead of the time. To our surprise, these metrics
are impressive. However, these results are based on random
1000 test simulations.

This is a work in progress and we are excited to try real
dataset with our model. If this simulator mimics human stick
balancing data fairly, we believe this model will generalise
fairly to acceptable range.
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Fig. 4. This plot shows a comparison of metrics used with different
penalization settings(linear, Weibbul and none or default). We also show
the effect of penalization based using score(probability) vs without using.
We can see metrics penalized with Weibbul function is lower compare to
linear and non-penalized version. We can also observe that penalization
using score lowers the metrics compared with penalization without score.
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Fig. 5. Comparing metrics shown in Table-I.
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Fig. 6. This plot shows the frequency distribution of time-error defined as (actual fall time - predicted fall time) for several balance time.Bottom right,
first plot contains individual frequency percentage in time-error ranges shown in x-axis and the second plot shows this information cumulatively. Since
our model has a prediction confidence for predicting fall in next 0.23(= λ) to 0.92 second range, we should observe higher frequency of error range from
(λ to 4λ) which is (0.23,0.92) seconds range. We can see this frequency is around 72% of all the time-error range(as shown in bottom right cumulative
frequency percentage plot).This suggests significant number of wrong predictions in no-fall region near the border between fall-region and no-fall-region,
which is natural. This is based on the design of our experiment, specially related with strategy of defining a no-fall and fall region. Note, time error
range(λ to 6λ) which is (0.23,1.38) seconds covers almost 96% of all the time-error range(as shown in bottom right figure).



0 10 20 30 40 50 60 70 80 90

1 11 21 31 41 51 61 71 81 91

2 12 22 32 42 52 62 72 82 92

3 13 23 33 43 53 63 73 83 93

4 14 24 34 44 54 64 74 84 94

5 15 25 35 45 55 65 75 85 95

6 16 26 36 46 56 66 76 86 96

7 17 27 37 47 57 67 77 87 97

8 18 28 38 48 58 68 78 88 98

9 19 29 39 49 59 69 79 89 99

linear_rates
weibbul_rates
default_rates

Fig. 7. ROC-AUC Curve for random 100 simulations with average balance time of 25.5 seconds. Note: X-axis represents False Positive Rate and Y-axis
represents True Positive Rate, Metrics are penalized using scores(or probability predicted by model).
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Fig. 8. ROC-AUC Curve for random 100 simulations with average balance time of 25.5 seconds. Note: X-axis represents False Positive Rate and Y-axis
represent True Positive Rate.
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Fig. 9. ROC-AUC Curve for random 100 simulations with average balance time of 40 seconds. Note : X-axis represent False Positive Rate and Y-axis
represents True Positive Rate, Metrics are penalized using scores(or probability predicted by model).
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Fig. 10. ROC-AUC Curve for random 100 simulations with average balance time of 40 seconds. Note : X-axis represents False Positive Rate and Y-axis
represent True Positive Rate.
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Fig. 11. ROC-AUC Curve for random 100 simulations with average balance time of 113 seconds. Note: X-axis represents False Positive Rate and Y-axis
represents True Positive Rate, Metrics are penalized using scores(or probability predicted by model).
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Fig. 12. ROC-AUC Curve for random 100 simulations with average balance time of 113 seconds. Note: X-axis represents False Positive Rate and Y-axis
represents True Positive Rate.
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Fig. 13. ROC-AUC Curve for random 100 simulations with average balance time of 240 seconds. Note: X-axis represents False Positive Rate and Y-axis
represents True Positive Rate, Metrics are penalized using scores(or probability predicted by model).
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Fig. 14. ROC-AUC Curve for random 100 simulations with average balance time of 240 seconds. Note: X-axis represents False Positive Rate and Y-axis
represents True Positive Rate.


