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Abstract

In the recent years, popularity of semantic segmentation
in computer vision has massively increased. Proposed deep
learning architectures has their own pros and cons. Some
architectures require huge amount of training data while
others rely on the heavy use of data augmentation to address
this. These models are however trained and experimented
on baseline datasets and there are enough rooms to discuss
about their generalizability in rare data sets. In this work
we try show how naı̈ve architectures in this domain fails
and requires modification. We will also discuss an intuition
behind a modification and experiment our own custom ar-
chitecture based on the work [7]. The major objective of
this work is to diagnose the weak spot of the generalizabil-
ity of the previous work [2, 7] and define a new research
goal for future work.

1. Introduction
Semantic Segmentation or scene labeling task in com-

puter vision is to identify class for each pixel. In contrast
with object detection, semantic segmentation is more pre-
cise and more complex work. Semantic segmentations tasks
open huge applications opportunity in different domains.
However, with decades of research it is still a tough task.

1.1. Summary
Convolution neural networks provides weight sharing,

an important scheme for localization task that we see often
in semantic segmentation. However, naı̈ve implementation
of convolution neural network for such tasks doesn’t work
well. As we can see that the work of [7] out performs [2].

Semantic segmentation has another major challenge. It
requires a lots of training data sets. So, data augmentation

is an equally important aspects, as we can see this in work
[7]. However, as these experiments are subjected to base-
line data sets and not discussed largely in adverse conditions
where data sets are challenging, there is an opportunity to
doubt the generalizability of these algorithms.

In this paper, we implement a naı̈ve convnets and cus-
tom Unet based convnets for semantic segmentations. The
baseline datasets we are using is LiTS data set, from a chal-
lenge organised in conjunction with ISBI 2017 and MIC-
CAI 2017. The objective is to segment the liver lesions in
contrast-enhanced abdominal CT scans. Due to their het-
erogeneous and diffusive shape, automatic segmentation of
tumor lesions is very challenging. Until now, only interac-
tive methods achieved acceptable results segmenting liver
lesions. Moreover, the nature of these scans is sequential.
For the majority of scans lesions appear gradually in the se-
quence so there are no semantic labels in such cases. So,
it opens another research opportunity to consider sequence
modeling as well. We will discuss this in future work.

This work tries to investigate why naı̈ve convnets failed
in this task and how simple modification on the naı̈ve im-
plementation performs well.

1.2. Previous Work
The ISBI challenge launched in the context of the ISBI

2012 conference (Barcelona, Spain, 2-5th May 2012) open
a new contribution in the field of medical image segmen-
tation. The best method (a sliding-window convolutional
network) at that time was outperformed by the work of [7]
in 2015 and won the ISBI cell tracking challenge. These
works create a huge attention to the researcher working in
computer vision. Work like [5] uses semi supervised ap-
proaches , moreover other works like [9] tries to combine
the ideas and addressed the need of sequential modeling
from work [7]. There are many other impressive works
on this field.
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FRRN (Full-Resolution Residual Networks) [6, 8] is one
of the state-of-the art model. It uses multi-scale processing
techniques by using two separate streams, the residual and
pooling stream. This helps to process semantic features for
higher classification accuracy. It progressively downsam-
ples the features maps in the pooling stream, meanwhile
processing the feature maps at full resolution in the resid-
ual stream. So these two streams accounts for high classi-
fication accuracy and low-level pixel information for high
localization accuracy.

FRRN did excellent job but with heavy processing over-
head at every scale. PSPNet [12, 8] is another state-of-
the-art to get around this overhead. It uses ResNet and
DenseNet like architecture to extract feature. This architec-
ture combined multi-scale feature maps without applying
many convolutions.

The One Hundred Layers (FCDenseNet) [4, 8] is an-
other kind which uses U-Net architecture. The main contri-
bution of this architecture is the clever use of dense connec-
tions similar to that of the DenseNet classification model.

The state-of-the-art model we discussed so far has huge
amount of parameters overhead. DeepLabV3 [1, 8] tries to
address the parameters overhead by using feature extraction
frontend. This is a very ligthweight model. It downsamples
the input images to 16 times smaller input, and there are
high odds of getting good localization and can leads to poor
pixel accuracy. The main contribution of this architecture
is the clever use of its state-of-the-art Atrous convolutions.
However, it still uses the same upscaling techniques as in
PSPNet.

One of the attempts to review these techniques were done
in the work of [3], they reviewed existing methods, high-
lighting contributions and significance of those methods in
the field. The recent work of [10] is more closely related
work, their contribution on developing and evaluating re-
cent advances in uncertainty estimation and model inter-
pretability in the context of semantic segmentation using
several enhanced architectures of Fully Convolutional Net-
works is one of the amazing work.

1.3. Methods and Results
In this paper, we implement two different architecture,

a naı̈ve – symmetric convolutional neural network-based
model and modified our naı̈ve implementation. This model
is inspired by the work of [7].

The first method is symmetric convolutional neural net-
work which has same down-sampling and up-sampling ar-
chitecture. 512 x 512 x 1 pixels are down-sampled to 16
x 16 x 1024, and up-sampled to 512 x 512 x 1. We mod-
ified the network to store the indices of max-value during
down-sampling and these indices were used in correspond-
ing stages of up-sampling to obtain an approximate inverse
by recording the locations of the maxima within each pool-

Figure 1: Sample Image scans(left) and segmentation(right)

ing region. This helps preserving the structure of the acti-
vations [11].

The second method is a modification on the first method.
This approach is inspired by U-Net architecture [7], how-
ever this method is tailored in such a way that it has dif-
ferent skip connections schemes. We exploit the nature of
our symmetric model to pass the weights to corresponding
stages from down-sampling part to up-sampling part and
add these weights together. Moreover, as we discussed we
also preserve the structure of the activations by approximat-
ing the true inverse during max-Unpooling.

The former method tries to predict the pixel values
to find the segmentation region corresponding to specific
scans, as opposed to later, which tries to predict a class per
every pixel within the mask. These two tasks differ each
other from their orientation of objectives. Former being re-
gression and later being classification.

From the experiment results we can see that later method
works better than the former one. We will discuss more
these on results section.

2. Problem Description
Manually identifying liver lesions is cumbersome task,

computer aided segmentation will alleviate the efficiency
and save valuable time in medical industry and in medical
research where researchers have to deal with thousands of
such task in their usual work routine. Creating a deep learn-
ing model to develop automatic segmentation is a challeng-
ing task. Here we will discuss two methods that earned their
popularity few years back with few modifications. How-
ever, the major focus here is to demonstrate failure and
generalizability of the deep learning models and to identify
why few modifications are needed for advancements, along
which opens more research understanding for future.

2.1. Methodology
We will demonstrate how naı̈ve implementations of con-

volution neural network is not enough to do the segmenta-
tion tasks, and how simple modification of this implementa-
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Figure 2: Convnet based model Corresponding layers from downsampling and
upsampling are stacked together
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Figure 3: U-net based model Corresponding layers from downsampling and
upsampling are stacked together

tion drastically changes the results and learning speed. We
perform our experiment on LiTS data sets. These data sets
contain 125 CT scans files. These scans contain varied num-
ber of sequential images. Detail description of the data sets
is given below

Sample datasets with label segmentation is shown in fig-
ure 1. Our first model architecture is defined in figure 2
.This convolution neural network based architecture has two
main parts downsampling and upsampling. Dimensions are

Info Description
Source MICCAI 2017
Number of Scans 125 Scans, 108890 images, ⇠871

images per scan in average
Train Scans 117 Scans, 101966 images,
Test Scans 8 Scans, 6924 images
Data Format NIFTI File Format
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equal within levels in corresponding parts. Most important
things to notice about this architecture is the way how Max-
Unpooling is done, we pass indices of max value at cor-
responding stages so that we can construct an approximate
inverse. Corresponding stages are the steps from max-pool
and max-unpool with same dimensions as shown in figure 2
and 3. Suppose we have following examples, assume max-
pool with kernel=2, and stride = 1, maxUnpool with kernel
= 3, and stride = 1 and A as a latent feature matrix

A =

2

4
a1 a2 a3
a4 a5 a6
a7 a8 a9

3

5 ;A0 = maxpool(A) =


a5 a6
a8 a9

�

Max-Unpooling in general from A’, when we don’t store
the indices

A
00 =

2

66664

0 0 0 0 0
0 a5 0 a6 0
0 0 0 0 0
0 a8 0 a9 0
0 0 0 0 0

3

77775

;

A
�1 = maxUnpool(A0) = maxPool(A00)

=

2

4
a5 a6 a6
a8 a9 a9
a8 a9 a9

3

5

Max-Unpooling that we used, from A’, when we store
the indices

A
�1 = maxUnpool(A0) = maxPool(A00)

=

2

4
0 0 0
0 a5 a6
0 a8 a9

3

5

We can see that the inverse calculated later preservers
original matrix better.

We define first model as pixel prediction problem, min-
imizing mean square error. We trained the models to 100
epochs.

Our second model as shown in figure 3 is introduced as
an improvement from the first one. We believe our model
suffers huge feature loss during up-sampling. Inspired from
U-net architecture [2]. We implement a unet-like archi-
tecture with minor difference in our model. Here we pass
the output from corresponding down-sampling layers to the
up-sampling layers and add them together whereas original
work of Unet architecture does cropping and concatenation.
With image processing on train data, we create a mask from
the given ground truth and run classification problem for
each pixel if it is within the mask, minimizing cross entropy
loss. We trained the models to 100 epochs.

Following are the summary of the two models

Info/Model Conv-based Unet-based
Loss MSE Binary

Cross Entropy
Optimizer Adam Adam
#epochs 100 100
Tr.Time 8 6
GPU NVIDIA 1080Ti, 16GB NVIDIA 1080 Ti,

16GB
Library Pytorch Pytorch

Code can be found at https://github.com/
keshavsbhandari/Image_Segmentation

3. Results
Both models show significant improvement in valida-

tion loss over training loss as we can see in figure 5 and
6. However, the convolution-based models did worse job
from generalization perspective. We analyze our results by
simulating real-time scanning and segmentation task in test
scans. Convnets based model averaged out all the features
and gave same segmentation results throughout the simula-
tion, as we can see in figure 4.

To perform some qunatitative analysis we used a metric
called as Jaccard index.

Jaccard index, also known as Intersection over Union
(IOU) is a statistic used for comparing the similarity and
dissimilarity of sample sets.

The Jaccard coefficients is defined as the size of the in-
tersection divided by the size of the union of sample sets:

IOU = J(A,B) =
| A \B |
| A [B | =

| A \B |
| A | + | B | � | A [B |

(if A and B are both empty, we define J(A,B) = 1.)

0  J(A,B)  1

The Jaccard distance, is a measure of dissimilarity be-
tween samples. Jaccard similarity is for comparing two bi-
nary vectors so we can compute this easily for unet-based
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Scans Ground 
Truth 

Convnet 
model 

Unet-based 
Model 

Figure 4: Experimented Result from both Convnet based and Unet based model Convnet based model doesn’t show any
generalizaiton to localization accuracy Unet-based model perform well comparaitiviely

Figure 5: Convnet based model training and validation loss
over number of epochs

model but for the sake of our conv-net based model we can
use generalized version of the Jaccard index as given by

IOU = J(L,E) =

P
i min(Li, Ei)P
i max(Li, Ei)

Figure 6: U-net based model training and validation loss
over number of epochs

Moreover, we also calculate the pixel accuracy for unet-
based model. The pixel accuracy is defined as

accuracy =
TP + TN

TP + TN + FP + FN
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Where,
TP : True Positive
TN ; True Negative
FP : False Positive
FN : False Negative

Figure 7: Unet Based Model : Pixel accuracy calculate per

Since, our class representation is too small this metric
can be misleading as well, as the measure will be biased in
mainly reporting how well model identified negative case.

Calculated metrics for both model is given below.

Info/Model Conv-based Unet-based
IOU 0.19 0.53
Pixel Accuracy NA ˜100

Above results clearly shows performance of U-net based
model over convnet based model qunatitatively.

4. Conclusion and Future Work
The datasets we used are rarely mention in literature.

We showed that how semantic segmentation models can
be questioned to its generalizability. The unet-based model
achieves very good performance compared to naı̈ve convnet
based model. With little modification on the convnet based
model we are able to show how we can significantly im-
prove the model.

We established an understanding of skip connections we
saw in Unet-based model and importance of data augmen-
tation. These techniques turned out to be important for the
model to learn more features.

We did our best in this work to compare and contrast be-
tween naive model with unet-based model. However, we
did not consider two important aspects here, first smaller
datasets and second sequential nature of data. We would

like to continue our future research on how we can tackle
these problems with other data augmentation techniques
and combine sequence modelling aspects as well.
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