
Cascading IDK Classifiers to Accelerate Object
Recognition While Preserving Accuracy
Ishrak Jahan Ratul
Texas State University

ishrakratul@txstate.edu

Zhishan Guo
North Carolina State University

zguo32@ncsu.edu

Kecheng Yang
Texas State University

yangk@txstate.edu

Abstract—Real-time object recognition on edge devices with
constrained computing resources involves a trade-off between
computational workload and classification accuracy. Existing
classifier models are individual classifiers that are typically
designed for either fast inference with reduced accuracy or high
accuracy with significant computational cost. A recently proposed
concept, called IDK (which stands for “I don’t know”) classifiers,
enables cascading multiple existing classifiers to achieve high
accuracy while significantly reducing average inference time.
In this work, we compose IDK classifier cascades for the Tiny
ImageNet dataset. Each input is processed sequentially through
classifiers—from faster, less accurate ones to slower, more accu-
rate ones. When an upstream classifier returns a high-confidence
prediction, downstream models are skipped, improving average
inference time. Our experiments demonstrate that IDK classifier
cascades can reduce average computation time per inference
while maintaining high classification accuracy compared to state-
of-the-art individual models.

Index Terms—DNN, IDK classifier, neural networks inference,
classifier cascade, PyTorch, edge device.

I. INTRODUCTION

Recent advances in machine learning (ML), particularly deep
learning, have significantly improved object detection and
data processing in real-time. However, these improvements
often come with increased computational costs and higher
latency, making it challenging to meet the demands of real-
time applications [9]. In object recognition, classification is a
fundamental task typically performed by deep neural networks
(DNNs). Although these models provide high accuracy, their
computational complexity often leads to slower inference
times, which becomes a bottleneck in applications like video
processing. For example a 60 frames per second video, where
each frame must be processed in under 16 milliseconds.

However, lightweight classifiers offer faster inference
speeds [10], making them suitable for high-throughput or
resource-constrained scenarios. But, they generally lack the
ability to handle complex or ambiguous inputs, leading to
reduced classification accuracy. This trade-off between speed
and accuracy becomes even more critical in edge devices such
as autonomous drones, robots, and embedded systems, where
computing resource, memory, and power are limited [15, 20].
Rather than choosing between fast or accurate models, we
explore a more adaptive approach: Can we combine them in
a way that leverages their strengths while mitigating their
weaknesses? This motivates the use of the IDK classifier
cascade framework. In this framework, multiple classifiers,

This work is supported in part by NSF grants CNS-2104181 and CMMI-
2246672.

from lightweight to complex, are arranged in a sequence.
Each classifier is equipped with a confidence threshold: if a
prediction exceeds this threshold, it is accepted; otherwise, the
model defers by outputting an IDK, passing the input to the
next classifier in the cascade.

This cascade structure allows lightweight models to quickly
handle easy inputs, while more complex models are reserved
for difficult cases. By allowing early classifiers to handle
a majority of the input load and escalating only uncertain
predictions, the IDK cascade reduces the average inference
time while preserving high overall accuracy. This makes it
especially valuable for real-time tasks such as autonomous
driving and video surveillance [5], where both low latency
and quality of decision are essential.
Contribution. In this work, we present a practical IDK
cascade framework to optimize average inference time and
classification accuracy. We adapt pre-trained DNNs to build
IDK cascades. These cascades are built by sequencing models
from fastest to most accurate, passing inputs until a confident
prediction is made. We introduce a confidence based thresh-
olding for decision making in each classifier. We evaluate
our cascades on the NVIDIA Jetson AGX Orin platform [8].
Experimental results demonstrate that our cascades signifi-
cantly reduce average inference time while maintaining high
accuracy.

II. IDK CASCADE

A. Background and Related Work
The IDK cascade framework builds on the foundational work
of Baruah et al. [3, 4, 5], which emphasized the need for
efficient and accurate classification in real-time, safety-critical
systems. Their studies showed that using complex models
for all inputs is inefficient, while lightweight models, though
fast, often lack sufficient accuracy [19]. To address this,
the concept of IDK classifiers was introduced [5] and later
extended [1]. These classifiers output an IDK decision when
confidence is low, enabling a cascade structure that processes
inputs through increasingly complex models until a confident
prediction is made. This approach balances speed and accuracy
by allocating computation based on input complexity.

An IDK cascade is thus a sequential classification pipeline
where each model either accepts or defers an input. Here
the lightweight models handle most inputs efficiently, while
deeper models are used only when necessary. Unlike prior
work that focused on theory and scheduling, our study im-
plements and evaluates practical IDK cascades, demonstrating

1



significant reductions in average inference time with minimal
impact on accuracy which can be suitable for real-time,
resource-constrained environments.

B. Decision Rule

Each classifier in the IDK cascade operates based on a
confidence threshold. Let Ci be the i-th classifier and x the
input. The classifier’s confidence score, P (Ci(x)), represents
the likelihood that its prediction is correct. If this score
exceeds a threshold τi, the classifier outputs a predicted class
yi; otherwise, it returns “IDK” and forwards the input to
the next classifier. This rule allows lightweight classifiers to
handle easy inputs, escalating harder ones to more accurate
models [3].

Output of Ci(x) =

{
yi, if P (Ci(x)) ≥ τi,

IDK, otherwise.
(1)

C. Our Considerations

Our IDK cascade uses high-performing CNN and transformer-
based models for object recognition, selected based on bench-
mark accuracy [2]. To ensure reliability, we performed a
systematic threshold search to assign each model an optimal
confidence level, minimizing misclassifications by escalating
only uncertain inputs. Inputs are processed sequentially (batch
size = 1), reflecting real-time constraints on edge devices
like autonomous vehicles [13]. These systems must balance
multiple concurrent tasks (e.g., LiDAR, radar, and vision), so
avoiding batch or parallel execution helps preserve compute
resources for critical operations.

III. METHODOLOGY

A. Setup

Our IDK cascade framework targets real-time classification on
edge platforms. We deployed it on the NVIDIA Jetson AGX
Orin developer kit, equipped with a 2048-core Ampere GPU,
64 Tensor cores, and dual NVDLA accelerators [8].

Experiments were conducted using PyTorch. We evaluated
our models on the Tiny ImageNet dataset [12], which includes
200 object classes, each with 500 training and 50 validation
images. We used the original validation set (10,000 images)
as our test set and split the training data into 90% training and
10% validation. This setup ensured evaluation on unseen data,
preventing data leakage. Our main objective was to build a
low-average inference time, high-accuracy classification sys-
tem suitable for edge deployment.

B. Fine-Tuning and Classifier Selection

To construct an efficient IDK cascade, we fine-tuned
several state-of-the-art object recognition models like
AlexNet [11], ResNet18 [6], VGG16 [16], Inception
V3 [17], SqueezeNet [7], EfficientNet [18], and Swin
Transformer [14] on Tiny ImageNet dataset. All models
were pretrained on ImageNet and adapted by modifying their
final layers for 200-class output. Training was conducted
using PyTorch’s Distributed Data Parallel (DDP) on a dual
NVIDIA RTX A4000 GPU server, with cross-entropy loss

Classifier Top 1 Accuracy (%) Average Inference Time (mS)
Alexnet 59.57 1.798

VGG 16 66.43 3.800

Squeezenet 40.88 5.055

Resnet 18 71.98 5.467

Efficientnet 79.22 17.830

Inception v3 45.90 23.700

Swin Transformer 89.56 45.428

TABLE I: Performance Metrics of Classifiers after Fine Tuning

and SGD optimizer (learning rate = 0.001, momentum =
0.9). Early stopping was applied to prevent overfitting, and
generalization was enhanced using learning rate scheduling,
data augmentation, and dropout.

Classifier selection for building IDK cascade was based
on a balance between accuracy and average inference time.
AlexNet (59.19%, 1.798 ms) was chosen for its low latency,
ideal for early-stage classification. VGG16 (66.43%, 3.800
ms) and ResNet18 (72.41%, 5.467 ms) offered moderate to
high accuracy with reasonable speed, making them suitable
for intermediate stages. EfficientNet (79.45%, 17.830 ms) and
Swin Transformer (89.56%, 45.428 ms) were placed later
in the cascade due to their high accuracy and increasing
computational cost. Models like Inception V3 (45.90%, 23.700
ms) and SqueezeNet (40.88%, 5.055 ms) were excluded due
to poor accuracy-to-latency trade-offs.

C. Confidence Thresholding and Cascade Synthesis
To build the IDK cascade, we determined confidence thresh-
olds τ for each classifier using validation data. Predictions
above τ were accepted; otherwise, produces IDK output.
This thresholding minimizes misclassifications while reducing
computational cost by deferring only uncertain cases.

The accuracy for a given threshold τ was computed as:

A(τ) =
∑

x∈correct I(C(x)>τ)∑
x∈correct I(C(x)>τ)+

∑
x∈incorrect I(C(x)>τ) (2)

where I(C(x) > τ) is an indicator function returning 1
when the classifier’s confidence for input x exceeds τ , and
0 otherwise. The algorithm sorts all validation samples by
confidence in decreasing order and computes the accuracy
A(τ) over samples with confidence above a given threshold
τ . This accuracy is referred to as the classifier’s precision,
consistent with prior work [1]. Samples with confidence below
τ are classified as IDK. Therefore, precision represents the
accuracy over the subset of predictions the classifier chooses
to accept. For each desired precision level, an appropriate
confidence threshold can be selected accordingly. Classifiers
were arranged by increasing average inference time from
AlexNet to Swin Transformer so that faster models handled
simpler inputs. We evaluated four different cascades shown in
(Fig. 1 (a)–(d)).

IV. RESULTS AND EVALUATION

Individual Classifier Performance. Table I shows a clear
trade-off between average inference time and accuracy. As
model complexity increases, so does accuracy with higher

2



(a) IDK Cascade 1

(b) IDK Cascade 2

(c) IDK Cascade 3

(d) IDK Cascade 4

Fig. 1: IDK Cascade Structures

inference time. AlexNet is fastest (1.798 ms) but least accurate
(59.57%), while Swin Transformer offers the best accuracy
(89.56%) at a much higher cost (45.428 ms). VGG16 (66.43%)
and ResNet18 (71.98%) provide moderate trade-offs, with
ResNet18 showing the best balance for real-time tasks. Ef-
ficientNet improves accuracy to 79.22% but requires 17.830
ms. These results confirm that lightweight models are fast but
less reliable, while complex models are accurate but expensive
for time-sensitive applications.
Performance of IDK Cascades. Fig. 2 and Fig. 3 demonstrate
the effectiveness of the IDK cascade framework in balancing
accuracy and inference time. Cascade 1 (at 91% precision)
relies mostly on lightweight models and achieves 83.14%
accuracy at 17.612 ms. As more complex models are intro-
duced, performance improves incrementally: Cascade 2 (at
precision 93%) reaches 85.09% at 20.686 ms, Cascade 3 (at
precision 96%) achieves 87.96% at 26.785 ms, and Cascade 4
(at 98% precision) reaches near Swin Transformer’s accuracy
with 89.35% while reducing average inference time by 27%
(33.126 ms vs. 45.428 ms).

Notably, heavier models such as EfficientNet and Swin
Transformer shows greater average inference time due to their
complex and input-sensitive computations [13]. In contrast,
lightweight models like AlexNet and ResNet18 maintain low
average inference time. The IDK cascades inherit this low
average inference time by processing most inputs early, es-
calating only when necessary. Cascade 3, offers a significant
balance between speed and accuracy, while Cascade 4 demon-
strates that near state-of-the-art accuracy can be achieved with-

Precision Alexnet Resnet 18 Efficientnet Swin Transformer
92% 3801 2694 1685 1820

95% 3120 2537 1678 2665

98% 2259 2037 1510 4194

TABLE II: Image Distribution in IDK Cascade 4 among 10000
Test Data

out running expensive models on every input. These findings
validate that input-dependent computation via cascading is not
only efficient but also practical for edge scenarios with lower
average inference time demand.
Impact of Different Thresholds for a Cascade. Threshold
tuning is critical. Lower thresholds yield faster inference
but reduce accuracy. Higher thresholds increase accuracy but
escalate more inputs to complex classifiers. Table II shows
how image distribution shifts with precision. Cascade 3 (95%
precision) achieves 86.85% accuracy at just 8.681 which
can benefit low-latency demands. Cascade 4 (98%) offers
89.35% accuracy at 23.812 ms, nearly 50% faster than Swin
Transformer. Dynamic threshold tuning could further improve
adaptability in changing conditions. While individual classifier
precision remains high (92–95%), overall cascade accuracy is
slightly lower due to harder inputs reaching deeper stages of
in the cascade executing all upstream classifiers [1].
Comparison with State-of-the-Art. Compared to Swin
Transformer, IDK cascades are significantly faster with mini-
mal accuracy loss. Cascade 1 is 2.57× faster (83.14% acuracy),
Cascade 2 is 2.2× faster (85.09% accuracy), Cascade 3 is 1.7×
faster with 87.96% accuracy, and Cascade 4 nearly matches
Swin’s 89.56% accuracy with a 27% reduction in average
inference time. The hierarchical structure ensures low average
inference time with acceptable accuracy loss which is critical
for real-time systems. Moreover, cascades are scalable, model-
agnostic, and easy to deploy on platforms like NVIDIA Jetson
AGX Orin. While they trade a small drop in accuracy for large
latency gains, this can be a practical trade-off in edge AI.

V. CONCLUSION

In this work, we propose the IDK Cascade, a framework that
balances speed and accuracy for real-time AI applications. Fast
models are efficient but less reliable, while accurate models are
computationally expensive. Our cascade dynamically adjusts
computation based on input difficulty: each input is first
processed by a lightweight model and escalated to deeper
models only if prediction confidence is low. This reduces
average inference time while maintaining high accuracy, mak-
ing it ideal for edge devices with limited resources. Unlike
single-model systems, the IDK Cascade uses confidence-based
decisions to process simple inputs quickly and reserve complex
models for harder cases. It offers a scalable, adaptable solution
suitable for autonomous systems, real-time surveillance, and
industrial automation.

REFERENCES
[1] Tarek Abdelzaher, Kunal Agrawal, Sanjoy Baruah, Alan Burns, Robert I

Davis, Zhishan Guo, and Yigong Hu. Scheduling idk classifiers with
arbitrary dependences to minimize the expected time to successful
classification. Real-Time Systems, 59(3):348–407, 2023.

3



Fig. 2: Distribution of Inference Times varying the Precision

Fig. 3: Comparison of Test Accuracy

[2] Ayoub Benali Amjoud and Mustapha Amrouch. Object detection using
deep learning, cnns and vision transformers: A review. IEEE Access,
11:35479–35516, 2023.

[3] Sanjoy Baruah. Real-time scheduling of multistage idk-cascades. In
2021 IEEE 24th International Symposium on Real-Time Distributed
Computing (ISORC), pages 79–85. IEEE, 2021.

[4] Sanjoy Baruah, Alan Burns, Robert I Davis, and Yue Wu. Optimally
ordering idk classifiers subject to deadlines. Real-Time Systems, 59(1):1–
34, 2023.

[5] Sanjoy Baruah, Alan Burns, and Robert Ian Davis. Optimal synthesis
of robust idk classifier cascades. 22(5s), September 2023.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition, 2015.

[7] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and ¡0.5mb model size, 2016.

[8] Leela S. Karumbunathan. Nvidia jetson agx orin series. Online at
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/
nvidia-jetson-agx-orin-technical-brief.pdf.

[9] Krishna Kavi, Robert Akl, and Ali Hurson. Real-Time Systems: An
Introduction and the State-of-the-Art, pages 2369–2377. John Wiley &
Sons, Ltd, 2009.

[10] Namho Kim, Seongjae Lee, Seungmin Kim, and Sung-Min Park.
Automated arrhythmia classification system: Proof-of-concept with
lightweight model on an ultra-edge device. IEEE Access, 12:150546–
150563, 2024.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet

classification with deep convolutional neural networks. Commun. ACM,
60(6):84–90, May 2017.

[12] Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge.
CS 231N, 7(7):3, 2015.

[13] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong
Shi. Edge computing for autonomous driving: Opportunities and
challenges. Proceedings of the IEEE, 107(8):1697–1716, 2019.

[14] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision
transformer using shifted windows, 2021.

[15] Seyed Yahya Nikouei, Yu Chen, Sejun Song, Ronghua Xu, Baek-Young
Choi, and Timothy R. Faughnan. Real-time human detection as an
edge service enabled by a lightweight cnn. In 2018 IEEE International
Conference on Edge Computing (EDGE), pages 125–129, 2018.

[16] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition, 2015.

[17] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for computer
vision, 2015.

[18] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling
for convolutional neural networks, 2020.

[19] Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu,
and Joseph E Gonzalez. Idk cascades: Fast deep learning by learning
not to overthink. arXiv preprint arXiv:1706.00885, 2017.

[20] Yulin Wang, Yizeng Han, Chaofei Wang, Shiji Song, Qi Tian, and Gao
Huang. Computation-efficient deep learning for computer vision: A
survey. Cybernetics and Intelligence, pages 1–24, 2024.

4


