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Abstract—For safety-critical computer systems, time-predictability and
performance are usually required simultaneously in I/O virtualization.
However, both requirements are challenging to achieve due to complex
I/O access path and resource management at system level and lack
of support from preemptive scheduling at I/O hardware level. In this
paper, we propose a new framework, I/O-GUARD, which reconstructs the
system architecture of I/O virtualization, bringing a dedicated hardware
hypervisor to handle resource management throughout the system.
The hypervisor improves system real-time performance by enabling
preemptive scheduling in I/O virtualization with both analytical and
experimental real-time guarantees. Specifically, I/O-GUARD is a First-
of-Its-Kind framework for multi-/many-core I/O virtualization.

I. INTRODUCTION

In safety-critical systems, virtualization has gained momentum
in both industry and academia [1], driven by the robust isolation
between Virtual Machines (VMs). This inter-VM isolation prevents
fault propagation between different VMs, which satisfies the demands
of both safety and security required by safety-critical systems [2].

Input/Output (I/0) is a vital part of the safety-critical system, but
this has not always been recognized [3]. In safety-critical systems,
the 1/0 often interfaces with physical sensors and actuators that need
to either sense a potential hazard in time or make a maneuver to
avoid a dangerous scenario [4], [5]. Therefore, it is important to
assure that I/O operations behave correctly, in a timely manner, and
most importantly with secured bandwidths [5]. For instance, in an
autonomous control system, real-time decision making module and
driving maneuver control module usually require a series of I/Os to
occur timely and accurately during specified periods with guaranteed
performance, for the detection of objects [5].

Guaranteeing real-time performance for I/O virtualization is hard
due to both system level and I/O hardware level research challenges:
System level research challenges. Conventional I/O virtualization
involves complicated I/O access paths and resource management [1],
[5], [6], especially in multi-/many-core architectures. For instance, to
access an /O device in a Network-on-Chip-based many-core virtu-
alized system, I/O operations must pass through the guest Operating
System (OS), virtual hardware, Virtual Machine Monitor (VMM),
and arbiters/routers (shown in Figure 1). Such complicated paths
introduce significant communication latency and timing variance to
I/0O operations, compared to a legacy system (which does not support
any virtualization features). Moreover, along the access paths, poten-
tial resource contentions occur at each system level, which involve
additional resource management throughout the entire system. The
additional resource management elevates the difficulty of satisfying
the timing and performance requirements of 1/O virtualization [1].
I/O hardware level research challenges. The implementation of
traditional I/O controllers relies on FIFO queues, which forbids
context switches at the hardware level [3]. Effective scheduling
methods, e.g., Preemptive Earliest-Deadline-First (P-EDF) policy,
cannot be applied to ensure system predictability [1] by prioritizing
I/O tasks according to their importance. This hardware dilemma
exacerbates the predictability issues introduced at the system level.
Related work. Existing research efforts aimed at achieving real-time
I/O virtualization in multi/many-core systems usually concentrated
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Fig. 1. 1/O virtualization involves complex I/O access paths and resource
management in all system levels, leading to challenges in guaranteeing its
predictability and performance (R: router/arbiter; C: processor core).

on a particular system level. At OS level, Kim et al. [7] modified
the OS kernel to improve the predictability of I/O scheduling; at
VMM level, Gong et al. [5] integrated a predictable scheduler into
VMM to improve its analyzability. However, it is difficult to ensure
the real-time performance of I/O virtualization from a given system
level, as the I/O virtualization involves the actual execution of all
system levels. Moreover, the software methods usually introduce
additional computational overhead and complexity, leading to a
further reduction of I/O performance [5]. Different from the software
methods, Jiang et al. [6] proposed BlueVisor, a dedicated coprocessor,
handling I/O virtualization at hardware level, which improved I/O
throughput by introducing paralleling computation for virtualization
related functionalities. However, same as the other frameworks, the
implementation of the BlueVisor remains the FIFO structure at I/O
hardware level, which hence cannot guarantee the I/O predictability.
Contribution. In this paper, we propose /O-GUARD, the first system
framework to guarantee the real-time performance of multi/many-core
I/O virtualization. To achieve this, we present

o A novel system architecture, achieving the majority of the
virtualization in a hardware-implemented hypervisor, allowing
the applications in the VMs to access 1/Os directly via the
hypervisor without the intervention of other system components.

o A new micro-architecture for the I/O-GUARD hypervisor, en-
abling random accesses of 1/0 operations and task prioritization.

o A two-layer scheduler for the hypervisor, supporting preemptive
scheduling methods, with guaranteed real-time performance.

o A theoretical model and analysis for the proposed framework,
demonstrating the improvements to the schedulability brought
by I/O-GUARD with respect to conventional virtualization.

« Comprehensive experiments, including a real-world automotive
use case examining overhead, scalability, predictability and per-
formance of I/O-GUARD over state-of-the-art I/O virtualization.

The rest of this paper is organized as follows: Sec.II and III detail
the system design, followed by the theoretical analysis in Sec.IV.
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Sec.V evaluates I/O-GUARD, and Sec.VI concludes.

II. I/O-GUARD: ARCHITECTURE

In this work, we make the following assumptions: (i) the hardware
platform is a predictability-focused NoC; although I/O-GUARD is
agnostic to the type of bus, deployment of NoC enhances the pre-
dictability of on-chip transactions [6]; (ii) (virtualized) I/O requests
and responses transmitted in the hardware are encapsulated as packets
using the communication protocol introduced in [8]; (iii) the system
elements are synchronized by a single source of timing (global timer).

A. System Architecture

1/O-GUARD changes the system’s architecture in both hardware
and software levels (Figure 2), compared to a conventional system:
Hardware level. As described in Sec.I, the majority of virtualization
in I/O-GUARD is achieved by its hypervisor. Hence, in the hardware
level, we physically connect the hypervisor to the processors and
I/0s. The 1/0 requests sent from the processors are directly routed
to the I/Os via the hypervisor, without involving arbiters/routers. The
design details of the hypervisor are presented in Sec.III.
Software level. With the hypervisor, we remove the VMM (which
manages 1/O virtualization in the conventional architecture) from the
software level and directly execute the Real-time Operating Systems
(RTOSs) on the processors with full privileges. The RTOSs provide
a real-time environment for applications that need timing guarantees.
This bare-metal virtualization avoids the frequent operating mode
switches found in the traditional virtualization (also known as “trap
into VMM?” [9]), which hence enhances overall system throughput.

In the RTOSs, we replace the /0O manager by new high-level I/O
drivers. Figure 3 illustrates the modifications, using FreeRTOS as
an example. Different from the legacy system (Figure 3(a)), user
applications running in the VM access the virtualized I/Os via the
proposed /O drivers (Figure 3(b)), without the involvement of OS
kernel. The implementation of I/O drivers is straightforward, as
they only forward the I/O requests to the hypervisor. This para-
virtualization simplifies the OS kernel by eliminating the (compu-
tational and software) overhead caused by the I/O management in
the conventional virtualization (evaluated in Sec.V-A).
Compatibility. Although 1I/O-GUARD introduces a new software
structure and modifies the OS kernels, the design remains the original
OS-application interfaces presented by the legacy systems. Therefore,
user applications designed for legacy systems or conventional
virtualization can be mapped to the I/O-GUARD directly.

B. Working procedure.

Typically, I/O tasks in a system can be either periodically or
sporadically. The periodic 1/O tasks are usually determined before
system execution (named pre-defined 1/0 tasks), e.g., periodic sensor
read; and the sporadic I/O tasks are usually generated during system
execution (named run-time I/0O tasks), e.g., sporadic body control.

At system initialization, the pre-defined tasks are loaded into
the hypervisor with their corresponding start times. During system
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Fig. 3. RTOSs in legacy system and I/O-GUARD.

execution, the hypervisor runs the pre-loaded tasks at the specified
times, which guarantees their predictability and performance. At the
same time, the hypervisor receives and buffers the run-time I/O tasks
requested by the VMs. The hypervisor schedules and executes these
run-time tasks when the pre-defined tasks are not occupying the 1/O.

In the new system architecture, acquiring system-wide predictabil-
ity and performance relies on the hypervisor; we therefore present
the design details of the I/O-GUARD hypervisor in the next section.

III. I/O-GUARD: HYPERVISOR

The design of the I/O-GUARD hypervisor keeps modularization in
mind, which partitions the hypervisor into two parts:

« Virtualization manager — takes charge of the resource man-
agement, which decides the execution order of I/O tasks. The
design of the virtualization manager is generic to all I/Os.

« Virtualization driver — encapsulates the low-level drivers of
1/0O virtualization, including the instruction/data translation and
the I/O control. The design of the 1/O driver is specific to the
type of connected /0.

A. Virtualization manager

The design of the virtualization manager (Figure 4) contains two
request channels and one response channel. The response channel is
pass-through, since the processing speed of the processors is hundreds
of times faster than the I/O devices. This means the response channel
is not blocked during normal execution. The request channels are
respectively designed for pre-defined and run-time I/O tasks, named
Pre-defined 1/0 task channel (P-channel) and Run-time 1/O task
channel (R-channel). We now describe the design of the two channels.
P-channel. The design of the P-channel contains a memory con-
troller, memory banks and an executor. The memory banks store the
pre-defined I/O tasks and the corresponding timing information (e.g.,
the starting time points and the worst-case computation time, etc.),
which are loaded during system initialization. We further group this
timing information in a look-up table (called Time Slot Table ™)
to record the run-time behaviors of the pre-loaded 1/O tasks in each
hyper-period. During system execution, the executor synchronizes
with a global timer and then compares the synchronized results with
the time slot table. Once the system executes at a starting time point
of a pre-loaded I/O task, the executor loads this task to the connected
virtualization driver for execution.

R-channel. The design of the R-channel contains a group of I/O
pools, a two-layer scheduler which contains a local scheduler (L-
Sched) for scheduling real-time tasks in each VM and a global
scheduler (G-Sched) for allocating free time slots for all VMs, and an
executor. The design of the schedulers is agnostic to scheduling meth-
ods. Specifically, we use the preemptive EDF policy as the scheduling
algorithm for both local schedulers and the global scheduler, since it
is optimal for uni-processor scheduling. Theoretical results from the
two-layer scheduler’s real-time performance are discussed in Sec.IV.
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Fig. 4. Micro-architecture of virtualization manager (MC: memory controller).
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An I/0O pool is associated with a VM, which buffers and schedules
the run-time 1/O tasks generated by the VM.' The design of an I/O
pool contains a priority queue, a control logic, a shadow register,
and an L-Sched. Different from the conventional FIFO queues, the
priority queue has a more complicated structure which introduces an
additional slot for each I/O task,” storing its associated parameters
(detailed in Sec.IV). The introduced slot has an accessible interface,
allowing the schedulers to read/write these parameters in a timely
manner. Moreover, the priority queue supports random accesses,
which enables the prioritization of the tasks. During execution, the
L-Sched keeps checking the status of the tasks, finding the task with
the earliest deadline, and requesting the control logic to map the first
operation of this I/O task to a shadow register. A G-Sched physically
connects to the shadow registers in all I/O pools and the memory
banks in the P-channel. It simultaneously compares the deadlines of
the I/O operations buffered in the shadow registers and checks free
time slots in the time slot table, deciding the next task to be executed
and the starting time point. The executor runs the I/O operation
selected by the G-Sched and removes it from the priority queue.

B. Virtualization Driver

The design of the virtualization driver contains a pair of open-
source real-time translators [6], a standardized I/O controller, and
memory banks. The translators are allocated in the request path and
the response path, taking charge of the translation of I/O requests and
the responding data, respectively. As evidenced in [6], the translator
can bound the worst-case time consumption of each translation.
During system execution, after receiving an I/O operation from the
virtualization manager, the translator (in the request path) firstly
translates the I/O operation to bottom-level I/O instructions and
then executes them on the I/O controller. Finally, the I/O controller

!Partitioning of I/O pools ensures inter-VM isolation at hardware I/O level.
2The additionally introduced slots are implemented via registers.

operates the connected I/O device by using the corresponding com-
munication protocol (e.g., SPI, I2C). The drivers of the I/O controller
are stored in dedicated memory banks during system initialization.
Above we have described the system architecture and design meth-
ods of I/O-GUARD. In the next section, we detail the schedulability
test of the two-layer scheduler to guarantee the system predictability.

IV. SCHEDULABILITY TEST FOR THE TWO-LAYER SCHEDULER

Our two-layer scheduler is designed to allocate free time slots to
the R-Channel I/O operations in a hierarchical manner. In the global
layer, available time slots are allocated to n VMs, where each VM
1 (1 <i < n) is supported by a periodic server task I'; = (II;, ©;)
with the interpretation that the server task is invoked every II;
time slots and receives at least ©; time slots between consecutive
invocations. The I/O operations from VM ¢ will be executed using
the time slots received by VM . The I/O operations is modeled by a
set of sporadic tasks, each of which is denoted 7, = (T%, Ck, Dx).
T releases a sequence of 1/O operations, or jobs, with minimum
separation of T} time slots, where each job completes within Cy,
time slots of execution and has a deadline at Dy, time slots after it is
released. We assume constrained deadlines, i.e., Vk, D, < T}. Let
T: denote the task set in VM 4, i.e., 7, € T; means task k is in VM 4.
Recall that these jobs are executed preemptively at the time-slot level,
as described in Sec.IIl. In the rest of this section, we describe our
dual-hierarchy scheduling in company with schedulability analysis.
Supply and demand. We say the supply to a set of tasks during
a certain time interval as the free time slots available to this set
of tasks, and say the demand of a set of tasks during a certain time
interval as the maximum amount of time slots needed to complete all
jobs of these tasks that are released and have a deadline in this time
interval. Under preemptive earliest-deadline-first (P-EDF) scheduling,
if the demand is at most the supply for any time interval, then the
deadlines of all tasks in that set are guaranteed to be met [10], [11].

A. Allocating Free Time Slots to VMs (G-Sched)

We let o™ denote the Time Slot Table after P-Channel I/O jobs

having been allocated as shown in Figure 4, and let H and F' denote
the number of total and free time slots in o*. Then, this schedule o*
of length H repeats and results in a (potentially infinitely long) table
o of free time slots to support R-Channel 1/O jobs.
Deriving sbf(c,t). Let the supply bound function sbf(o,t) denote
the minimum supply to R-Channel I/O jobs in ¢ during any time
interval of length ¢. The value of sbf(o,t*) can be obtained for any
t* such that 0 < t* < H — 1 by enumerating a sliding window of
length ¢* in o for all cases and there are at most H distinct cases for
any given window length t* since o repeats o which has a length
of H. We store them by a look-up table enum of length H, i.e.,

sbf(o,t) = enum(¢) for 0 <¢t < H — 1. €8]

Also, due to o strictly repeating o™, any time interval of length
H in o must have exact F' free time slots no matter where this time
interval starts. Therefore,

sbf (0, ) = sbf(o, ¢ mod H) + {%J Ffort>H )

Thus, sbf(o,t) for all ¢ > 0 can be derived by (1) and (2).

On the other hand, we support each VM 1 by a periodic sever task
I'; = (II;,0;) in a manner that all free time slots at which I'; is
scheduled are devoted to R-Channel I/O jobs from VM i. To ensure
that each VM ¢ is guaranteed to receive ©; free time slots in every
I1;, the set of tasks {I'; } must be schedulable (i.e., meet all deadlines)
on o. We schedule the task set {I';} on free time slots in o by EDF,
and the demand bound function dbf(I';, t) that denotes the maximum
demand the periodic implicit-deadline task I'; can create in any time
interval of length ¢ is calculated by

dbf(T;, t) = LHLJ - 0;. A3)

i



Thus, the following theorem provides guarantees on the amount of
free time slots each VM will receive.

Theorem 1. Each VM i must be allocated at least ©; free time slots
in every 11; time slots, if

Vt >0, " dbf(Ty, 1) < sbf(o, 1), “)
=1

where sbf(o,t) and dbf(T;,t) is calculated by (1), (2), and (3).

Note that Theorem 1 does not specify an upper-bound on the V.
Therefore, we need to check up to the least common multiple of all
elements in { H }U{II, };=,, which can be exponential to the input pa-
rameters of table o* and tasks {I'; }. The following theorem provides
a pseudo-polynomial’ upper-bound on t for applying Theorem 1.

Theorem 2. For all systems such that £ D D Hf > ¢ where ¢
is a certain constant such that ¢ > 0 (e.g., ¢ = 0.01), (4) is true if

CH-—1

Vti0<t< ;> dbf(T';, 1) < sbf(, t).

C B
Proof. We prove this by showing that

n
3t* > 0 such that » _ dbf(T';, ") > sbf(a, t*) )
i=1

implies t* <z

—E__ By (2), we have

ro(H-1

Sbf (0, 1) > {%J F> ©)

On the other hand, by (3), we have

Zdbf Ty, t*)

Thus, by (6) and (7), (5) implies

n H—1 H-1
@, t"—(H-1) oL f o : =1
t*-zi>7-F:>t*<7H:>t*< H
) F ©
o H T i1 T, ¢
The theorem follows. O

On the limltatlon of Theorem 2. Please note that, compared to
% -3, Hl > 0, the limitation of Theorem 2 only excludes the

extremely theoretical case that D D gl = ¢ where ¢ — 0.
On the other hand, £ > > Hl is required anyway, or the system
is over-utilized. Therefore, the limitation of Theorem 2 is m1n1mal in
practical scenarios (not applicable only when £ 0= > H? ).

B. Scheduling I/0 Jobs within Each VM (L-Sched)

Once the free time slots have been allocated to VMs as described in
Sec.IV-A. The R-Channel I/O jobs in each VM can be scheduled and
analyzed independently within that VM, where each VM ¢ supported
by I'; guarantees ©; available time slots in every II; time slots to
the tasks in this VM. This guarantee follows the periodic resource
model [11]. Therefore, the supply bound function sbf(I';,t) denotes
the minimum supply to R-Channel I/O jobs in VM ¢ in any time
interval of length ¢ can be calculated by

(T, &) 0 ift’! <0 ®)
S Fz‘7t = ’ .
H—J -0, +60 ift'>0

where ¢/ = —(HZ-—G),L-) and 0 = max (t/ — II; \‘IETIJ — (Hl — @i),0>.

3Informally, that is polynomial to the values of the input parameters of
table o* and tasks {I';}. Please note that, c is a constant and H <1

We schedule the task set 7; on these free time slots available to
VM 1 by EDF, and the demand bound function dbf (13, t) that denotes
the maximum demand a task 7, € 7; can create in any time interval
of length t is calculated by

dbf (14, t) = (V_TD’“J + 1) O ©)
k

a schedulability test for the

Thus, the following theorem provides
tasks in each VM .

Theorem 3. All I/O jobs from VM i meet their deadlines if

vt > 0, Z dbf (1, t) < sbf(Ty, 1), (10)

Tk€T;
where sbf(T';, t) and dbf(7y,t) are calculated by (8) and (9).

Again, Theorem 3 does not specify an upper-bound on the Vi,
and checking up to the least common multiple of all elements in
{ILi} U {Tx}r,e7; may results in the schedulability test running
in exponential time. The following theorem provides a pseudo-
polynomial schedulability test with a minimal limitation similar to
that of Theorem 2.

Sk 5 ¢ where

Theorem 4. For each VM i such that = — zn €T Ty

c is a certain constant such that ¢’ > 0 (e.g., ¢ = 0.01), (10) is
true if
maxr, e7; {7k — Di} +2I; —©; — 1

N )

> dbf(rk, t) < sbf(Ts, 1).
TLET;

Vi:0<t<
c

Proof. We prove this by showing that

3¢* > 0 such that Z dbf (7, t) > sbf(Ty, 1) an
TLET;
implies ¢* < "rieTi T _CL,)'“HQHi_ei_l. By (8), we have
(0, 17) > | E- =0 g, » EEMOIZMlzl) g,

2t*~%—(2ﬂ1—®i—1). (12)

The last inequality is because 1 < ©; < II; implies that 2II; —
0;,—1>0and 0 < % < 1. On the other hand, by (9), we have

Z dbf (7, t*) < Z t"'(?ﬁ.ck
Tk€T; T€Ti k
t* + max.,.keTi{Tk - Dk}
<y - - Cy
TLE€T; k
= Z % (t" + max {T} — Dx})
T, E€T; k €T
Ck *
<> T+ max {Ti — Dy}, (13)
TRET; k k€T
The last inequality is because ZT T %’i < ? < 1is necessarily

required for no over-utilization and max-, ¢; {T;C — Dy} > 0 holds
for constrained-deadline tasks. Thus, by (12) and (13), (11) implies

C
Z L +maX{Tk7Dk}>t —(2I; —©; — 1)
Ty i
TLET;
{T, — D} +2II, —©; — 1
o maereT,évk k) c,: i
ey 72:%67—1 T
:}t* < maXTkeTi{Tk —D]/C}+2H1 —@i—l
C
The theorem follows. O



V. EVALUATION

We now conduct extensive experiments to evaluate I/O-GUARD.
Experimental platform. We built /O-GUARD on a Xilinx VC709
evaluation board. The hypervisor was implemented using BlueSpec
System Verilog [12] and connected to a 5 X 5 mesh type open-
source NoC [8]. As well as the hypervisor, the NoC also contained
16 MicroBlaze processors [13], memory and I/O peripherals. Each
processor supported up to three guest VMs. The software executing
on the processors was compiled using a Xilinx MicroBlaze GNU tool-
chain [13]. We selected FreeRTOS (v.10.4) as the OS kernel for all
VMs, with the modifications introduced in Sec.II-A. Additionally, we
introduced three baseline systems (BS) running on a similar hardware
architecture: BS|Legacy was an NoC system without virtualization
support, which left the scheduling related to resource management
to the routers, and each processor is deemed as a VM. BS|RT-XEN
was a virtualized system established using a Xen hypervisor with
real-time patches and I/O enhancement [14]. Both patches and I/O
enhancement were implemented in software. BS|BV was a virtualized
system built on hardware assistance (BlueVisor) introduced in [6],
which was reviewed in Sec.l. All architectures ran at 100 MHz.

A. Software Overhead

Experimental setup. The software overhead was evaluated using the
run-time memory footprint, with specific consideration of hypervisor,
OS kernel and I/O drivers. The legacy OS kernel was fully-featured,
but excluded from I/O drivers [15].

Obs 1. Additional software overheads were induced by the conven-
tional I/O virtualization compared to the legacy system. These were
considerably improved in I/O-GUARD.

This observation is shown in Figure 6. In BS|RT-XEN, the intro-
duction of a hypervisor and modifications to the OS kernel brought
an additional 61 KB (129.8%) memory footprint compared to the
legacy system. The hardware-assisted virtualization (BS|BV and I/O-
GUARD) effectively reduced this overhead by moving 1/O virtualiza-
tion to the hardware. Compared to BS|BV, the I/O-GUARD entirely
eliminated the software overhead of the VMM by directly running
the kernels on the processors. For I/O drivers, the complexity of the
I/O device determines the its software overhead. For each of the eval-
uvated I/O drivers, BS|RT-XEN always sustained the most significant
software overhead. This overhead was reduced by I/O-GUARD, since
it integrates the low-level I/O drivers into the hardware.

B. Hardware Overhead

1/0-GUARD requires additional implementation of the hypervisor.
Therefore, in this section, we evaluate its hardware overhead.
Experimental setup. We first configured the //O-GUARD to support
16 VMs and 2 I/Os. This means the hypervisor contained 2 groups
of virtualization managers and virtualization drivers, where each
virtualization manager contained 16 I/O pools (see Sec.llI-A). We
then compared the hypervisor with two general-purpose processors
(MicroBlaze and RISC-V), and two mainstream I/O controllers (SPI,
and Ethernet). The MicroBlaze was full-featured, enabling all the
performance related functionalities (e.g., pipeline, data cache). The
RSIC-V was implemented based on [16], supporting all the func-
tionalities of the MicroBlaze, as well as multi-branch, out-of-order
processing and the related functionalities (e.g., branch-prediction).
The 1/0 controllers were chosen from the standard Xilinx IP library.
Obs 2. The design of the hypervisor (of I/O-GUARD) was resource-
efficient compared to the full-featured processors. Its hardware con-
sumption was slightly higher than commonly used I/O controllers.

As shown in Table I, I/O-GUARD required significantly less hard-
ware than full-featured processors: MicroBlaze (56.6% LUTs, 67.8%
registers, 77.7% power) and RSIC-V (37.4% LUTs, 18.2% registers,
47.9% power). Due to the hardware-implemented virtualization and
drivers, I/0O-GUARD consumed more hardware than the standard I/O
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Fig. 6. Run-time software overhead (unit: KB). The software overhead is
evaluated via memory footprint, containing segments of BSS, data and text.

TABLE I
HARDWARE OVERHEAD (IMPLEMENTED ON FPGA)
LUTs Registers DSP RAM (KB) Power (mW)

MicroBlaze 4908 4385 6 256 359
RSIC-V 7,432 16,321 21 512 583

SPI 632 427 0 0 4

Ethernet 1321 793 0 0 7
BluelO 3236 3346 0 256 297
Proposed 2777 2974 0 256 279

controllers. But when compared to BS|BV, I/O-GUARD required the
same memory consumption, but less LUTs, registers and DPSs.

C. Case Study

We now use an automotive case study to examine the benefits of
the I/O-GUARD over a conventional virtualized system framework.
Systems Configurations. To analyze the benefits of I/O-GUARD, all
introduced systems were examined. We configured I/O-GUARD as
I/0-GUARD-40/70, which pre-loaded 40/70% of I/O tasks into the
virtualization manager before run-time. In other words, /O-GUARD-
x indicates that % of I/O tasks were executed by the P channel and
(1 — %) of I/O tasks were executed by the R-channel.

Task sets. We introduced three sets of I/O-related tasks:

« 20 automotive safety tasks, selected from the Renesas automo-

tive use case database [17], e.g., CRC, RSA32, etc..

o 20 automotive function tasks, selected from EEMBC bench-

mark [18], e.g., fast Fourier transform, speed calculation, etc..

« synthetic workloads, selected from EEMBC benchmark, which

could be added into system to control overall system utilization.

We employed a hybrid-measurement approach to obtain WCETs

for all the tasks [19]. The raw data processed by the 40 tasks was
randomly generated off-chip and sent to the evaluated systems via
an Ethernet controller (1 Gbps) at run-time. The results were sent
back via a FlexRay (10 Mbps). Each task had a defined period and
implicit deadline, with overall system utilization approximately 40%.
In practical systems, the execution time of a task is affected by diverse
factors (e.g., cache miss rate); hence, adding synthetic workloads to
a system only gives it a farget utilization.
Experimental Setup We introduced two groups of experimental
setups, which activated 4/8 VMs to execute the experimental task sets
and synthetic workloads. In each experimental group, we executed
each examined system 1,000 times under varying target utilization
from 40% to 100% (with an interval of 5%). Each execution lasted
100 seconds, which guaranteed that all tasks executed at least 250
times. For fair comparison, we also ensured the data input to the
examined systems was identical in each execution.

We evaluated the examined systems using success ratio and I/O
throughput. The success ratio recorded the percentage of trials that
executed successfully (i.e., without deadline miss of any safety and
function task), under a specified target utilization. The I/O throughput
evaluated the average I/O performance of each examined system.
Obs 3. Introducing I/O-GUARD was beneficial.

As shown in Figures 7(a), 7(b), and 7(c), with the same configura-
tion, the I/O-GUARDs always achieved higher success ratios and I/O
throughput compared to the baseline systems. Moreover, we also ob-
served that I/O-GUARD-T0 consistently outperformed I/O-GUARD-
40 in both success ratios and I/O throughput, with less experimental
variance. This means that pre-loading a higher percentage of I/O tasks
into the I/O-GUARD before run-time introduces more benefits.
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Fig. 8. Area, power, and maximum frequency v.s. scaling factor n (The z-axis denotes the scaling factor 7).

Obs 4. Increasing the number of VMs significantly reduced the
success ratio and I/O throughput of the conventional virtualization.
Such issues were effectively eliminated by I/O-GUARD.

This observation is shown by the comparison between the results
of two experimental groups. In 4-VM BS|RT-XEN and BS|BV, signif-
icant drops in the success ratios occurred at 70% and 75% of target
utilization; whereas these drops moved to 65% target utilization in
8-VM BS|RT-XEN and BS|BV. This observation mainly results from
the additional on-chip interference and resource contention generated
by the introduced VMs and tasks (explained in Sec.I).

In I/O-GUARD, the system architecture optimizes the I/O access
paths and leaves the resource management to the hypervisor. It hence
reduces on-chip interference and manages the 1/O resources in a time-
predictable manner (achieved via 2-layer scheduler), which improves
overall I/0 real-time performance. In an 8-VM system, when target
utilization approached 100%, I/O-GUARD-70 maintained a success
ratio which was close to 40% with negligible loss of 1/0 throughput.

D. Scalability

Since scalability impacts the feasibility of the proposed design, the
scalability of I/O-GUARDis examined by a varying number of VMs.
Experimental setup. The same method described in Sec.V-B is
adopted to implement the I/O-GUARD and BS|Legacy with a scaling
number of basic MicroBlaze processors. Additionally, we introduced
a scaling factor: n to control the number of VMs (27).

First, we compared the scalability of area consumption between
the evaluated systems, where the area consumption was normalized
by the overall area of the experimental platform. We then examined
the scalability of power consumption, calculated as the sum of static
and dynamic power. Lastly, we evaluated the maximum frequency of
the hypervisor in I/O-GUARD and BS|Legacy using varying 7).

Obs 5. The area and power consumption of I/O-GUARD were linearly
scaled by 7. Compared to the legacy system, the area and power
consumption of I/O-GUARD increased slightly.

As shown in Figure 8(a), when the system scaled with 7, the
area consumption of both BS|Legacy and I/O-GUARD consistently
increased. In all examined cases, although I/O-GUARD consumed
more area than BS|Legacy, the additionally introduced area consump-
tion was always bounded within a small margin — less than 20%.

Power consumption is usually determined by four factors: voltage,
clock frequency, toggle rate and design area [20]. Because the unified
voltage, clock frequency and simulated toggle rate were assigned to
the systems being compared, the design area dominated the overall
power consumption. As expected, in Figure 8(b), we observed linearly
increased power consumption in these systems when 7 increases.
Obs 6. When the system scaled with 7, introducing the hypervisor
(in I/O-GUARD) did not affect maximum performance.

(b) Power consumption.
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(c) Maximum frequency.

As shown in Figure 8(c), when the system scaled with 7, the
maximum frequency of the hypervisor was always greater than the
BS|Legacy. This indicates that the hypervisor did not become a
critical path and could not reduce maximum system performance.

VI. CONCLUSION

This paper proposes a system framework (//O-GUARD) for multi-
/many-core I/O virtualization. I/O-GUARD introduces a novel system
architecture, including both a new hypervisor micro-architecture and
a two-layer scheduler, to simultaneously optimize I/O access paths
and resource management throughout the system. A theoretical model
and schedulability analysis are presented for I/O-GUARD, which
demonstrate improved schedulability compared to conventional I/O
virtualization. As shown in the evaluation, I/O-GUARD outperforms
state-of-the-art I/O virtualization with varying hardware architectures.
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