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Abstract
Deep learning–based classifiers are widely used for perception in autonomous Cyber-Physical Systems
(CPS’s). However, such classifiers rarely offer guarantees of perfect accuracy while being optimized
for efficiency. To support safety-critical perception, ensembles of multiple different classifiers working
in concert are typically used. Since CPS’s interact with the physical world continuously, it is not
unreasonable to expect dependencies among successive inputs in a stream of sensor data. Prior
work introduced a classification technique that leverages these inter-input dependencies to reduce
the average time to successful classification using classifier ensembles. In this paper, we propose
generalizations to this classification technique, both in the improved generation of classifier cascades
and the modeling of temporal dependencies. We demonstrate, through theoretical analysis and
numerical evaluation, that our approach achieves further reductions in average classification latency
compared to the prior methods.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases Classification, Deep Learning, Sensor data streams, IDK classifiers

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2025.13

Supplementary Material Software: https://doi.org/10.5281/zenodo.15429421
Software (ECRTS 2025 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.11.1.4

Funding Kunal Agrawal: NSF Grant No. CCF-2106699, CCF-2107280, and PPoSS-2216971.
Sanjoy Baruah: NSF Grant No. CNS-2141256 and CPS-2229290.
Zhishan Guo: NSF Grant No. CMMI-2246672.
Jing Li: NSF Grant No. CNS-2340171, DOE ASCR Award Number DE-SC0024424.
Federico Reghenzani: NGI Enrichers Transatlantic Fellowship Programme, National Resilience and
Recovery Plan (PNRR) through the National Center for HPC, Big Data and Quantum Computing.
Kecheng Yang: NSF Grant No. CNS-2104181.

C
o
n
si
st

en
t * 
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
  Evaluated

  *
  E
C
R
T
S
  *

 Ar
tifact  *

  A
E

© Kunal Agrawal, Sanjoy Baruah, Zhishan Guo, Jing Li, Federico Reghenzani,
Kecheng Yang, and Jinhao Zhao;
licensed under Creative Commons License CC-BY 4.0

37th Euromicro Conference on Real-Time Systems (ECRTS 2025).
Editor: Renato Mancuso; Article No. 13; pp. 13:1–13:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kunal@wustl.edu
https://orcid.org/0000-0001-5882-6647
mailto:baruah@wustl.edu
https://orcid.org/0000-0002-4541-3445
mailto:zguo32@ncsu.edu
https://orcid.org/0000-0002-5967-1058
mailto:jingli@njit.edu
https://orcid.org/0000-0002-6865-7290
mailto:federico.reghenzani@polimi.it
https://orcid.org/0000-0002-1888-9579
mailto:yangk@txstate.edu
https://orcid.org/0000-0001-9929-9759
mailto:jinhaoz@wustl.edu
https://orcid.org/0000-0002-4918-7959
https://doi.org/10.4230/LIPIcs.ECRTS.2025.13
https://doi.org/10.5281/zenodo.15429421
https://doi.org/10.4230/DARTS.11.1.4
https://doi.org/10.4230/DARTS.11.1.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de
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1 Introduction

In order to obtain an understanding of the physical world within which they are operating,
autonomous Cyber-Physical Systems (CPS’s) repeatedly sense their operating environment
and attempt to classify sensed signals as representing objects from one of a pre-defined set
of classes. Such classification is commonly done using classifiers that are based upon Deep
Learning and related AI techniques. These classifiers need to make accurate predictions in
real time, even when implemented upon edge devices with limited computational capabilities.
However, most classical machine learning techniques emphasize accuracy over efficiency of
implementation: classical techniques are highly accurate but can be quite time-consuming
even on very simple inputs. Classifier cascades, in which very resource-efficient classifiers of
limited accuracy first attempt to classify each input with more powerful (but less efficient)
classifiers being used only upon inputs on which these efficient ones fail, have been proposed
as a means of balancing the contrasting needs of efficiency and accuracy. Such classifier
cascades may be constructed using IDK classifiers [15]. An IDK classifier is obtained from
some base classifier in the following manner: if the base classifier cannot make a decision with
confidence exceeding a predefined threshold, it outputs a placeholder class labeled as IDK,
meaning “I Don’t Know.” Multiple IDK classifiers can be trained for a given classification
problem, each offering varying execution times and likelihoods of producing a definitive class
rather than IDK. Wang et al. [15] proposed organizing such collections of IDK classifiers
into an IDK cascade: a linear arrangement of (some or all) the IDK classifiers that specifies
the order in which they are to be called upon any input until a non-IDK classification is
obtained. For applications where every input must ultimately receive a real classification, a
deterministic classifier, which always produces a real class, is included as the final classifier of
the IDK cascade – this deterministic classifier being unable to classify an input constitutes a
system fault, potentially triggering recovery mechanisms.

Temporal dependences in input streams. Most mobile perception pipelines require that
streams of input values that are obtained by sensors each be classified. It is reasonable to
hypothesize some dependence among successive inputs in such time-series readings from a
single sensor source. Consider, for instance, a stream of frames recorded by a camera in
an autonomous vehicle, where each designated Region of Interest (RoI) is tracked across
the frames in the stream. If a specific classifier accurately identifies a RoI in one frame,
it is likely to be capable of classifying the same RoI in the subsequent several frames as
well, until perhaps eventually failing because the object has moved too far away and needs
a more sophisticated DL model for accurate recognition. While prior work studied the
problem of constructing IDK cascades [6, 5, 3], the potential inter-input dependencies were
not exploited when using IDK classifier cascades, which always started by invoking the first
classifier in the cascade and moving through the cascade until a non-IDK classification was
returned. Agrawal et al. [2] addressed this shortcoming in the prior state of the art by
conducting a methodical study of the phenomenon of temporal dependence in time-series
input streams. Specifically, they (i) characterized and formally defined a particular form of
dependence, which quantifies the probability that the exactly same set of classifiers in the
IDK cascade return real (i.e., non-IDK) classes on consecutive inputs; (ii) proposed a schema
for learning the degree of dependence that may be present in a particular input stream; and
(iii) presented and evaluated algorithms that are capable of exploiting the potential presence
of such dependences to speed up the average duration to successful classification.
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This work. We build upon and extend the findings of Agrawal et al. [2], a seminal work in
the field of embedded edge AI that, to the best of our knowledge, was the first to explore the
exploitation of temporal dependencies in time-series input streams. In this paper, we aim to
further improve classification performance in such settings. Our specific contributions are
as follows:
1. We derived an improved algorithm for exploiting the form of temporal dependence. The

improvement comes from the conceptual realization that simply commencing classification
from a different classifier than the one at the start of the cascade is not optimal – one
can achieve further reduction in average classification duration by additionally skipping
classifiers within the cascade based on the classification of the previous input.

2. For this improved algorithm to be practically useful, we needed a technical breakthrough:
since skipping classifiers within the cascade is essentially equivalent to synthesizing a
new cascade from the ones present in the original cascade, we needed a speedier cascade-
synthesis algorithm than the previously-proposed algorithm [4] with Θ(n2) complexity, in
order to be able to use it during online classification time for each and every continuous
input. We achieved a significant improvement in efficiency by developing a linear-time
Θ(n) algorithm for synthesizing cascades.

3. Additionally, we formulated a more general notion of dependence for time-series input
streams, which more accurately reflects the kinds of temporal dependence that is likely to
be encountered in embedded systems. We extended our improved algorithm to effectively
exploit this more general form of dependence as well. Further extending the notion of
dependence to a logical endpoint, a completely general characterization of dependence
via Markov Decision Processes is also discussed.

4. We performed experimental evaluation of our improved algorithm with both the original
and the more general notion of temporal dependence.

Organization. The remainder of this manuscript is organized as follows. In Section 2, we
describe the model of IDK classifiers and cascades commonly used in the embedded systems
community. In Section 3, we delve into the issue of temporal dependence in sensed data: we
briefly summarize the main aspects of the research that we are building on (Section 3.1), and
use this to motivate our proposed modifications (Section 3.2). As stated above, we needed to
make a significant improvement in runtime efficiency to a previously-proposed algorithm [4]
for synthesizing cascades in order for our proposed modifications to be practically realizable –
this is described in Section 4. Section 5 presents our new runtime classification algorithm,
and Section 6 reports on our experimental evaluation of this new algorithm as compared
to the prior state-of-the-art. In Section 7, we briefly discuss a further (and very general)
extension of the model of dependence that we have considered in this paper – an area to
explore in greater depth in future research. Finally, we conclude in Section 8.

2 A Real-Time Model and Practical Considerations for IDK Cascades

In this section, we briefly describe the formal model for representing IDK classifiers that
was defined in Abdelzaher et al. [1], and is now commonly used in the real-time scheduling
literature. We suppose that there are multiple IDK classifiers denoted K1, K2, K3, . . . , Kn−1,
as well as a deterministic classifier Kn, that have all been trained to solve the same clas-
sification problem. A probabilistic characterization of the classification capabilities of the
different classifiers is provided – this may be visually represented in a Venn diagram with
each region corresponding to some combination of the individual classifiers returning either a
real class or IDK for an input (see Figure 1 (a) for an example with three classifiers). Each
classifier Ki is also characterized by a worst case execution time (WCET) Ci.

ECRTS 2025



13:4 Faster Classification of Time-Series Input Streams

(K1, K2, K3)

(K1, K2, K3)

(K1, K2, K3)

(K1, K2, K3) (K1, K2, K3)

(K1, K2, K3)

(K1, K2, K3) (K1, K2, K3)

(a)

0.1

0.70.1 0.1

(b)

Figure 1 (From [2]) (a): The probability space for three IDK classifiers and one deterministic
classifier. The blue, red, and brown ellipses respectively denote the regions of the probability space
where the classifiers K1, K2, and K3 are successful (i.e., do not output IDK). The enclosing rectangle
denotes the region in which the deterministic classifier is successful (i.e., all inputs). Each of the
disjoint regions partitioned by the ellipses is labeled with a 3-tuple, with Ki (Ki, respectively)
denoting that the IDK classifier Ki returns a real class (resp. IDK) in this region. (b): An example
Venn diagram for contained classfiers. The numbers denote the associated probabilities.

Given such a collection of classifiers, an algorithm was derived [1] for constructing IDK
cascades that minimize the expected duration required to achieve successful classification
while optionally adhering to a specified latency constraint; this algorithm has a worst-
case running time of O(4n) where n denotes the number of IDK classifiers. More efficient
algorithms with O(n2) worst-case running time have been obtained [4] for the special case
where the IDK classifiers satisfy the containment property1: the set of contained classifiers
can be strictly ordered from least to most powerful, such that any input successfully classified
by a particular classifier in the set is also successfully classified by all more powerful classifiers
(see Figure 1 (b) for a Venn diagram representation).

Practical Considerations for IDK Cascades. In the broader machine learning community,
IDK cascades are part of adaptive inference and dynamic neural networks that dynamically
adjust effort (e.g., skip layers, select among multiple sub-models, or adapt the input resolution)
based on input difficulty [11, 8, 9]. The idea of cascades is also related to anytime prediction
– the computation can be truncated as soon as sufficient confidence is achieved. While IDK
cascades and anytime prediction are orthogonal and incomparable to each other in terms
of resource efficiency, real-time analyses for IDK cascades may be extended to anytime
prediction. For instance, early-exit networks can be considered as an internal realization
of the contained IDK cascade, where a single deep network is augmented with multiple
intermediate classifiers (exits) so that inference can “exit” early if an earlier layer’s prediction
is confident [12, 10]. Here, the cost of skipping intermediate classifiers needs a modified
analysis. Techniques on model compression, such as model quantization, pruning, and
knowledge distillation, can also be combined with cascades. For example, more aggressively
quantized models can serve as faster yet less accurate classifiers in the contained IDK cascade.
These techniques all aim to balance accuracy and efficiency, a trade-off at the heart of the
IDK cascade design philosophy. Recent work [14] has demonstrated the effectiveness of
IDK cascades in various domains, including autonomous systems, real-time surveillance, and
industrial automation, further supporting the relevance and practicality of IDK cascades.

1 Containment was called ‘full dependence’ in [4]. Agrawal et al. [2] proposed the change to ‘containment’
since ‘full dependence’ may lead to confusion with the notion of temporal dependences amongst inputs.
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From an implementation perspective, IDK cascades can be executed such that the follow-
up model in the cascade is pre-loaded onto the computing devices (e.g., GPU) during the
running of the current model to reduce runtime overhead. Depending on the available
computation capacity of the application domain (e.g., real-time monitoring using IoT micro-
controllers, object classification on autonomous vehicles, traffic control or smart manufacturing
on the edge, city-wide surveillance system on the cloud), the number of models in such
cascades can range from a dozen to several hundred.

In many application domains, like perception for autonomous driving, models are fre-
quently pre-trained on the same or highly similar datasets. In such settings, larger and
deeper models tend to consistently outperform smaller ones across most input types, giving
rise to contained IDK cascades, where every input classified by a simpler model is also
correctly classified by all more complex models in the cascade. Similarly, techniques like
model compression and anytime prediction also naturally result in contained classifiers. Even
in cases where this containment property is not strictly satisfied, the discrepancy is often
minor, making it practical to approximate real-world cascades as contained with negligible
loss in performance.

3 Temporal Dependences in Time-Series Input Streams

As stated in Section 2, earlier cascade-synthesis algorithms [1, 4] have been shown to be
optimal for minimizing expected duration to successful classification. These optimality results,
however, only hold under the assumption that there is no dependence between different inputs
that are to be classified: each input is assumed to have been drawn independently from the
underlying probability distribution. Focusing on the case of contained classifiers, Agrawal
et al. [2] sought to exploit the possibility that some dependence between successive inputs
is likely to be present. They formalized a quantitative metric of dependence in time-series
input streams (Definition 1 below) in order to further reduce the average classification time.

Let x⃗
def= ⟨x1, x2, x3 . . .⟩ denote a stream of inputs to be classified (i.e., the inputs

x1, x2, x3, . . . must each be classified, one at a time in increasing order of the subscript) by
a particular IDK cascade K. Two inputs in x⃗ are defined to be equivalent inputs if and
only if exactly the same set of classifiers in K would return real (i.e., non-IDK) classes upon
both inputs. The defined dependence parameter λ of input stream x⃗ with respect to K is a
quantitative metric of the likelihood that successive inputs are equivalent inputs.

▶ Definition 1 (dependence parameter λ). Time-series input stream x⃗
def= ⟨x1, x2, x3 . . .⟩ that

is to be classified by cascade K has dependence parameter λ, 0 ≤ λ ≤ 1, if and only if for
each t > 1 the input xt is

with probability λ, equivalent to the input xt−1; and
with probability (1− λ), drawn at random from the underlying probability distribution.

Thus, a small value of λ indicates little dependence between successive inputs (streams
where each input is independently drawn from the underlying distribution have λ = 0) and
larger λ denotes greater dependence (when λ = 1 all the inputs are equivalent inputs – they
are successfully classified by exactly the same set of classifiers in the cascade K).

Note that since temporal dependence is primarily a property of an input stream, having
a single dependence (λ) parameter to model its impact upon all the classifiers in the cascade
is an oversimplification. Greater modeling accuracy (and a consequent additional reduction
in classification duration) can be achieved by having one parameter to model the effect of
the stream’s temporal dependence on each classifier. In Section 5.1, we proposed this more
general model and adapted our algorithm to be compatible with this generalized model.

ECRTS 2025
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Ki K1 K2 K3 K4

Ci 1 11 100 200
Pi 0.1 0.2 0.9 1.0

K1 K2 K3 K4input

Figure 2 An example cascade K = ⟨K1, K2, K3, K4⟩ of contained classifiers. K4 is the determin-
istic classifier. Ci denotes the WCET of Ki, and Pi the probability that Ki will return a real (i.e.,
non-IDK) classification on an input drawn at random from the underlying probability distribution.

Some Notations. In the remainder of this paper, we will often let K def= ⟨K1, K2, . . . , KN ⟩
denote the static cascade – the optimal contained IDK cascade in the absence of depen-
dencies between successive inputs, where the classifiers are listed in the order they are to be
called, with KN denoting the deterministic classifier.2 Such an optimal IDK cascade can be
constructed from all available classifiers using algorithms provided by Baruah et al. [4]. We
let Ci denote Ki’s WCET, and Pi the probability that Ki returns a true class (rather than
IDK) upon a randomly-drawn input. (Note that PN = 1, and that Ci−1 < Ci and Pi−1 < Pi

for each i, 1 < i ≤ N , in any optimal cascade.) An example cascade for the case N = 4 (i.e.,
constituting three IDK classifiers and one deterministic classifier) is depicted in Figure 2 –
this optimal cascade was synthesized from the collection of contained classifiers depicted in
Figure 1 (b) – as can be seen, all four classifiers appear in this optimal cascade.

Suppose that during the classification of a particular input stream x⃗ that has dependence
parameter λ, the classifier Kb is the first classifier in the cascade K to successfully classify
the input xt−1 (in Section 3.1, we will refer to Kb as the boundary classifier for xt−1).
By definition of the dependence parameter (Definition 1), there is a probability λ that Kb

will also be the first classifier to successfully classify xt due to dependence, and a probability
(1 − λ) that xt will be drawn independently from the underlying probability distribution.
The probability P̂i that each Ki will successfully classify xt, is therefore as follows:

P̂i =
{

(1− λ)Pi, i < b

λ + (1− λ)Pi, i ≥ b
(1)

Problem Considered. We assume that a stream of inputs arrives (e.g., from a sensor) at
the cascade with successive inputs arriving exactly T time units apart. Each input must
be classified before the next input arrives: i.e., there is a hard deadline of time-duration T

for successful classification. The performance objective is to reduce the average duration to
successful classification over all the inputs in the input stream, subject to the hard deadline
being met for each and every input. Once the classification is obtained for an input, the
identified class is immediately reported; the lapsed duration between the input’s arrival
instant and this classification instant constitutes the response time for this input. After the
classification is completed, the remainder of the time-interval may be used by the runtime
algorithm for performing additional “exploratory” computations that are aimed at reducing
the average duration for classification of future inputs.

2 Note the change in notation from Section 2 – there the subscripts were just for distinguishing amongst
n different classifiers, whereas the subscript now denotes the position of the classifier in the optimal
cascade (which comprises N classifiers).
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3.1 The Current State-of-the-art Classification Algorithm [2]
Agrawal et al. [2] present an algorithm for using the static cascade assuming the value of λ

is known3. During an initialization phase prior to processing the input stream x⃗, this
algorithm (i) computes a “skip factor” which is a positive integer k, 0 ≤ k ≤ N , as a
function of the value of the dependence parameter λ characterizing x⃗; and (ii) designates the
classifier K1 as the boundary classifier for the classification of a hypothetical input x0. After
this initialization phase, the algorithm proceeds to process each input in x⃗ in order, where
classification is followed by an exploration step:
1. classification. Let b denote the index of the boundary classifier Kb for xt−1 (i.e.,

the earliest classifier is that can successfully classified xt−1). The attempt to classify xt

begins at the classifier Kmax(1,b−k), and proceeds down the cascade until a successful
classification is obtained.

2. exploration. Immediately when a successful classification for xt is obtained, it is
reported. The reminder of the interval prior to the arrival of the next input is used to
execute additional classifiers in order to determine the boundary classifier for xt, unless
the boundary is already identified during classification.

The rationale for the design of this algorithm is motivated by considering the boundary
cases: when λ = 0 (no dependence) and λ = 1 (full dependence).

If λ = 0, then each input is independent and hence one should attempt to classify the
input xt starting at classifier K1, working one’s way down the cascade until a successful
(i.e., non-IDK) classification is obtained. By the optimality of the static cascade in the
absence of input dependencies, doing so minimizes the expected classification duration.
If λ = 1, then there is no point in attempting to classify xt with classifiers before Kb –
they’re all guaranteed to fail since xt and xt−1 are equivalent inputs and thus successfully
classified by exactly the same classifiers. Instead, using Kb to classify xt is optimal.

Thus, for the two extreme values of the dependence parameter, λ = 0 and λ = 1, the optimal
strategy is to either start at the beginning of the cascade (when λ = 0), or at the boundary
classifier itself (when λ = 1), respectively. For values of λ that lie between these two extremes
(i.e., 0 < λ < 1), they adopt the reasonable strategy of interpolating between these optimal
decisions for the two extremes and skipping backwards a constant number of classifiers k

(the skip factor) from the boundary classifier, where the value of k depends upon the value
of λ: the smaller the value of λ, the larger the value of k.

For stream-classification algorithms based on the skip factor approach (i.e., using cascades
that start processing each input a skip factor prior to the boundary classifier for the previous
input), their algorithm [2] for computing the skip factor as a function of λ is optimal: for a
given value of λ, this algorithm computes the skip factor that will result in minimum average
classification time for a time series input stream with dependence parameter λ.

3.2 Can the Skip Factor Approach be Improved?
In effect, the skip factor approach truncates the cascade for the purposes of classifying xt, by
snipping off a segment at the front of the cascade. While the skip factor can be optimally
computed, it behooves us to wonder whether one can do even better than the skip factor
approach; the following example suggests the answer is ‘yes.’

3 They describe [2] how the value of λ can be learned via runtime observations by a direct and straight-
forward application of the standard learning technique of Maximum Likelihood Estimation (MLE) [13].

ECRTS 2025
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▶ Example 2. Consider an input stream x⃗ that is to be classified by the example cascade of
Figure 2, with a dependence parameter λ = 0.75. Let us suppose that the boundary classifier
for the input xt−1 is K3. The updated probabilities of successful classification of xt by the
different classifiers, computed according to Equation 1, are

P̂1 =(1− λ)× P1 = 0.25× 0.1 = 0.025

P̂2 =(1− λ)× P2 = 0.25× 0.2 = 0.050

P̂3 =λ + (1− λ)P3 = 0.75 + 0.25× 0.9 = 0.975

P̂4 =λ + (1− λ)P4 = 0.75 + 0.25× 1.0 = 1

As the skip factor is bounded by the length of the cascade N = 4, i.e., k ∈ {0, 1, 2, 3, 4}, let
us consider every possibility.
1. For k ∈ {2, 3, 4}, max(1, 3− k) = 1. Hence the skip factor algorithm would attempt to

classify xt starting at classifier K1, and the expected duration to successful classification
is

C1 + (1− P̂1)× C2 + (1− P̂2)× C3 + (1− P̂3)× C4

= 1 + 0.975× 11 + 0.95× 100 + 0.025× 200 = 111.725
2. For k = 1, we have max(1, 3− 1) = 2. Hence the skip factor algorithm would attempt to

classify xt starting at classifier K2 and the expected duration to successful classification is
C2 + (1− P̂2)× C3 + (1− P̂3)× C4

= 11 + 0.95× 100 + 0.025× 200 = 111.0
3. For k = 0, max(1, 3− 0) = 3. Hence the skip factor algorithm would attempt to classify

xt starting at classifier K3 itself and the expected duration to successful classification is
C3 + (1− P̂3)× C4 = 100 + 0.025× 200 = 105.0

If, however, as an alternative to the skip-factor approach, we were to instead attempt to
classify xt using the classifiers in the order K1 followed by K3 and finally K4 (i.e., we used
the cascade ⟨K1, K3, K4⟩), the expected duration to successful classification is

C1 + (1− P̂1)× C3 + (1− P̂3)× C4 = 1 + 0.975× 100 + 0.025× 200 = 103.5

which is smaller than the expected duration to successful classification that can possibly
be obtained by any skip factor algorithm, regardless of what skip factor it computes. (We
reemphasize that ⟨K1, K3, K4⟩ is not a contiguous sub-cascade of K, and so is never considered
by the skip factor approach.) ◀

Our Proposed Approach. The skip-factor approach deals with dependence in time-series
input streams by skipping upstream from the boundary classifier a certain number of classifiers
k, the precise value of k depending upon the degree of dependence. Our conceptual realization,
illustrated in Example 2, is that this approach can be improved upon by additionally skipping
some of the classifiers within the cascade. This realization immediately suggests the following
runtime strategy for classifying the inputs in input stream x⃗ with dependence parameter λ:
once xt−1 has been classified and the boundary classifier Kb identified, we
1. update the probability values – i.e., compute the P̂i values as dictated by Equation 1;
2. synthesize a new cascade using these P̂i values and the classifiers that are present in the

cascade K, that minimizes the expected duration to successful classification;
3. use this new cascade to classify the input xt; and
4. perform exploration, if necessary, to identify the new boundary classifier.
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Note that the new cascade synthesized in Step 2 above will only be used for classifying the
input xt (after which the process will be repeated – a new boundary classifier identified, the
P̂i values recomputed according to Equation 1, and a new cascade synthesized for classifying
xt+1). In other words, this cascade is only used for classifying a single input that is drawn at
random from the distribution {P̂i}; therefore, the algorithms proposed by Baruah et al. [4]
are optimal for this purpose.

However, these cascade-synthesis algorithms have running time Θ(n2) where n is the
number of available IDK cascades when no hard deadline is specified, and Θ(n2D) if a hard
deadline D must be guaranteed, and are therefore likely to be too inefficient for repeated use
prior to classifying each input in the input stream. For the strategy outlined above to be
applicable in practice, we need faster cascade-synthesis algorithms. In Section 4 below we
meet this need and improve upon the Θ(n2) algorithm: we derive a linear-time (i.e., Θ(n)
time) algorithm for synthesizing optimal cascades, which is efficient enough for runtime use as
envisioned above. Then in Section 5, we flesh out the details of the strategy outlined above,
and describe in detail the runtime algorithm that is used for classifying all the inputs in a
time-series input stream in a manner that further reduces (as experimentally demonstrated
in Section 6) the average duration to successful classification.

4 A Linear-Time Cascade-Synthesis Algorithm

Example 2 revealed that in classifying the inputs in input stream x⃗, one can sometimes achieve
a reduction in expected duration to successful classification by choosing to use a subset of
the classifiers in the cascade that are not contiguous in the cascade upon inputs – in the
example, we saw that ⟨K1, K3, K4⟩ has smaller expected duration to successful classification
than any contiguous subset. But which subset of the classifiers in the cascade should one
use? While this question is easily solved via the algorithms proposed by Baruah et al. [4],
those algorithms are computationally expensive (with Θ(n2) runtime complexity) and may
not be practical to execute between each pair of input arrivals during stream classification
time. In this section, we derive an entirely different cascade synthesis algorithm that has
linear (i.e., Θ(n)) runtime complexity; for the values of n arising in practice, this algorithm
is fast enough for runtime use during classification of time-series input streams.

4.1 The Current State-of-the-art Cascade-Synthesis Algorithm [4]
Let us first examine the state of the art. Given a contained collection of IDK classifiers
K1, K2, . . . , Kn−1 and a deterministic classifier Kn, an algorithm with running time Θ(n2)
was derived [4] for synthesizing a cascade that minimizes the expected duration to successful
classification for an input that is randomly drawn from the underlying distribution. Without
loss of generality, assume that the classifiers are indexed in increasing order of probability of
successful classification: Pi < Pi+1 (and hence Ci < Ci+1 – if not, we can ignore Ki since it
will definitely not appear in an optimal cascade). Note that for the deterministic classifier
Kn, we have Pn = 1.0. For notational convenience, let us define a hypothetical dummy
classifier K0 with C0 = 0 and P0 = 0.0.

The algorithm proposed by Baruah et al. [4] is a classical dynamic program: it successively
determines the best cascade that can be built using K1, K2, . . . , Ki for i = 1, 2, . . . , n, where
the notion of “best” is formalized in the following definition:

▶ Definition 3 (optimal sub-sequence Si; optimal expected duration fi). The optimal sub-
sequence Si is the cascade comprising classifiers from ⟨K1, K2, . . . , Ki⟩ of minimum expected
duration, with Ki being the last classifier in the cascade. Let fi denote the expected duration
of this optimal sub-sequence Si.
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Algorithm 1 The cascade-synthesis algorithm proposed by Baruah et al. [4].

Input: K1, K2, . . . , Kn, with each Ki = (Ci, Pi)
Output: The expected duration fn of the optimal cascade Sn

1 for i← 1 to n do //Computing fi

2 tmp← 0
3 for h← 1 to i− 1 do //Would Kh be a better predecessor to Ki?
4 if (fh + (1− Ph)× Ci) < (ftmp + (1− Ptmp)× Ci) then
5 tmp← h

6 fi ← ftmp + (1− Ptmp)× Ci

7 return fn

Using the terminology introduced in Definition 3, the aim of determining an optimal IDK
cascade reduces to that of determining the optimal sub-sequence Sn. The Θ(n2) algorithm [4]
achieves this by inductively determining the optimal sub-sequences S1, S2, . . . , Sn in order.
To determine Si for i ≥ 1, they exploit the fact that optimal sub-sequences satisfy the optimal
sub-structure property [7, page 379]: optimal solutions to any problem instance incorporate
optimal solutions to sub-instances. Initially, we have:

S0 = ⟨ ⟩ and f0 = 0

Let Kh denote the classifier immediately preceding Ki in the optimal sub-sequence Si. By
the optimal sub-structure property, it follows that Si is the concatenation of Ki to the end
of the optimal sub-sequence Sh (i.e., Si = (Sh||Ki)). We therefore have:

fi = min
0≤h<i

{fh + (1− Ph) · Ci} (2)

and Si is the concatenation of Ki to the end of Sℓ where ℓ = arg min0≤h<i {fh + (1− Ph) · Ci}.
The Θ(n2) algorithm, which we depict in pseudocode form in Algorithm 1, computes fi

according to Equation 2 in increasing order of i; in computing fi, it iterates through h =
0, 1, . . . , i−1, and is thus a pair of nested for-loops with overall running time

∑n
i=1 i = Θ(n2).

4.2 Our New And Improved Algorithm
In this section, we derive a Θ(n) algorithm for computing fn (and thereby Sn). We do so by
computing f1, f2, . . . , fi in increasing order of i according to Algorithm 2. In determining fi

for a particular i we do not, however, simply iterate through all potential values of h. Rather,
we reimplement the work done by the inner loop of the pseudocode of Algorithm 1 in such
a manner that each value of ‘h’ in this inner loop is only considered a constant number of
times throughout all n iterations of the outer loop (and hence the total running time of the
algorithm falls from Θ(n2) to Θ(n)). To understand how we achieve this, let us take a closer
look at the manner in which the quantities on the RHS of Equation 2, over which the ‘min’
is being determined, relate to each other.

▶ Lemma 4. Let integers j1 and j2 satisfy 0 ≤ j1 < j2 < n. When plotted as functions of x,
the lines yj1(x) = (fj1 + (1− Pj1) · x) and yj2(x) = (fj2 + (1− Pj2) · x) intersect. Let x2 be
the intersection, i.e., the solution of fj1 + (1− Pj1) · x = fj2 + (1− Pj2) · x, then

min {yj1(x), yj2(x)} =
{

fj1 + (1− Pj1) · x, if x ∈ [0, x2]
fj2 + (1− Pj2) · x, else x ∈ [x2,∞))

(Please see Figure 3 for visual examples.)
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x

fh + (1 − Ph) · x, for h = 0, 1, 2, 3, and 4

f0

f1

f2

f3

f4

x0 x1 x2x3 x4

Figure 3 Plots of (fh + (1− Ph)× x) as a function of the value of x, for h = 0, 1, 2, 3, and 4.
The value of xk denotes the value of x after which the plot (fk + (1− Pk)× x) is below all prior
plots (i.e., all plots (fh + (1− Ph)× x) for h < k).

Proof. We make the following observations.
1. fj1 < fj2 .

To show this, we will show that fj+1 > fj for all j. This follows since by definition,
fj = min

h<j
{fh + (1− Ph) · Cj}

and fj+1 = min
h≤j
{fh + (1− Ph) · Cj+1}

Since Cj+1 > Cj , for each h < j we have

fh + (1− Ph) · Cj+1 > fh + (1− Ph) · Ci

That is, each of the first (j−1) terms in the RHS for fj+1 is larger than the corresponding
term in fj . It remains to consider the last term in fj+1: fj + (1− Pj) · Cj+1. Since this
equals fj plus a positive term, it, too, is clearly > fj .

2. (1− Pj1) > (1− Pj2) (since Pj2 > Pj1).
From the above, it follows that the plot for (fj1 + (1− Pj1)× x) has a smaller y-intercept and
larger slope than the plot for (fj2 + (1− Pj2)× x); consequently, they intersect at x2. When
x ≤ x2, (fj1 + (1− Pj1)× x) is smaller; when x > x2, (fj2 + (1− Pj2)× x) is smaller. ◀

The significance of Lemma 4 is highlighted in the following example.

▶ Example 5. Let us suppose that we have completed computing f0 (which equals 0), f1
(which equals C1), f2, f3, and f4 on a particular example instance (as well as the corresponding
optimal cascades S0 = ⟨ ⟩, S1 = ⟨K1⟩, S2, S3, and S4), and seek to determine the optimal
cascade S5 ending in K5 and its expected duration f5. From Lemma 4, we can obtain a
graph like the one depicted in Figure 3. For any value of C5 (plotted on the x axis), this
graph reveals the value of h < 5 that minimizes

(
fh + (1−Ph)×C5

)
. The x0(= 0), x1, x2, x3
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(0, x0) (1, x1) (3, x3) (4, x4)

front rear

(a)

(1, x1) (3, x3) (4, x4)

front rear

(b)

(1, x1) (3, x3)

front rear

(c)

(1, x1) (3, x3) (5, x5)

front rear

(d)

Figure 4 The dequeue of Example 5 at various stages.

and x4 values depicted on the x-axis are significant: each xk denotes the value of x after
which the plot

(
fk + (1− Pk)× x

)
is below all prior plots (and is hence potentially the one

that determines the ‘min’ for the RHS of Equation 2). Our algorithm stores each such xk as
an ordered pair (k, xk). From this graph (and recalling that S0, the optimal cascade ending
in the hypothetical dummy classifier K0, is the empty cascade ⟨ ⟩), we can conclude that

S5 =


(S0||K5) = (⟨ ⟩||K5) = ⟨K5⟩, if C5 ∈ [x0, x1)
(S1||K5), if C5 ∈ [x1, x3)
(S3||K5), if C5 ∈ [x3, x4)
(S4||K5), otherwise, (i.e., C5 ∈ [x4,∞))

We make two observations regarding this example:
1. x2 has no role to play in deciding S5 – its role is subsumed by x3 (since x3 < x2, meaning

that the line (f3 − (1− P3)× x) lies below the line (f2 − (1− P2)× x) for x ≥ x3).
2. Since C5 > C4, only the part of the graph to the right of (x = C4) is meaningful in

determining S5. (Suppose, for instance, it had been the case that x1 ≤ C4 < x3. Then x0
and x1 have no role to play in deciding S5, either; all that matters is whether C5 ≤ x3,
x3 ≤ C5 < x4, or x4 ≤ C5.)

Based on these observations, we point out that the ordered list [(0, 0), (1, x1), (3, x3), (4, x4)]
of four xk values (each represented as an ordered pair as mentioned above) contains all the
information that is needed to compute S5 and f5; if it had additionally been the case that
x3 ≤ C4 < x4, then only the two ordered pairs [(3, x3), (4, x4)] would be the ones to matter.
Our algorithm will maintain such an ordered list of ordered pairs sorted in increasing order
of xk, from which S5 and f5 is computed in the following manner:
1. Determine the contiguous pair of ordered pairs (ℓ, xℓ) and (ℓ′, xℓ′) in the list satisfying

xℓ ≤ C5 < xℓ′ . (If C5 is larger than the xk for the last ordered pair in the list, then let
(ℓ, Cℓ) denote this last ordered pair).

2. As can be seen from Figure 3, this ℓ is the value of h that minimizes the RHS of Equation 2
for computing f5.

3. Therefore, S5 = (Sℓ||K5) and f5 = fℓ + (1− Pℓ) · C5.
The main innovation in our algorithm is that it is able to use and update this list in an efficient
manner. It does so by maintaining it as a double-ended queue (deque) – see Figure 4 (a).
Given the deque of Figure 4 (a) and supposing that the value of C5 is > x1 and < x3, we now
step through the steps taken by our algorithm to compute S5 and f5 and update the deque.
1. Our algorithm starts out comparing C5 with x1, the xk value of the second entry of the

deque. Since C5 > x1, the algorithm concludes that all future Ci’s (i.e., all Ci’s for i > 5)
will also be > x1 and hence the first entry in the deque, (0, 0), is no longer relevant; this
element is therefore removed (a Θ(1) operation), yielding the deque of Figure 4 (b).

2. The step above is repeated: C5 is compared with x3, the xk value of the new second
entry of the deque. Since C5 < x3, we conclude that in computing f5 using Equation 2,
the first ordered pair in the dequeue, (1, x1), determines the ‘min’ value in the RHS of
Equation 2.

3. f5 is therefore computed as per Equation 2: f5 = f1 + (1− P1)× C5.
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Algorithm 2 OptBuild – an optimal and efficient cascade-synthesis algorithm.

1 OptBuild(C1, C2, . . . , Cn; P1, P2, . . . , Pn)
Input: The execution durations C1, C2, . . . , Cn and probabilities P1, P2, . . . , Pn

Output: The optimal cascade Sn and its expected duration fn

2 Q = [(0, 0)] Prev[0] = ⊥; f0 = 0
3 for i← 1 to n do
4 while ((len(Q) > 1) ∧ (Q[2][2] ≤ Ci)) do //Q[2] is the second-from-front ordered

pair in Q; Q[2][2] is its xk component
5 Q.pop_front() //Not needed any more, since Cj > Ci for all j > i

6 Let (h, xh)← Q.front()
7 Prev[i]← h // Si = (Sh||Ki)
8 fi ← fh + (1− Ph) · Ci

9 repeat
10 Let (h, xh)← Q.back()
11 Compute xi such that fh + (1− Ph) · xi = fi + (1− Pi) · xi //Where the lines

for h and i intersect
12 if xi ≤ xh then
13 Q.pop_rear() //(h, xh) is subsumed by (i, xi) (which will be added -

Line 15 below)

14 until (xi > xh);
15 Q.push_rear((i, xi))
16 return the optimal cascade and fn

4. Conceptually speaking, a new line with y-offset equal to f5 and slope (1 − P5) is now
added to Figure 3 for the purposes of computing S6, S7, . . . , Sn. Hence the point x5 must
be determined, beyond which the plot (f5 + (1− P5)× x) is beneath all prior plots.

5. Recall how the fact that x3 < x2 meant that (f2 + (1− P2)× x) could never be the
line defining the ‘min’ for f5. We wish to identify any of the xk’s in the deque that
are rendered similarly incapable, due to being smaller than x5, of defining the ‘min’ for
values of fi for i > 5. Starting with the ordered pair at the rear of the deque (in our
case, this is (4, x4)), our algorithm determines the value of x for which the new line
(f5 + (1− P5)× x) intersects with the line (f4 + (1− P4)× x). Suppose this value of x

is < x4. This implies that x5 < x4, and x4 will consequently never define the ‘min’ on
the RHS of Equation 2 when computing fi for future values of i that are > 5. Hence the
ordered pair (4, x4) is deleted from the rear of the deque – again, a Θ(1) operation. This
results in the deque of Figure 4 (c).

6. The process is now repeated on the new ordered pair at the back of the deque,
(3, x3): determine the value of x for which (f5 + (1− P5)× x) intersects with the line
(f3 + (1− P3)× x). Let us suppose that this intersection occurs to the right of x3
and is thus equal to x5 (which recall, is defined as the value of x after which the plot
(f5 + (1− P5)× x) is below all the earlier plots). The ordered pair (3, x3) remains relevant
and cannot be removed from the deque.
Once we have identified an ordered pair at the end of the deque that should not be
removed, since the deque is sorted in increasing order of the xk parameters it follows
that any ordered pairs that were present before this last ordered pair in the deque, too,
remain relevant and hence should not be deleted.

7. Finally, our algorithm adds the ordered pair (5, x5) to the rear of the deque in a Θ(1)
operation, and terminates. The resulting deque is as depicted in Figure 4 (d). ◀
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Algorithm 2 lists the pseudocode that implements the algorithm illustrated in Example 5
above. We now formally prove the correctness of Algorithm 2, based on the following lemma.
▶ Lemma 6. Let (qj , xj) be the j-th element of Q (i.e., (qj , xj) ← Q[j]). Let yh(x) =
fh + (1− Ph) · x be functions of x, where integer h ∈ [0, n]. Let xj+1 =∞, if (qj , xj) is the
last element of Q. At the beginning of each iteration i of Algorithm 2, Q has the property:

minh∈[0,i) yh(x) = yqj
(x) = fqj

+ (1− Pqj
) · x, for xj ≤ x ≤ xj+1,

which implies that fqj
+ (1− Pqj

) · xj+1 = fqj+1 + (1− Pqj+1) · xj+1

Proof. We prove by induction. When i = 1, the queue only has one element, so it is true.
Now suppose iteration i satisfies this property of minh∈[0,i) yh(x) = yqj (x) for xj ≤ x ≤

xj+1, where Q = {(q1, x1), . . . , (ql, xl)} with l elements, we only need to prove it for iteration
i + 1. In other words, we need to prove that by the end of iteration i where Q is updated
to Q′ = {(q′

1, x′
1), . . . , (q′

k, x′
k)} with k elements, the property of minh∈[0,i] yh(x) = yq′

j
(x) for

x′
j ≤ x ≤ x′

j+1 holds.
Now consider the property by looking at the updates to Q during the loop body of

iteration i. Clearly, removing the front elements from Q (in lines 4-5) or the rear elements
(in lines 9-14) does not affect the property of minh∈[0,i) yh(x) = yq′

j
(x) for x′

j ≤ x ≤ x′
j+1

where (q′
j , x′

j) is the element remained in Q.
However, we need to show that adding the new function yi(x) in iteration i does not

change the property for the elements remained in Q. In other words, minh∈[0,i] yh(x) =
minh∈[0,i) yh(x) = yq′

j
(x) for x′

j ≤ x ≤ x′
j+1 where j ∈ [1, k). Additionally, we need to

analyze whether the added element satisfies the property.
Line 15 shows that (i, xi) is the only element added (to the rear of updated Q) in iteration

i. Therefore, we know q′
k = i and x′

k = xi and (q′
k−1, x′

k−1) is the last element remained in
the updated Q before adding (q′

k, x′
k) = (i, xi). From line 11 with h = q′

k−1, we have

fq′
k−1

+ (1− Pq′
k−1

)xi = fh + (1− Ph)xi = fi + (1− Pi)xi = fq′
k

+ (1− Pq′
k
)xi

From Lemma 4, we have

min
{

yq′
k−1

(x), yq′
k
(x)

}
=

{
fq′

k−1
+ (1− Pq′

k−1
)x, if x ∈ [0, xi]

fq′
k

+ (1− Pq′
k
)x, else x ∈ [xi,∞)

Therefore, for x′
k−1 ≤ x < x′

k = xi and yq′
k

= yi(x), we have minh∈[0,i) yh(x) = yq′
k−1

(x) <

yi(x). Thus, the property minh∈[0,i] yh(x) = yq′
k−1

(x) holds for x′
k−1 ≤ x < x′

k.
Similarly, for any element (q′

j , x′
j) before (q′

k−1, x′
k−1) with x′

j ≤ x ≤ x′
j+1, we have

minh∈[0,i) yh(x) = yq′
j
(x) < yq′

k−1
(x) < yi(x). Thus, the property minh∈[0,i] yh(x) = yq′

j
(x)

holds for x′
j ≤ x < x′

j+1. In summary, we have proved that the property holds for any
elements remained in the updated Q′ after adding the new function yi(x).

Now, we consider the property of the added element (q′
k, x′

k) = (i, xi) with xi ≤ x <∞.
Since min

{
yq′

k−1
(x), yq′

k
(x)

}
= yq′

k
= yi(x) for x ∈ [xi,∞), we have minh∈[0,i] yh(x) = yq′

k
.

Thus, the new element also satisfy the property. This completes the induction. ◀

Finally, we discuss the time complexity of the algorithm.
▶ Lemma 7. Algorithm 2 is O(n) in time.
Proof. Sketch: First, observe that for each i, 1 ≤ i ≤ n of the for, an ordered pair (i, xi) is
pushed into Q exactly once. Second, the nested loops runs for at most (n + 1) times in total.
This is because each iteration of the two while loops (lines 4-5 and 9-14) contains one pop
operation from Q. Moreover, the popped elements never come back, which means there can
be at most n + 1 pop operations. This limits the total number of nested iterations, despite
contained in the for loop. ◀
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Algorithm 3 Runtime classification algorithm.
Input: A cascade ⟨K1, K2, . . . , KN ⟩ synthesized by the algorithm of [4]
Output: A classification for each input in time-series input stream x⃗

1 b← 1 //Initialize the boundary classifier as K1

2 for each input xt do
3 for i← 1 to N do
4 Determine P̂i according to Equation 1

5 Let cascade S ← OptBuild(C1, C2, . . . , CN ; P̂1, P̂2, . . . , P̂N ) //OptBuild is defined
in Algorithm 2

6 Attempt to classify xt with the classifiers in S in order, until a non-IDK class is obtained
7 return this class
8 Perform exploration to identify the new boundary classifier Kb

9 Update the value of b

5 Runtime Classification

When classifying the inputs in a time-series input stream x⃗ that is characterized by a
dependence parameter λ, our linear-time cascade-synthesis algorithm of Section 4 permits us
to rebuild a cascade for each input in a time-series input stream, thereby achieving lower
average duration to successful classification when compared to the state-of-the-art algorithm
in [2]. Our runtime algorithm for doing this is listed in pseudocode form in Algorithm 3. We
emphasize a few points about this algorithm.
1. The initial cascade (that forms the input to Algorithm 3) is synthesized by the algorithm

in [4], which does not make use of the dependence parameter λ that is specified for x⃗.
This algorithm has running time Θ(n2D) where n is the number of IDK cascades available
to us, and D the hard deadline specifying the duration within which each input must be
classified (this is the inter-arrival duration T between successive inputs).

2. However in the calls to OptBuild( ) in Line 5, only those classifiers are considered for
potential inclusion in the cascade, that were already in the cascade that was synthesized
prior to runtime by the algorithm in [4]. Since the entire cascade synthesized prior to
runtime by the algorithm in [4] can execute to complete within the specified hard deadline,
the cascade S returned by OptBuild( ) in Line 5 is guaranteed to also meet the deadline.

3. During the exploration phase (Line 8), all N classifiers that were in the cascade that was
synthesized prior to runtime by the algorithm in [4] should be considered, not just those
that were included in the cascade S that was obtained in Line 5. This is because the
boundary classifier is defined over all the classifiers in the cascade that was synthesized
prior to runtime by the algorithm in [4]; it is possible that some classifier present in the
cascade synthesized prior to runtime by the algorithm in [4] but not included in S is the
one with minimum execution duration to successfully classify xt (and thus the boundary
classifier).

5.1 Generalizing the Definition of Temporal Independence
In Definition 1, Agrawal et al. [2] use a single dependence parameter λ to characterize the
dependence of a time-series input stream x⃗ with respect to an IDK classifier cascade K that
is tasked with classifying the inputs in x⃗. But looking upon the dependence parameter as an
attribute of just the input stream x⃗ (and not also the classifier cascade K) may be a more
accurate reflection of reality: inter-input dependences characterizes an input stream, and
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each IDK classifier may be differently impacted by this intrinsic inter-input dependence. We
therefore also consider a more general model than the one in [2], in which each IDK classifier
Kk is characterized by its own dependence parameter λk (with the same interpretation as
in Definition 1: if classifier Kk is the classifier of minimum WCET to successfully classify
xt−1, then there is a λk probability that it will also be the classifier of minimum WCET
to successfully classify xt−1, while with probability (1− λk) input xt is drawn at random
from the underlying probability distribution).4 Our classification algorithm of Algorithm 3
is easily modified to be applicable to this more general and realistic model of inter-input
dependence. Equation 1 clearly generalizes as in Equation 3 below, with λb playing the role
that λ had in Equation 1:

P̂i =
{

(1− λb)Pi, i < b

λb + (1− λb)Pi, i ≥ b
(3)

In the pseudocode of Algorithm 3, the use of Equation 1 in Line 4 should be replaced with
Equation 3; everything else remains as is.

Determining the λk values. The MLE-based learning techniques that were proposed in [2]
(see footnote 3) for learning the value of the single parameter λ based on observing the input
stream, remain applicable for learning the values of the multiple parameters λ1, λ2, . . . , λN .

6 Experimental Evaluation

In this section we discuss some experiments that we have conducted in order to characterize
(i) the efficiency of the new cascade-synthesis algorithm we had obtained in Section 4; and
(ii) the effectiveness (i.e., the improved performance in terms of reduced average execution
duration to successful classification over the state-of-the-art approach) of our proposed
runtime algorithm. All the code used in these simulation experiments is open source and
available online5. Exact reproducibility (with the exception of overhead evaluation that is,
by its very nature, subject to variation on different runs) is ensured via the use of constant
seeds for the random number generators.

Workload generation. We have developed a synthetic workload generator that allows
us to experimentally explore various parts of the space of possible parameter values that
characterize contained collections of IDK classifiers.6 The workloads generated for the
experiments described in the remainder of this section are generated with the following
parameter values:

The WCET parameters (Ci’s) of individual classifiers are integers each drawn uniformly
at random over [0, 100].

4 To appreciate why this model of different λk values for different IDK classifiers is more realistic, recall
that the Venn diagram representation of the probability space for contained collections of classifiers
is a set of concentric ellipses (as in, e.g., Figure 1 (b)). A classifier Kb being the boundary classifier
for a particular input xt−1 implies that Kb returned a real class but the ellipse immediately within
Kb’s ellipse that is in the cascade returned IDK on xt−1. While one hesitates to put too much physical
interpretation to the actual areas in the probability space, it would not be unreasonable to expect that
the characteristics of this space (e.g., the probability measure in the region between the ellipses) may
have some role to play in deciding whether Kb will also be the boundary classifier for the next input xt.

5 https://doi.org/10.5281/zenodo.15429421
6 We emphasize that the goal here is not one of generating workloads that are particularly faithful to

real-world use cases, but to allow us to explore the space of possible system instances by varying different
parameters.

https://doi.org/10.5281/zenodo.15429421
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Figure 5 Overhead evaluation of the optimized algorithm.

The probability Pi that classifier Ki will be successful in classifying a single input drawn
independently at random from the underlying probability distribution is a real number
drawn uniformly at random over [0, 1].

For the efficiency experiments, the number of classifiers in the contained collections
of IDK classifiers from which the optimal cascade is constructed took on the values
[1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]; for the effectiveness experiments, the
number of classifiers N in the cascade is an integer drawn uniformly at random over
[1, 10].

6.1 Evaluating Efficiency of the Cascade-Synthesis Algorithm of
Section 4

We performed overhead evaluation experiments to verify the runtime efficiency of the cascade-
synthesis algorithm that was derived in Section 4. We separately considered the number
of classifiers in the contained collections of IDK classifier from which the optimal cascade
is constructed, to be [1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]; for each number of
classifiers, we generated 10 000 random contained collections of IDK classifiers upon which
we used the cascade-synthesis algorithm of Section 4 to synthesize an optimal cascade. The
computing platform was a desktop computer equipped with an Intel i7-6700K. (We emphasize
that the goal here was not to measure and report the exact absolute execution times but
rather to verify the linearity of the runtime complexity with reasonable constants.) As
evident from Figure 5, the runtime does indeed scale linearly with the number of classifiers
in the cascade, and the cascade-synthesis algorithm completes in less than 1 ms to execute
for up to 1000 classifiers.
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Figure 6 Comparisons of average performance (i.e., expected classification time of input using
IDK cascades) under a single λ setting. [left:] comparison of our approach with the state-of-the-art
algorithms and [right:] Performances of SKIP under various skip factors.

6.2 Evaluating Effectiveness of the Runtime Classification Algorithm
We compare the effectiveness of the runtime classification algorithm (Algorithm 3) versus
prior algorithms for both the case when temporal dependence is characterized by a single
λ parameter (Section 6.2.1), and when it is characterized by a potentially different λi

parameter per IDK classifier Ki in the cascade (Section 6.2.2). In either case, we compared
the average classification duration of the classification algorithm of Algorithm 3 with the
average classification duration of several other classification algorithms:

FIRST: Always start from the first classifier of the offline-optimized cascade. As discussed
in Section 3.1, this strategy has no “sense” of inter-input dependence (λ), but is optimal
upon time-series input streams with no inter-input dependence (λ = 0), where each input
is drawn independently from the underlying probability distribution.
BOUNDARY: Always start from the boundary classifier Kb for the previous input. It is
obvious (and also explained in Section 3.1) that this strategy is optimal upon time-series
input streams exhibiting full dependence (λ = 1) since consecutive inputs will share the
exact same boundary classifier.
SKIP: The state-of-the-art “skip-factor” algorithm [2, Algorithm 2] that we have described
in Section 3.1. In our experiments, we give this algorithm an advantage by assuming that
it always uses the optimal skip factor – the one that minimizes the average duration to
successful classification – although in practice there is some loss of performance due to
the fact that learning the value of λ takes some time, and may not be entirely accurate.

In the remainder of this section, when discussing our findings we will refer to the runtime
classification algorithm of Algorithm 3 as OPT-ALG.

6.2.1 Single lambda for all classifiers
We run an exploration of the λ parameter in the interval [0, 1) with a 0.05 step. For each
lambda, 10 000 scenarios are created randomly picking values for the number of classifiers
([1, 10]), Ci (range [0, 100]), and Pi (range [0, 1]); and each scenario is run for 1000 inputs.
For FIRST and SKIP, we use the algorithm of [4] to first synthesize an optimal cascade, while
for OPT-ALG, the optimal cascade is re-synthesized using Algorithm OptBuild (Algorithm 2)
after each input is classified and the new boundary classifier identified. Our findings are
depicted in Figure 6.

The results show that our approach outperforms the basic approaches (FIRST, BOUNDARY)
and the state-of-the-art algorithm (SKIP) for all values of λ ∈ [0, 1). As expected, for values
of λ towards 1, OPT-ALG performs similarly to BOUNDARY, because picking the same classifier
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Figure 7 Expected classification time comparisons under a multiple λi setting; [left:] comparison
of our approach with with the state-of-the-art algorithms and [right:] Performances of SKIP under
various skip factors.

that classified the previous input is frequently the best choice. Similarly when λ is small,
OPT-ALG performs similarly to FIRST, because starting from the first classifier becomes the
best choice. When λ is unknown, the proposed OPT-ALG has clear advantages over any other
approaches. In particular, the reduction in the execution time of OPT-ALG is 0 − 22.5%
compared to FIRST (average 8.8%), 1.5− 20.8% compared to BOUNDARY (average 10.1%), and
0.1− 10.9% compared to SKIP (average 5.3%).

For the prior state-of-the-art algorithm (SKIP), the right subfigure of Figure 6 is reporting
its performance under various skip factors. Since the best choice of skip factor may depend
on λ (and is unknown), we only report its best-seen performance for each λ (which is a lower
envelope of all lines in the right subfigure) in the left subfigure as the performance of SKIP
to ensure a reasonably fair comparison over [2, Algorithm 2].

Also, note that when λ is large, not only the proposed OPT-ALG but also simple heuristics
such as BOUNDARY is outperforming the state-of-the-art approach SKIP. Specifically, the only
difference between BOUNDARY and SKIP(0) is whether to “optimize” the cascade a priori.
It turns out that such offline optimization without any knowledge/modeling of λ may be
hurting the average performance, at least for simple heuristics. This also verifies OPT-ALG’s
advantage in the linear-time optimization – after each round, we can “afford” to optimize
the cascade dynamically according to the current best possible estimations of distributions
and the λ value.

Note that standard deviation is not displayed in these plots because it is intrinsically high:
the number of classifiers and the WCET interval are wide to test very different scenarios,
which also brings highly-spread final execution times, thus the implications are unclear by
comparing the standard deviations. For reference, we observed that the standard deviation
of OPT-ALG was lower than the standard deviation of FIRST, BOUNDARY, and SKIP for all the
respective experiments. This suggests OPT-ALG is a more robust and stable algorithm overall.

6.2.2 Multiple lambda case
In this scenario, we run the simulation by using multiple random values of λi, one for each
classifier of the cascade. We explored how the average execution time changes when the
number of classifiers increases. The other parameters of the simulation are identical to the
case in the previous Section 6.2.1.

The results are displayed in Figure 7. Also in the multiple lambda case, OPT-ALG
outperforms all the other approaches. In particular, the reduction in the execution time
of OPT-ALG is up to 19.7% compared to FIRST (average 16.6%), up to 10.1% compared to
BOUNDARY (average 8.2%), and up to 10.7% compared to SKIP (average 9.0%).
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7 A Further Generalization: Markov Processes

The λ parameter of IDK cascades is intended to model, and thereby exploit, the temporal
dependence amongst inputs in a time-series input stream. Another factor that could
potentially be exploited to further speed up the average classification duration is performance
correlation across the different IDK classifiers. Some performance correlation across different
ML models, whereby different models produce similar results on certain kinds of data, is
often due to factors like training set similarity (where models learn from nearly identical data
distributions), and data structure (such as spatial or temporal patterns), which guides models
to rely on the same prominent features. Additionally, model capacity and complexity, shared
optimization techniques and loss functions, and regularization practices (like early stopping)
can lead models to converge on similar solutions. Data preprocessing consistency and starting
from the same pretrained models also align performance, as do similar bias-variance trade-offs
that suit a dataset’s complexity. Together, these factors encourage different models to learn,
generalize, and perform in similar ways, resulting in natural performance correlation across
machine learning algorithms.

We conjecture that a Markov Process is well suited for representing both the performance
correlation of models and the temporal inter-input dependence that tends to be present in
the data-streams generated by CPS perception tasks. In future work, we intend to study the
capabilities and limits of modeling both temporal dependencies and classifier correlations via
Markov Processes; here we provide a brief overview presenting the essential idea.

A Markov Process is a stochastic process describing a sequence of possible events in
which the probability of each event depends only on the state attained in the previous
event. For both model correlation and inter-input temporal dependence, we can consider
this state to be the identity of the boundary classifier (i.e., the least powerful classifier in the
contained collection of classifiers that is able to successfully identify the current input). We
can then have an (N ×N) transition matrix Ψ describe the probabilities of moving from
one state to another for successive inputs. Specifically, in a transition matrix, each entry
Ψij , (0 ≤ Ψij ≤ 1), represents the probability of transitioning from Ki being the boundary
classifier for one input to Kj being the boundary classifier for the subsequent input. The sum
of the probabilities

∑
j Ψij = 1 in each row (i) is 1, as they represent the total probability of

moving from a particular state to any other state.
In this general formulation as a Markov Process, the single-parameter model and our

generalization in Section 5.1 become special cases where state transition probabilities are
correlated. When moving from the single-parameter model to the one with N parameters,
one needs to learn more information during runtime via on-line learning. This problem is
further exacerbated if the Markov Process model is used: (N ×N) different parameter values
must now be learned. While this can be accomplished by directly applying the Maximum
Likelihood Estimation (MLE) techniques used by Agrawal et al. [2], learning more parameter
values at adequately high confidence levels requires a lot more runtime observations since a
lot more information is sought to be learned.

8 Conclusions

The accurate and rapid classification of streams of inputs that are captured by sensors is
an essential enabler for perception for autonomous CPS’s. In this paper, we focused on
how to better leverage temporal dependencies in input streams to accelerate classification
without sacrificing accuracy when using IDK cascades. A key insight was that simply starting
classification from a later classifier in the cascade is suboptimal; improvements can be achieved
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by selectively skipping classifiers altogether. Realizing this required a technical breakthrough:
we developed a linear-time cascade synthesis algorithm, significantly faster than the state-of-
the-art algorithm, enabling dynamic restructuring of cascades at runtime. We also introduced
a more refined temporal dependence model, assigning individual parameters to each classifier
rather than a single global parameter. This improved modeling accuracy and further reduced
classification latency. Experiments on synthetic datasets confirmed the performance gains
of our approach. Finally, we proposed a generalized modeling framework based on Markov
Processes to jointly capture temporal dependencies and classifier correlations, showing our
earlier models as special cases. We leave deeper exploration of this framework to future work.
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