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Abstract

Deep learning (DL) continues to play a pivotal role in a wide range of intelligent systems,
including autonomous machines, smart surveillance, industrial automation, and portable
healthcare technologies. These applications often demand low-latency inference and effi-
cient resource utilization, especially when deployed on embedded or edge devices with
limited computational capacity. As DL models become increasingly complex, selecting
the right inference framework is essential to meeting performance and deployment goals.
In this work, we conduct a comprehensive comparison of five widely adopted inference
frameworks: PyTorch, ONNX Runtime, TensorRT, Apache TVM, and JAX. All experiments
are performed on the NVIDIA Jetson AGX Orin platform, a high-performance computing
solution tailored for edge artificial intelligence workloads. The evaluation considers sev-
eral key performance metrics, including inference accuracy, inference time, throughput,
memory usage, and power consumption. Each framework is tested using a wide range of
convolutional and transformer models and analyzed in terms of deployment complexity,
runtime efficiency, and hardware utilization. Our results show that certain frameworks
offer superior inference speed and throughput, while others provide advantages in flexi-
bility, portability, or ease of integration. We also observe meaningful differences in how
each framework manages system memory and power under various load conditions. This
study offers practical insights into the trade-offs associated with deploying DL inference
on resource-constrained hardware.

Keywords: deep learning; PyTorch; real-time inference; TensorRT; JAX; Apache TVM

1. Introduction
In recent years, DL has experienced rapid growth and has emerged as one of the most

effective techniques within the field of machine learning. This progress has fueled the
integration of DL into a wide variety of applications, including computer vision, natural
language processing (NLP), and autonomous control systems. Increasingly, these applica-
tions are being deployed not only on general-purpose computing platforms but also on
embedded and edge systems that operate under strict power, size, and latency constraints.

Unlike traditional machine learning algorithms, which often suffer from overfitting or
poor scalability in large data settings, modern deep neural networks (DNNs) can maintain
high accuracy even with overparameterized architectures. For example, the parame-
ter count in state-of-the-art image classification models has increased dramatically, from
61 million to more than 2.1 billion between 2013 and 2023, as tracked by the ImageNet
leaderboard [1]. Similarly, in NLP, models like BERT [2] and its successors contain hundreds
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of millions of parameters, offering breakthrough performance while introducing significant
computational overhead [3].

Although such large models achieve exceptional accuracy, their deployment comes at a
cost. Training and especially inference can be slow, memory-intensive, and computationally
expensive. This poses a major challenge in scenarios where inference must be conducted in
real time while operating under limitations on size, weight, power, and cost. Embedded and
edge platforms, such as those used in robotics, drones, mobile healthcare, or surveillance,
must perform inference with limited processing power, memory bandwidth, and energy.
These platforms often require instant responses, which makes the inefficiencies of standard
DL frameworks a critical concern.

Consider autonomous vehicles as an example. They must process high-bandwidth
sensor inputs such as LiDAR and video feeds in real time to ensure safe navigation. Simi-
larly, video surveillance systems must detect incidents such as theft, fire, or physical conflict
immediately, often without relying on remote cloud services. In these and similar scenarios,
executing inference locally on embedded devices becomes essential due to requirements
for low latency, reliability, and data privacy.

This gap between high-performing models and the constraints of real-world deploy-
ment environments has led to the development of various strategies to optimize inference.
Approaches such as quantization [4], pruning [5], and neural architecture search (NAS) [6]
aim to reduce the resource demand of models. Lightweight networks such as MobileNet [7]
and SqueezeNet [8] are designed specifically for deployment under limited hardware re-
sources. In addition, specialized hardware solutions including Google’s TPU [9] and Intel’s
VPU [10] have been introduced to accelerate DL inference at low power consumption.

Despite these advances, widely used frameworks such as TensorFlow and PyTorch [11]
are not inherently optimized for inference on embedded systems. To address this issue,
several software-level optimization tools have emerged. For instance, NVIDIA developed
TensorRT [12], a high-performance inference engine designed to transform trained models
into highly efficient executables suitable for edge and automotive platforms.

In addition to TensorRT, other frameworks are increasingly used for inference accel-
eration. ONNX Runtime allows deployment across platforms using different execution
providers [13]. Apache TVM optimizes and compiles models for specific hardware tar-
gets [14]. JAX supports high-performance computation through just-in-time compilation,
although its deployment maturity on embedded platforms is still developing [15].

While many of these tools have demonstrated strong potential, there is a need for a con-
sistent evaluation of their performance under realistic deployment conditions. The NVIDIA
Jetson AGX Orin provides a modern, high-efficiency edge AI platform that integrates Am-
pere architecture GPUs with AI acceleration hardware [16]. This platform offers a timely
opportunity to benchmark inference frameworks across critical performance dimensions.

In this study, we present a comparative evaluation of five prominent DL inference
frameworks: PyTorch, ONNX Runtime, TensorRT, Apache TVM, and JAX. Our bench-
marking is conducted on the Jetson AGX Orin platform, using representative models and
measuring key metrics such as inference time, throughput, memory utilization, power con-
sumption, and accuracy. The results offer insights for developers and researchers working
on real-time AI applications in resource-constrained environments.

Contribution
This paper makes the following key contributions to the evaluation of DL inference

performance on embedded systems:

• We conduct a comprehensive evaluation of five popular DL inference frameworks:
PyTorch, ONNX Runtime, TensorRT, Apache TVM, and JAX, on the NVIDIA Jetson
AGX Orin platform.
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• The benchmarking covers inference time, throughput, system memory usage, power
consumption, and prediction accuracy using a unified and consistent experimental
setup. Both Top 1 and Top 5 classification accuracy are reported.

• All evaluations are performed using the ImageNet validation dataset compris-
ing 50,000 images across 1000 classes, ensuring realistic and standardized perfor-
mance comparison.

• The study includes both convolutional and transformer-based models, representing a
diverse range of modern neural network architectures used in computer vision and
general artificial intelligence.

• We present practical insights into the tradeoffs associated with each framework, of-
fering guidance for selecting suitable inference solutions for embedded and resource-
constrained deployments.

• To support reproducibility, we detail the complete benchmarking methodology, in-
cluding model conversion workflows, optimization strategies, measurement protocols,
and software configurations.

Organization
The subsequent sections of this paper are structured in the following manner: Section 3

offers a comprehensive introduction to PyTorch, ONNX Runtime, TensorRT, TVM, and
JAX. Section 4 outlines the methodology used in our studies, which includes the models
that were tested, the workflows that were followed, and the methods used to measure
performance. The experimental findings and discussions may be found in Sections 5 and 6.
Section 2 presented a comprehensive summary of the existing research. We conclude our
article in Section 7.

2. Related Work
Numerous studies have investigated deep learning inference optimization and de-

ployment on edge and embedded systems. Cheng et al. [17] surveyed compression and
acceleration techniques such as quantization, pruning, distillation, and architecture search. Hao
et al. [18] benchmarked edge AI models, demonstrating how deployment performance depends
on the interplay among model structure, hardware architecture, and compiler technology.

In 2022, Shin and Kim [19] evaluated YOLO models using TensorRT on Jetson plat-
forms, confirming real-time object detection suitability. Zhang et al. [20] assessed ONNX
Runtime as a hardware-agnostic backend, emphasizing portability benefits despite limited
edge-focused benchmarks. The Apache TVM compiler was introduced by Chen et al. [14],
showcasing performance tuning across diverse hardware targets. Peng et al. [21] examined
JAX’s high-performance numerical computation on cloud and server environments, leaving
its edge-inference behavior less explored. Ulker et al. [22] compared TensorFlow Lite and
OpenVINO on Raspberry Pi and Jetson TX2, while Wortsman et al. [23] studied ensemble
methods on high-end GPUs without embedded device focus.

More recent work continues this trend. Alqahtani et al. [24] performed extensive
benchmarking of object detection models, including YOLOv8, on Jetson AGX Orin Nano
and Raspberry Pi, highlighting trade-offs between accuracy, latency, and energy efficiency.
Yeom and Kim [25] introduced UniForm, a vision-transformer variant optimized for edge
devices like Jetson AGX Orin, achieving up to fivefold speed gains. Arya and Simmhan [26]
evaluated large language model inference (2.7 B–32.8 B parameters) on Jetson Orin AGX,
analyzing batch size, quantization, latency, throughput, and power, offering insight into
the feasibility of edge-based LLMs.

Despite these advances, to the best of our knowledge, no prior work offers a compre-
hensive, multi-metric comparison across PyTorch (v2.3.0), ONNX Runtime (v1.17.1), Ten-
sorRT (v8.6.2.3), Apache TVM (v0.21.0), and JAX (v0.4.28) on the Jetson AGX Orin platform.
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Our research fills this gap by benchmarking both convolutional and transformer models on
ImageNet across inference time, throughput, memory, power, and Top-1/Top-5 accuracy.

3. Overview of Inference Frameworks
3.1. PyTorch

PyTorch [11] is an open-source machine learning library that facilitates moving from
research prototyping to production deployment rapidly. It is primarily utilized as a DL
platform in Python, offering exceptional flexibility and speed for research applications.

PyTorch allows for the manipulation of Tensors (multi-dimensional arrays) across
both CPUs and GPUs, significantly speeding up computations. It offers a broad spectrum
of tensor operations catering to diverse scientific computing needs, including both basic
arithmetic and advanced linear algebra.

Unlike other frameworks where a neural network’s architecture must be predefined
and reused, PyTorch employs reverse-mode auto-differentiation. This method enables
users to alter network behavior on the fly without substantial computational overhead.

Enhanced by acceleration libraries like Intel MKL and NVIDIA (cuDNN, NCCL),
PyTorch performs efficiently across various network sizes. It is also optimized for memory
usage, enabling the training of very large DL models without the memory constraints
typical of other frameworks.

3.2. ONNX Runtime

ONNX Runtime [20] is a high-performance inference engine developed by Microsoft to
support the Open Neural Network Exchange (ONNX) format. It is designed to maximize in-
ference speed and portability across a wide range of hardware platforms and environments.

ONNX Runtime allows developers to deploy trained models from multiple frame-
works such as PyTorch, TensorFlow, and scikit-learn, offering backend flexibility through
various execution providers. These include CPU, CUDA GPU, TensorRT, DirectML, and
OpenVINO, enabling seamless adaptation to different deployment targets. The modu-
lar architecture makes it possible to switch hardware acceleration paths with minimal
code changes.

To improve performance, ONNX Runtime supports optimizations such as operator
fusion, constant folding, graph pruning, and quantization. It also integrates with model
acceleration tools like Intel Neural Compressor and NVIDIA TensorRT to further optimize
inference. ONNX Runtime is widely used in production-scale deployments for its efficient
memory usage and predictable latency characteristics. It is especially well-suited for
inference scenarios requiring cross-platform consistency and low deployment overhead.

3.3. TensorRT

TensorRT is a high-performance DL inference SDK, part of the NVIDIA CUDA X
AI Kit. It includes an inference optimizer and runtime that achieves low latency and
high throughput.

TensorRT enhances DL model performance through six optimization strategies:
(1) Weight and activation precision calibration: optimizes model performance by quantizing
to 8-bit integers while maintaining accuracy. (2) Layer and tensor fusion: consolidates
nodes within a kernel to improve GPU memory use and bandwidth. (3) Kernel auto-tuning:
optimizes based on the GPU platform to choose the best layers, algorithms, and batch sizes.
(4) Dynamic tensor memory: efficiently allocates memory only when needed, reducing
consumption and allocation overhead. (5) Multi-stream execution: processes multiple input
streams concurrently. (6) Time fusion: optimizes RNNs by dynamically generating kernels
across time steps.
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TensorRT supports a broad spectrum of AI applications, from computer vision and
automatic speech recognition to natural language understanding and text-to-speech. It
provides ready-to-deploy inference engines for diverse applications, including autonomous
driving and real-time video analytics, ensuring efficient real-time inference on edge devices
and in IoT scenarios.

3.4. Apache TVM

Apache TVM [14] is an open-source DL compiler stack that enables the deployment of
machine learning models across a diverse set of hardware backends. TVM translates high-
level model representations into optimized code tailored for the target device, including
CPUs, GPUs, and specialized accelerators.

TVM provides end-to-end compilation from frameworks such as PyTorch, TensorFlow,
and Keras. It performs automated graph-level and tensor-level optimizations including
operator fusion, memory reuse, loop unrolling, and layout transformation. These fea-
tures are critical for reducing inference latency and memory consumption, especially on
embedded devices.

A key feature of TVM is its AutoTVM module, which uses machine learning-based
cost models to perform hardware-aware tuning. This allows TVM to search for optimal
schedules that balance computation and memory usage for a specific target. The resulting
compiled models are highly efficient and portable.

Due to its flexibility and performance, TVM is often used in research and production
environments where fine-grained control over deployment is essential. It continues to be
extended to support microcontrollers, NPUs, and custom hardware accelerators.

3.5. JAX

JAX [21] is a numerical computing library developed by Google Research, designed
for high-performance machine learning research. It provides composable function trans-
formations such as automatic differentiation, vectorization, and just-in-time compilation
using the Accelerated Linear Algebra (XLA) compiler.

Unlike traditional DL frameworks, JAX emphasizes functional programming paradigms
and offers seamless interoperability with NumPy. It supports efficient large-scale numerical
computation on both CPUs and GPUs, and is particularly well-suited for gradient-based
optimization and scientific simulations.

JAX compiles Python functions into optimized machine code for target devices using
XLA. This compilation not only improves performance but also reduces runtime overhead.
It is capable of automatically parallelizing code across multiple devices and supports
distributed training through libraries such as Flax and Haiku.

Although JAX is primarily used in research, it has growing relevance for production
use due to its performance and flexibility. Its suitability for inference on embedded systems
is still an active area of exploration, especially in comparison to frameworks like TensorRT
or TVM that offer dedicated deployment optimizations.

4. Methodology
This study conducts a systematic benchmarking of five widely adopted DL inference

frameworks, PyTorch, ONNX Runtime, TensorRT, Apache TVM and JAX, on the NVIDIA
Jetson AGX Orin platform. To ensure consistency across comparisons, identical models,
datasets, preprocessing, and evaluation protocols were used. The experiments were care-
fully designed to highlight how each framework scales across a range of batch sizes and
responds to hardware-aware optimizations relevant to edge computing.
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4.1. Dataset and Preprocessing

All evaluations were performed using the ImageNet ILSVRC 2012 validation dataset,
which includes 50,000 high-resolution natural images classified into 1000 categories. Pre-
processing involved resizing images to 256 × 256 pixels, followed by center cropping to
224 × 224 pixels. Standard normalization using mean values of [0.485, 0.456, 0.406] and
standard deviations of [0.229, 0.224, 0.225] was applied to align with the preprocessing
pipeline of ImageNet-trained models [27]. These preprocessing steps were consistently
implemented across all five frameworks to ensure input uniformity.

4.2. Model Selection and Conversion

Six pretrained models were selected to represent a diverse range of neural net-
work architectures and computational complexities. These include ResNet-152 [28], Mo-
bileNetV2 [29], SqueezeNet [8], EfficientNet-B0 [30], VGG16 [27], Swin Transformer [31],
and YOLOv5s [32]. All models were sourced from the PyTorch model zoo and initially
implemented in PyTorch. For interoperability and benchmarking, models were exported
to ONNX format with dynamic axes enabled, enabling execution across various inference
frameworks. ONNX Runtime was evaluated using the GPU execution provider exclu-
sively. For TensorRT, conversion was performed via ONNX using the PyTorch-to-TensorRT
pipeline. Meanwhile, both JAX and TVM leveraged PyTorch models as backends for their
respective optimization workflows, rather than relying on ONNX conversion. This setup
ensured consistent model definitions across frameworks while allowing evaluation of
native optimization strategies.

To ensure fair performance comparison, we evaluated all models across a range of
batch sizes: 2, 4, 8, 16, 32, 64, and 128. However, for JAX, inference was only conducted
for batch sizes 2, 4, and 8, as larger batch sizes exceeded the available memory and
could not be executed. Additionally, to stabilize timing measurements, 50 warmup runs
were performed prior to recording inference times for all frameworks and batch sizes.
Tables 1 and 2 indicate the details of selected models and optimizations we applied for
each framework, respectively.

Table 1. Details of selected models.

Model Params
(M) Representativeness

ResNet-152 [28] 60.2 Deep, high-capacity CNN used as a benchmark for classification tasks.
MobileNetV2 [29] 3.4 Lightweight architecture optimized for mobile and edge devices.

SqueezeNet [8] 1.2 Extremely compact model suitable for highly resource-constrained
environments.

EfficientNet-B0 [30] 5.3 Balances accuracy and efficiency; commonly used in edge scenarios.

VGG16 [27] 138 High-capacity model with historical significance; included for
comparative completeness.

Swin Transformer [31] 29 Vision transformer model; representative of recent architectural trends.
YOLOv5s [32] 7.2 Real-time object detector widely adopted in embedded and edge AI applications.

Table 2. Optimization techniques applied for each framework.

Framework Precision
Used Graph Optimization Notes

PyTorch FP16 cuDNN backend Native inference with torch.autocast and AMP
ONNX
Runtime FP16 Graph fusion (default) Used ExecutionProvider with graph optimizations enabled
TensorRT FP16 Layer fusion, kernel tuning Converted from ONNX using FP16 mode in builder config
TVM FP16 AutoTVM tuning Used Relax IR with tuning logs; failed for SqueezeNet
JAX FP16 XLA JIT compilation Enabled 16-bit precision using jax.numpy and XLA flags
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4.3. PyTorch Inference

PyTorch served as the baseline framework, using models in evaluation mode with
CUDA acceleration enabled. Input images were processed in batches with sizes ranging
from 2 to 128 to evaluate scalability. To enhance performance, the models were converted
to TorchScript using tracing, which compiles the computation graph and removes Python-
level overhead. Additionally, cuDNN auto-tuner benchmarking was enabled to select
the fastest convolution algorithms dynamically during runtime [11]. The inference loop
was GPU-synchronized using CUDA events to ensure accurate latency measurement.
Memory usage was monitored through PyTorch’s built-in memory tracker, and accuracy
was computed using top-k classification metrics.

4.4. ONNX Runtime Inference

Inference using ONNX Runtime was carried out using CUDAExecutionProvider
backends. The ONNX format enabled the framework to apply a series of graph-level opti-
mizations automatically. These include constant folding, operator fusion, and elimination of
redundant initializers, performed via the ORT_ENABLE_ALL optimization level [20]. Batch
sizes from 2 to 128 were evaluated for each model. NumPy was used to prepare and feed
data into the ONNX Runtime sessions, and predictions were extracted from model outputs
for accuracy computation. In all configurations, ONNX Runtime demonstrated competitive
portability and flexibility, making it well-suited for multi-platform deployment scenarios.

4.5. TensorRT Inference

TensorRT is NVIDIA’s high-performance DL inference SDK designed to optimize
trained models for deployment [12]. The ONNX models were imported into TensorRT
and converted into serialized engines. FP16 precision was enabled to take advantage of
the Jetson AGX Orin’s native hardware acceleration for half-precision operations, which
reduces memory footprint and increases throughput. During engine building, we enabled
advanced optimization techniques such as layer and tensor fusion, kernel auto-tuning,
dynamic shape support, and memory reuse. The engines were deployed with input buffers
allocated in GPU memory and executed using asynchronous inference calls managed
through CUDA streams. TensorRT’s ability to generate highly optimized kernels for
specific batch sizes made it one of the most performant frameworks, especially under larger
batch configurations.

4.6. Apache TVM Inference

Apache TVM is a DL compiler stack designed to optimize and deploy models across
heterogeneous hardware platforms [14]. In our workflow, PyTorch models were directly
imported into TVM via its PyTorch frontend, bypassing the need for ONNX conversion. The
models were translated into TVM’s Relax intermediate representation (IR) and compiled
for the CUDA-enabled GPU on the NVIDIA Jetson Orin platform. TVM applied both
graph-level and tensor-level optimizations, including operator fusion, memory layout
transformation, and loop unrolling. AutoTVM was used to tune kernel schedules using an
empirical cost model. For each tested batch size (ranging from 2 to 128), TVM recompiled
the model to adapt memory allocation and computational parallelism accordingly. The
compiled modules were executed using TVM’s graph executor. TVM’s low-level control
over compilation and its backend-specific autotuning capabilities made it particularly
effective for edge inference optimization on Jetson devices.
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4.7. JAX Inference

JAX is a high-performance numerical computing library that compiles NumPy-
compatible Python code using XLA for execution on accelerators [15,33]. In our setup,
model computation graphs were restructured using functional transformations and com-
piled using JAX’s jit. JAX supported mixed-precision operations using bfloat16 and
enabled fusion of elementwise operations during XLA compilation. To reduce startup
latency, warm-up iterations were run before recording performance measurements. The
inference function was compiled just-in-time and optimized for both compute and memory
efficiency. JAX’s composability and XLA’s backend-specific optimizations allowed it to
achieve high performance with minimal framework-specific tuning.

4.8. Inference Performance Measuring
4.8.1. Model Accuracy

We evaluated the classification accuracy of models deployed across all frameworks
using the ImageNet ILSVRC 2012 validation dataset, which contains 50,000 labeled images
spanning 1000 classes [34]. For each model and batch size, Top-1 and Top-5 classification
accuracy metrics were computed.

Top-1 accuracy quantifies the percentage of test samples for which the model’s highest
probability prediction matches the ground truth label. Top-5 accuracy considers a prediction
correct if the ground truth label is among the model’s five most probable predictions. These
metrics were computed using framework-native methods such as torch.topk in PyTorch,
np.argsort for ONNX Runtime, and jax.lax.top_k for JAX.

4.8.2. Inference Time Measurement

Inference time was measured as the average execution time of a forward pass through
the model, excluding preprocessing and model loading phases. To account for runtime
optimization and caching effects, we included a warm-up phase of 50 inferences prior
to measurement, as supported by prior literature [22]. Timing was captured using high-
resolution timestamps (e.g., time.time() or CUDA events) immediately before and after
inference execution.

To ensure fair comparison, latency measurements were synchronized with device-
specific barriers, such as CUDA stream synchronizations in PyTorch and TensorRT, and
internal session synchronizations in ONNX Runtime and TVM.

4.8.3. Throughput Calculation

Throughput was defined as the number of processed inputs per second and computed
as the ratio of the batch size to the average inference time per batch. This approach follows
previous guidelines from work like Xu et al. [35]. We experimented with batch sizes ranging
from 2 to 128, adjusting based on the available system memory capacity.

Frameworks like TensorRT and Torch-TensorRT support engine construction opti-
mized for fixed batch sizes, which enables higher throughput. Conversely, PyTorch, ONNX
Runtime, and JAX support dynamic batching and runtime kernel selection. These charac-
teristics influence how each framework scales throughput with batch size.

To prevent memory errors during ONNX export or inference, especially at larger batch
sizes, we designated the batch dimension as a dynamic axis during model conversion from
PyTorch to ONNX. This strategy mitigated known memory issues linked to internal tensor
duplication [36].
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4.8.4. System Memory and Power Monitoring

To collect runtime telemetry on power and memory usage during inference, we
employed a parallelized monitoring approach integrated with the Jetson AGX Orin’s
onboard sensors and external libraries.

Power draw was recorded using the jtop interface from the Jetson Stats toolkit. A
dedicated background thread was spawned to maintain a persistent connection with the
jtop daemon. This thread periodically queried telemetry fields such as POM_5V_IN, VDD_IN,
and VDD_SOC from the system power dictionary, selecting the most stable reading available.

System memory usage was tracked concurrently within the same monitoring thread by
accessing RAM metrics from jtop’s memory module. Specifically, the used field under the
RAM key was queried and converted to megabytes. Given the unified memory architecture
of Jetson AGX Orin, this value reflects the total DRAM consumption attributable to the
inference process, encompassing both CPU and GPU allocations.

All telemetry sampling was offloaded to an isolated thread, ensuring non-blocking
behavior with respect to the main inference pipeline. This allowed real-time monitoring
without introducing synchronization delays or overhead to the model execution flow. All
data were sampled at a frequency of 10 Hz (i.e., every 100 ms), covering the entire active
inference interval for each configuration. The collected values were averaged post-execution
to compute the mean during inference run.

4.9. Hardware Specifications

NVIDIA has developed a line of embedded computing devices called NVIDIA®

JetsonTM, which are intended for use in machine learning and artificial intelligence ap-
plications. These are feature-rich, low-power, and compact systems that are capable of
executing sophisticated DL models instantly. We do our research using the NVIDIA Jetson
AGX Orin 64GB, the newest Jetson device manufactured by NVIDIA Corp., Santa Clara,
CA, USA. It has a 12-core NVIDIA Carmel ARMv8.2 CPU, a 384-core NVIDIA Volta GPU,
and a 32-core NVIDIA Deep Learning Accelerator (DLA) [37]. It is built on the NVIDIA
Ampere architecture.

4.10. Software Specifications

All software tools used in this study were selected to be compatible with the NVIDIA
Jetson AGX Orin platform, which requires strict alignment between versions of system
libraries and acceleration frameworks. For instance, TensorRT 8.6.2.3 requires CUDA
12.2 and is tightly coupled with specific versions of cuDNN and ONNX parsers. En-
suring compatibility across these components is essential for stable deployment and
accurate benchmarking.

The experiments were conducted using JetPack 6.0, which includes CUDA 12.2 and
cuDNN 8.9.4 as part of its software stack. Python 3.10 was the base interpreter for all
benchmarking scripts. Each DL inference framework used in this study was installed in
versions that are stable and optimized for the Jetson Orin platform. Table 3 summarizes the
key software tools and library versions used throughout this work.

Table 3. Software tools and library versions used.

JetPack CUDA ONNX ONNX
Runtime PyTorch TensorRT Torch-

TensorRT TensorFlow JAX TVM

6.0 12.2 1.17.0 1.17.1 2.3.0 8.6.2.3 1.4.0 2.15.0 0.4.28 0.21.0
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5. Experimental Results
5.1. Inference Output Validation

The Top-1 accuracy results are presented in Table 4, while the corresponding Top-5
accuracy scores are shown in Table 5. PyTorch, which served as the baseline framework,
demonstrated consistent performance across all models. Its close integration with the
original model weights ensured minimal deviation, and it provides a reference against
which other backends were evaluated.

ONNX Runtime closely matched PyTorch’s performance across most models, showing
variations within a 1–2% range. This slight deviation is expected due to backend-specific
optimizations such as operator fusion and constant folding. In certain models like Mo-
bileNet and VGG16, ONNX Runtime slightly outperformed PyTorch in Top-1 accuracy,
likely benefiting from optimized execution paths.

TensorRT achieved the highest Top-1 accuracy for ResNet152 and EfficientNet, reach-
ing 76.64% and 74.72%, respectively. These results, as highlighted in Table 4, affirm the
effectiveness of its layer fusion and precision calibration strategies. However, small degra-
dations were noted for models like SqueezeNet and Swin Transformer, indicating potential
sensitivity of lightweight and transformer architectures to aggressive quantization.

Apache TVM exhibited robust accuracy in most cases and equaled or surpassed other
frameworks for models like VGG16 and Swin Transformer. As seen in Table 5, TVM
reported a Top-5 accuracy of 94.60% for Swin Transformer, the highest among all evaluated
frameworks. The absence of results for SqueezeNet suggests potential compatibility issues
during model import or relax graph lowering.

JAX displayed notably high accuracy for several models, including EfficientNet and
ResNet152, as observed in both Tables 4 and 5. These elevated figures may stem from
architectural differences in how JAX compiles and executes functions via XLA, as well
as discrepancies in model conversion or preprocessing pipelines. These results warrant
further scrutiny and may benefit from reproducibility analysis with shared checkpoints.

Table 4. Top-1 Accuracy (%).

Inference
Framework ResNet152 MobileNet SqueezeNet EfficientNet VGG16 Swin

Transformer YOLOv5s

PyTorch 75.30 69.70 56.70 74.00 68.00 77.80 69.70
ONNX Runtime 72.00 70.50 55.00 73.50 69.06 76.50 67.50

TensorRT 76.64 70.60 56.06 74.72 68.06 75.68 69.80
TVM 74.26 71.20 NA 74.40 70.37 77.80 69.60
JAX 72.00 70.80 55.30 74.00 68.54 77.00 67.00

Table 5. Top-5 Accuracy (%).

Inference
Framework ResNet152 MobileNet SqueezeNet EfficientNet VGG16 Swin

Transformer YOLOv5s

PyTorch 94.13 90.30 80.63 93.10 88.00 94.90 89.60
ONNX Runtime 94.50 91.00 80.57 93.00 90.87 93.50 90.50

TensorRT 93.38 89.64 78.98 91.88 88.24 92.86 89.18
TVM 93.80 90.40 NA 92.40 89.80 94.60 89.80
JAX 93.60 90.05 79.07 92.50 89.60 93.00 89.70

Observation 1. All frameworks maintained high classification accuracy, with only
minor deviations from the PyTorch baseline. Overall, accuracy remained robust across
frameworks, validating their use for deployment without significant accuracy loss.

5.2. Inference Time

We evaluated the average inference time per input sample across six representative DL
models: ResNet152, MobileNet, SqueezeNet, EfficientNet, VGG16, and Swin Transformer.
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The results for each framework, PyTorch, ONNX Runtime, TensorRT, TVM, and JAX, are
reported in Table 6 and visualized in Figure 1 using a logarithmic scale on the vertical axis
for improved readability across orders of magnitude.

TensorRT emerged as the most efficient backend, consistently producing the lowest
inference times across all models. Its performance benefits from several tightly integrated
optimizations such as FP16 precision support, kernel auto-tuning, and layer fusion during
static engine construction. For instance, it achieved inference times of approximately
0.66 ms for SqueezeNet and 2.28 ms for ResNet152, indicating its capability to scale well
across both lightweight and heavy architectures.

PyTorch followed as the second-fastest framework, delivering moderate-to-low latency
across all tested models. Its backend leverages highly optimized CUDA and cuDNN
libraries but lacks static graph-level optimization. Nevertheless, inference times were
within a practical range for edge deployment, with MobileNet and SqueezeNet completing
forward passes in under 5 ms per sample.

In contrast, ONNX Runtime showed significantly higher latency, especially for deeper
models. ResNet152 and VGG16 required over 280 ms and 158 ms, respectively, more than
an order of magnitude slower than TensorRT. These results suggest that ONNX Runtime’s
execution providers may not be fully optimized for the Jetson Orin platform, particularly
in terms of kernel fusion and hardware-specific execution planning.

TVM’s performance varied by model. It achieved good latency for transformer-based
and larger convolutional models such as Swin Transformer and VGG16, but performed less
efficiently on MobileNet and could not successfully compile SqueezeNet. This variation
reflects both the power and current limitations of AutoTVM tuning and Relax compilation
on Jetson-class embedded hardware.

JAX offered moderate latency values, consistently trailing behind TensorRT and Py-
Torch. While its XLA-based JIT compilation allows for graph-level optimization, the
general-purpose nature of the compiler and lack of hardware-specific tuning may limit
its performance on edge devices. Nonetheless, it performed predictably across all models,
without outliers or instability.

Table 6. Average Inference Time per Sample (ms).

Inference
Framework ResNet152 MobileNet SqueezeNet EfficientNet VGG16 Swin

Transformer YOLOv5s

PyTorch 9.239 4.201 1.749 4.971 1.713 7.267 2.300
ONNX Runtime 285.534 54.402 21.270 89.842 158.146 19.813 26.287

TensorRT 2.282 1.136 0.662 1.516 2.195 3.949 0.882
TVM 7.429 9.529 NA 12.695 8.908 5.275 4.662
JAX 29.096 11.235 8.255 15.182 19.326 22.268 11.686

Observation 2. TensorRT consistently delivered the fastest inference times across all
models, demonstrating its strong suitability for real-time applications on edge devices.
PyTorch followed closely, offering competitive latency with minimal optimization effort.
ONNX Runtime showed significantly higher latency, particularly for larger models, limiting
its practicality for time-sensitive tasks. TVM and JAX exhibited variable performance, with
TVM excelling on some models but struggling with others, and JAX offering consistent yet
slower inference. Overall, TensorRT clearly leads in execution efficiency on the Jetson AGX
Orin platform.
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Figure 1. Inference Time Distribution (y axis in log scale).

5.3. Inference Throughput

In our evaluation, we calculated the maximum achievable throughput for each model
across all frameworks by incrementally increasing the batch size until the highest sus-
tainable rate was observed without exceeding system memory limits. The results are
summarized in Table 7 and visualized in Figure 2. Additionally, Figure 3 presents a de-
tailed view of throughput variation with batch size for MobileNet as a representative
lightweight model.

TensorRT achieved the highest throughput for nearly all models, most notably reaching
3197.10 samples/s on SqueezeNet and 1382.46 samples/s on MobileNet. These results
reflect TensorRT’s ability to exploit static graph optimizations, layer fusion, and efficient
kernel scheduling. Its performance scaled well with increasing batch sizes, owing to its use
of precompiled, batch-optimized inference engines.

PyTorch also demonstrated impressive throughput, particularly on MobileNet, Effi-
cientNet, and VGG16. Although it does not statically optimize execution graphs, PyTorch’s
dynamic computation engine and cuDNN-based backend allow it to benefit from increased
batch size. As shown in Figure 3, PyTorch maintained high throughput even at large batch
sizes, suggesting efficient GPU memory usage and parallelism.

ONNX Runtime underperformed relative to other frameworks. Its throughput peaked
at only 181.46 samples/s for Swin Transformer and was significantly lower for deeper mod-
els such as ResNet152 and VGG16. This can be attributed to the lack of kernel-level fusion
and less aggressive scheduling on Jetson’s hardware. Despite being portable and extensible,
ONNX Runtime appears limited in raw throughput performance in embedded settings.

TVM achieved moderate throughput across most models and notably surpassed
PyTorch and TensorRT for Swin Transformer, reaching 874.48 samples/s. This suggests that
AutoTVM tuning was particularly effective for transformer-based architectures, possibly
due to efficient relay-to-CUDA scheduling. However, it failed to compile SqueezeNet,
limiting its universality.

JAX reported consistent but modest throughput, with best performance on MobileNet
(126.02 samples/s) and SqueezeNet (132.34 samples/s). These values suggest that JAX’s
general-purpose XLA compilation and runtime optimizations provide portability and cor-
rectness but fall short in low-level throughput scaling, particularly under large batch sizes.
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Table 7. Maximum Acheived Throughput (samples/s).

Inference
Framework ResNet152 MobileNet SqueezeNet EfficientNet VGG16 Swin

Transformer YOLOv5s

PyTorch 931.81 1058.85 1887.53 1202.90 1859.26 1250.40 2124.81
ONNX Runtime 7.45 37.63 106.02 23.50 16.34 181.46 72.84

TensorRT 651.67 1382.46 3197.10 1137.63 582.85 317.52 2691.02
TVM 456.22 171.28 NA 140.58 486.07 874.48 388.04
JAX 50.33 126.02 132.34 95.82 73.34 49.46 93.68

Figure 2. Maximum Achieved Throughput for All Models (y axis in log scale).

Figure 3. Inference throughput for Mobilenet with varying batch size.

Observation 3. TensorRT delivers the highest throughput across most models, driven
by its batch-tuned engine and hardware-aware optimizations. PyTorch follows closely,
demonstrating excellent scalability with increasing batch sizes. ONNX Runtime lags signif-
icantly in throughput, while TVM shows strength in transformer models. JAX maintains
stability but does not scale as effectively. These results highlight TensorRT and PyTorch as
top candidates for high-throughput deployment on embedded platforms.

5.4. System Memory Utilization

We recorded the average system memory usage (in GB) during inference across all
models and frameworks, as shown in Table 8. Additionally, Figure 4 illustrates how
memory usage scales with batch size for MobileNet.
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TVM consistently demonstrated the most memory-efficient behavior, consuming the
least memory across all test cases. For example, it maintained MobileNet inference within
approximately 10.3 GB regardless of batch size, indicating effective memory planning and
lightweight runtime overhead. This efficiency likely stems from TVM’s static memory
allocation strategies and custom graph compilation that minimizes redundant allocations.

PyTorch and TensorRT exhibited moderate and closely aligned memory footprints,
with average usage between 14–16 GB across models. Their dynamic memory management,
coupled with reliance on cuDNN and CUDA memory allocators, results in predictable
scaling with batch size. Notably, Figure 4 shows smooth and steady increases in memory
consumption for both frameworks, reflecting stable buffer reuse and kernel launch behavior.

ONNX Runtime consumed more memory than both PyTorch and TensorRT. For
MobileNet, its usage hovered around 17.7 GB and showed minimal fluctuation with batch
size. This higher footprint may arise from internal graph transformations or redundant
buffer allocations during execution.

JAX showed significantly higher memory usage across all models, averaging nearly
29 GB. This result is consistent with its functional programming model, where immutable
tensor structures and just-in-time compilation introduce memory overhead. As illustrated
in Figure 4, JAX’s usage remains static and elevated, indicating that it does not optimize
memory use per batch dynamically.

Table 8. Average Memory Usage (GB).

Inference
Framework ResNet152 MobileNet SqueezeNet EfficientNet VGG16 Swin

Transformer YOLOv5s

PyTorch 12.039 14.152 14.968 15.584 16.805 18.484 16.180
ONNX Runtime 15.420 17.693 18.164 18.745 21.134 19.853 18.537

TensorRT 12.279 14.120 14.843 15.746 17.368 17.507 14.554
TVM 7.773 10.287 NA 10.926 13.717 15.275 14.926
JAX 28.974 28.799 28.703 28.663 28.941 29.193 29.634

Figure 4. System Memory Usage for Mobilenet.

Observation 4. TVM offers the most efficient memory usage, making it suitable for
memory-constrained environments. PyTorch and TensorRT strike a balance between perfor-
mance and moderate memory overhead. ONNX Runtime uses more memory than expected,
while JAX consistently consumes the most, limiting its scalability. These results underscore
the importance of framework-level memory handling in real-time edge deployment.
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5.5. System Power Consumption

We measured the average system power consumption during inference, using the
onboard telemetry sensors of the NVIDIA Jetson AGX Orin. The results, averaged across
batch sizes and inference cycles, are presented in Table 9.

TensorRT recorded the highest power draw among all frameworks, particularly when
running larger models such as ResNet152 (28.30 W), VGG16 (29.85 W), and Swin Trans-
former (27.43 W). This elevated consumption aligns with its high throughput and low
latency performance, indicating that TensorRT aggressively utilizes hardware resources,
including GPU cores and memory bandwidth, to maximize inference speed. Its power
profile suggests a performance-at-all-costs design philosophy, suitable for scenarios where
latency is paramount and power is not a limiting factor.

PyTorch also exhibited relatively high power consumption, especially on deep CNN
models like VGG16 and ResNet152, consuming 23.44 W and 21.83 W, respectively. These
values reflect its use of dynamic graph execution and frequent GPU kernel launches,
which, while efficient, may not fully optimize power-aware scheduling compared to
compiled runtimes.

ONNX Runtime and JAX demonstrated the lowest average power consumption across
most models, remaining below 15 W even for large networks. For example, ONNX Runtime
drew only 14.17 W on ResNet152 and 13.96 W on EfficientNet, indicating modest GPU
engagement. However, these energy savings come at the cost of higher inference latency
and lower throughput, as shown in previous sections. JAX followed a similar trend, with
the lowest power draw on MobileNet (11.27 W) and SqueezeNet (10.66 W), which reflects
limited kernel-level parallelism despite being functionally correct and stable.

TVM’s power footprint varied across models. It was competitive with PyTorch on
large models, showing 23.62 W on VGG16 and 21.86 W on ResNet152, but consumed less
on smaller models. This intermediate behavior suggests that TVM’s auto-tuned compila-
tion can yield efficient execution patterns but may still require hardware-specific power
optimizations to match the balance achieved by TensorRT.

Table 9. Average Power Consumption (W).

Inference Framework ResNet152 MobileNet SqueezeNet EfficientNet VGG16 Swin Transformer YOLOv5s

PyTorch 21.832 14.442 14.306 17.096 23.440 18.802 14.321
ONNX Runtime 14.166 12.459 13.312 13.962 14.213 13.783 13.176

TensorRT 28.299 13.062 11.789 17.557 29.851 27.430 12.608
TVM 21.858 13.766 NA 15.156 23.620 16.045 12.250
JAX 15.076 11.269 10.658 12.229 15.736 15.331 10.522

Observation 5. TensorRT delivers the highest inference performance with the highest
power consumption, especially for large models. ONNX Runtime and JAX are the most
power-efficient but also the slowest. PyTorch and TVM offer a middle ground, with
moderately high power draw and good speed. These results highlight the trade-off between
energy efficiency and computational performance in edge deployment scenarios.

6. Discussion
This study provides a comprehensive evaluation of modern DL inference frameworks.

Our analysis spans a wide range of performance indicators, including inference accuracy,
inference time, throughput, system memory utilization, and power consumption. The
diversity of the selected models, encompassing both convolutional and transformer-based
architectures, allows us to capture framework behavior under varying computational and
memory demands.
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Our results clearly illustrate that no single framework dominates across all perfor-
mance dimensions. Each exhibits strengths aligned with its design philosophy, exposing
important tradeoffs for deployment engineers and system architects.

TensorRT stands out in raw performance. It achieves the lowest inference latency and
highest throughput across most models, demonstrating its effectiveness as a production-
grade inference engine optimized for NVIDIA hardware. Its static engine construction,
support for reduced precision computation (e.g., FP16), and advanced kernel fusion enable
highly efficient GPU utilization [12]. However, this performance comes at the cost of power
efficiency: TensorRT exhibits the highest system power draw among all frameworks. For
edge devices with tight thermal envelopes or power budgets, this may necessitate tradeoffs
between speed and energy efficiency.

PyTorch achieves a balance between performance and usability. Although not as fast
as TensorRT, it maintains relatively low latency and strong throughput, especially when
batch sizes are scaled appropriately. This performance is attributable to its mature cuDNN
backend and dynamic computation graph, which allow for flexible model execution with
minimal tuning. PyTorch also integrates well with deployment tools like TorchScript and
Torch TensorRT, making it an accessible and adaptable solution for both development
and deployment. Nevertheless, the absence of deep hardware-aware graph compilation
restricts PyTorch from reaching the peak efficiency seen in statically compiled runtimes.

ONNX Runtime, while conceived as a highly portable and interoperable inference
backend, significantly lags behind TensorRT and PyTorch in both latency and throughput.
This performance gap becomes especially evident in deeper networks like ResNet152 and
VGG16. ONNX Runtime’s higher system memory usage further complicates its deploy-
ment on memory-constrained embedded devices. Despite these drawbacks, ONNX’s value
lies in its role as a standardized model interchange format [38], supporting cross-framework
workflows and enabling interoperability across diverse hardware ecosystems. Improve-
ments to ONNX Runtime’s backend optimizations, particularly its TensorRT Execution
Provider, may help bridge this performance gap in future versions.

Apache TVM presents an interesting middle ground. It demonstrates excellent sys-
tem memory efficiency, likely due to its low-level code generation and memory planning
strategies [14]. TVM also performs competitively in throughput, especially for transformer
models like Swin Transformer, where its tuning strategies appear well matched to GPU
parallelism. However, TVM’s instability, evidenced by failures to compile SqueezeNet
and erratic performance for certain models, exposes limitations in operator coverage and
frontend robustness. This restricts its general purpose usability despite its high theoreti-
cal efficiency.

JAX, with its functional programming paradigm and XLA-backed just-in-time compi-
lation, offers a unique inference model that emphasizes composability and reproducibility.
It consistently achieved the lowest system power consumption, making it appealing for
energy sensitive deployments. Yet, its high memory usage and modest throughput point to
limitations in runtime execution planning and memory reuse, perhaps a result of its general
purpose compiler not being fully tuned for real time inference on embedded platforms.
These characteristics suggest that JAX may be more suitable for experimental settings or
academic research rather than production edge inference.

While our empirical results highlight distinct performance characteristics across infer-
ence frameworks, a theoretical analysis of their internal mechanisms offers further clarity
into these outcomes. TensorRT’s superior latency and throughput can be attributed to its
use of aggressive optimization strategies, such as precision quantization (e.g., FP16), kernel
auto-tuning, and operation fusion. These transformations reduce memory bandwidth
bottlenecks and improve parallelism by lowering compute granularity and minimizing run-
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time overheads [12]. Unlike dynamic frameworks, TensorRT performs static compilation
of ONNX graphs into highly optimized CUDA kernels, thereby bypassing Python-level
execution constraints and enabling deterministic execution paths. In contrast, JAX, while
demonstrating low power usage, exhibited the highest memory consumption. This can
be theoretically understood through the lens of its design philosophy: JAX leverages XLA
for ahead-of-time compilation, and its functional programming model emphasizes im-
mutability. These properties, while beneficial for correctness and reproducibility, lead to
extensive memory allocation, as intermediate tensors cannot be reused in-place [15,33]. This
memory-intensive behavior may hinder its utility in constrained embedded environments.
Apache TVM, known for fine-grained operator tuning and low-level IR transformations [14],
showed commendable memory efficiency and throughput. However, its failure to com-
pile certain models like SqueezeNet reveals architectural limitations in operator coverage,
particularly within the evolving Relax IR. These limitations restrict TVM’s out-of-the-box
compatibility with certain ONNX-exported graphs, especially those containing custom or
fused operators unsupported by the current compiler stack. Importantly, these framework
behaviors are sensitive to version volatility. Both TVM and ONNX Runtime undergo
rapid development cycles, which may introduce breaking changes or varying support
levels for optimization passes and hardware accelerators. As such, reproducibility across
future deployments may be affected unless version constraints are strictly maintained and
documented. Including structured documentation of such version-dependent behaviors,
along with a comparative summary of framework-specific constraints and potential miti-
gation strategies, would enhance the practicality of benchmarking results for deployment
engineers and system designers. Table 10 summarizes the limitations of frameworks and
probable mitigation strategies.

A key strength of this work lies in the reproducible and controlled benchmarking
methodology. By standardizing the evaluation environment, dataset (ImageNet validation
set), preprocessing pipeline, hardware platform, and metric definitions, we ensure fair
and interpretable comparisons across frameworks. The use of six models from diverse
architecture families strengthens generalizability, highlighting how different computational
patterns (e.g., dense convolutions vs. self-attention) affect framework performance.

Furthermore, we go beyond traditional latency and accuracy measurements by incor-
porating throughput, system memory consumption, and power usage, which are often
neglected in prior works [22,35]. These metrics are crucial for real world deployment
on constrained devices, providing a holistic view of each framework’s operational cost
and scalability.

Despite its strengths, the study has several limitations. First, it focuses exclusively on
inference; training performance, while less relevant for deployment, is important in certain
edge learning scenarios (e.g., federated learning or continual learning). Second, the analysis
is restricted to the Jetson AGX Orin platform. While this device is representative of modern
edge accelerators, performance characteristics may differ on other embedded hardware
such as Google Coral, Intel Movidius, or AMD-based systems. Extending the study across
multiple hardware targets would provide broader insights into cross-platform optimization.

Additionally, the framework versions and software stacks used in this study reflect a
snapshot in time. These ecosystems are evolving rapidly. For example, ONNX Runtime
and TVM continue to release performance enhancements that may alter current results.
Keeping benchmarks up to date is essential for ensuring relevance as frameworks improve
and hardware capabilities expand. The rapid development of frameworks like ONNX
Runtime and Apache TVM leads to frequent updates that can affect performance, com-
patibility, and operator support [14]. These changes may hinder reproducibility across
versions, especially in embedded systems where software stacks are tightly integrated.
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To address this, documenting software versions and using containerized environments is
recommended for consistent deployment.

Finally, certain runtime behaviors, such as kernel caching, compiler warm up, and
background telemetry, introduce variability that may affect repeatability at a fine grained
level. While our methodology includes warm up runs and averaged results, further
statistical rigor (e.g., confidence intervals or variance analysis) could enhance the precision
of reported metrics.

The results of this study provide actionable guidance for edge AI deployment. De-
velopers seeking maximum speed, such as for autonomous navigation or high frame rate
vision tasks, will benefit from TensorRT, provided power constraints are relaxed. For gen-
eral purpose deployments, PyTorch offers a productive tradeoff between performance and
portability. Memory or energy-constrained use cases may prefer TVM or JAX, depending
on stability and hardware alignment. ONNX Runtime, while underperforming in this study,
remains valuable for its ecosystem interoperability and may serve as a reliable fallback
when framework flexibility is required.

Table 10. Framework-Specific Limitations, Causes, and Mitigation Strategies.

Framework Limitation Likely Cause Mitigation Strategy

PyTorch Moderate power and memory usage;
lacks static graph-level optimization

Dynamic computation graph; no
ahead-of-time compilation

Using TorchScript tracing; integrating
Torch-TensorRT; optimizing
memory allocators

ONNX Runtime High latency and memory usage (e.g.,
21.13 GB for VGG16)

Limited optimization for Jetson hardware;
inefficient graph execution

Enabling TensorRT Execution Provider;
applying manual optimization passes;
avoiding very deep models

TensorRT High power consumption
(approximately 30 W for large models)

Aggressive GPU usage, kernel fusion, and
FP16 throughput focus

Using INT8 quantization; limiting batch
size; enforcing runtime power constraints

TVM Compilation failure for SqueezeNet Incomplete operator coverage or Relax IR
limitations

Extending operator support; reverting to
Relay IR; simplifying model architecture

JAX
Excessive memory usage (around
29 GB) across models

Functional paradigm with immutable
tensors and XLA compilation overhead

Using smaller batch sizes; profiling with
XLA tools; manually reusing tensors
where feasible

7. Conclusions
In this study, we conducted a detailed comparative analysis of five widely used

DL inference frameworks: PyTorch, ONNX Runtime, TensorRT, Apache TVM, and JAX
on the NVIDIA Jetson AGX Orin platform. By evaluating diverse pretrained models
on the ImageNet validation dataset, we assessed each framework across multiple di-
mensions, including inference accuracy, latency, throughput, system memory usage, and
power consumption.

Our results show that each framework offers unique strengths depending on the
deployment context. TensorRT delivered the fastest inference and highest throughput,
confirming its suitability for high performance applications where speed is critical. How-
ever, this performance came with increased power consumption. PyTorch emerged as a
strong general purpose framework, balancing usability with efficient runtime execution.
ONNX Runtime, while versatile in terms of model portability, showed relatively lower
performance, suggesting room for further optimization. TVM demonstrated impressive
memory efficiency and competitive throughput in specific scenarios, although it faced
stability issues with certain models. JAX stood out for its low power consumption and
functional design but lagged in memory efficiency and raw performance.

These findings emphasize the importance of selecting inference frameworks based
not only on speed or accuracy but also on practical deployment factors like energy use,
memory footprint, and hardware compatibility. Our work provides developers and re-
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searchers with concrete benchmarks and insights to guide framework selection for embed-
ded AI applications.

Future work will extend this study to include additional hardware platforms, updated
software stacks, and training performance metrics, offering a broader perspective on DL
deployment in resource constrained environments.
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