
Dynamic Priority Scheduling of Multi-Threaded
ROS 2 Executor with Shared Resources

Abdullah Al Arafat∗, Kurt Wilson∗, Kecheng Yang†, Zhishan Guo∗
∗North Carolina State University, †Texas State University
{aalaraf, kwilso24, zguo32}@ncsu.edu, yangk@txstate.edu

Abstract—The second generation of Robot Operating System
(ROS 2) received significant a ttention f rom t he real-time system
research community, mostly aiming at providing formal modeling
and timing analysis. However, most of the current efforts are
limited to the default scheduling design schemes of ROS 2.
The unique scheduling policies maintained by default ROS 2
significantly a ffect t he r esponse t ime a nd a cceptance r ate of
workload schedulability. It also invalidates the adaptation of
the rich existing results related to non-preemptive (and limited-
preemptive) scheduling problems in the real-time systems com-
munity to ROS 2 schedulability analysis. This paper aims to
design, implement, and analyze a standard dynamic priority-
based real-time scheduler for ROS 2 while handling shared
resources. Specifically, w e p ropose t o r eplace t he r eadySet with
a readyQueue, which is much more efficient a nd c omes with
improvements for callback selection, queue updating, and a
skipping scheme to avoid priority inversion from resource sharing.
Such a novel ROS 2 executor design can also be used for effi-
cient implementations of fixed priority policies and mixed-policy
schedulers. Our modified e xecutor m aintains t he compatibility
with default ROS 2 architecture. We further identified and built
a link between the scheduling of limited-preemption points tasks
via the global earliest deadline first (GEDF) algorithm and ROS 2
processing chain scheduling without shared resources. Based
on this, we formally capture the worst-case blocking time and
thereby develop a response time analysis for ROS 2 processing
chains with shared resources. We evaluate our scheduler by
implementing our modified s cheduler t hat a ccepts scheduling
parameters from the system designer in ROS 2. We ran two
case studies–one using real ROS 2 nodes to drive a small ground
vehicle, and one using synthetic tasks. The second case study
identifies a c ase w here t he m odified ex ecutor pr events priority
inversion. We also test our analysis with randomly generated
workloads. In our tests, our modified scheduler performed better
than the ROS 2 default.

Index Terms—ROS 2, ready queue, Non-Preemptive EDF,
Processing Chains

I. INTRODUCTION

Robot Operating System (ROS), an open-source framework,
has been extensively utilized in designing robotics applications
and autonomous systems over the past decade, primarily
due to their modularity and composability. Most applications
involving autonomous systems and robotics software are as-
sociated with safety-critical systems, where ensuring ‘timing
correctness’ is a prerequisite prior to deployment. However,
despite the heavy use of ROS in these applications, ROS has
inherent limitations concerning real-time capabilities.

First two authors contributed equally to this work.

Consequently, ROS was completely refactored in the second
generation, denoted as ROS 2 [1], to add real-time capabilities.
Casini et al. [8] first provided a formal scheduling model
of ROS 2 executor and developed a response time bound
for the ROS 2 workload (i.e., processing chains), revealing
a significant difference between standard real-time scheduling
model and default ROS 2 executor scheduling model. The key
source of difference is that ROS 2 executor maintains a set to
record callbacks (executable units), denoted as readySet,
with unique properties of set update and callback selection
policies. Since then, several works [27], [26], [7], [28], [9], [2]
improved the analysis of response time bound modeling the
ROS 2 workloads as either processing chains or a directed-
acyclic-graph (DAG) for the ROS 2 executor scheduling
model. However, most of these methods are developed for
a single-threaded executor and are limited to analyzing the
default readySet-based executor scheduling scheme. Re-
cently, Jiang et al. [16] and Sobhani et al. [24] presented
a scheduling model and analysis for default multi-threaded
executor. Moreover, [16] observed that if all callbacks in
the system shared a common resource, then the multi-thread
ROS 2 performs inconsistently (i.e., there exists a concurrency
bug); however, no solution was provided to resolve the issue.

As the scheduling model of default ROS 2 executor signif-
icantly differs from the standard real-time scheduling model,
one can hardly adapt existing results for the ROS 2 scheduling
problem. Therefore, one natural question arises: is it possible
to modify the ROS 2 executor to adapt standard schedul-
ing analysis techniques without breaking the fundamental
properties of ROS 2? Arafat et al. [2] first attempted to
modify a single-threaded ROS 2 executor to apply a dynamic-
priority-based scheduler. This paper focuses on designing,
implementing, and analyzing a multi-threaded ROS 2 executor
for dynamic priority-based scheduling.

One of the key obstacles to the shift toward a multi-threaded
executor is resource sharing between callbacks. ROS 2 allows
resource sharing among callbacks by putting them in a mutu-
ally exclusive callback group, which the user can use to protect
critical sections and prevent deadlock. This, in addition to
redesigning the readySet to make it priority-based sorting,
makes designing a multi-threaded executor for priority-based
scheduling very challenging and significantly different than
designing one for a single-threaded executor.
Contribution. Our contributions are three-fold:

• We design a (flexible) multi-threaded ROS 2 executor
that can be used for fixed-priority, dynamic-priority, and

1

mixed-priority-based scheduling where the user can select
a preferred scheduling policy through user input. We
propose to have the executor maintain a queue, denoted
as readyQueue, which replaces the readySet in
ROS 2 to record the ready callbacks. To cope with
readyQueue maintain compatibility with default ROS 2
architecture, we design callback selection, queue updat-
ing, and a skipping scheme to avoid priority inversion
from resource sharing (ref. Sec IV). Such a design signif-
icantly reduces the complexities related to the queue (or
set) update and callback selection policies of the executor
compared to its default design. Notably, the designed
executor can successfully overcome the concurrency bug
related to resource-shared callbacks that exist in the
default ROS 2 multi-threaded executor (please refer to
Case Study 2 in Sec. VI-A for more details).

• We focus on analyzing the response time for (callback-
level) non-preemptive earliest deadline first (EDF) for the
multi-threaded ROS 2 executor, even though our modified
executor can be used for other schedulers . We identified
and built a link between the scheduling of limited-
preemption points tasks via GEDF and ROS 2 processing
chain scheduling without shared resources. Based on this,
we formally capture the worst-case blocking time and
thereby develop a response time analysis for ROS 2
processing chains with shared resources (ref. Sec V).

• We evaluate our scheduler using two real-world case
studies, and show that it improves upon the default
executors. We identify issues with the default ROS 2
executors and discuss how our modifications work around
them (ref. Sec VI-A). We then evaluate the overheads of
the proposed executor and compare them with existing
executors (ref. Sec. VI-B). We further test our response
time analysis with synthetic workloads and show that
it can successfully schedule more workloads than the
default ROS 2 executors (ref. Sec VI-C).

II. BACKGROUND: MULTI-THREADED ROS 2

ROS 2 is a collection of libraries that provide a mid-
dleware between the operating system and application lay-
ers for robotics applications (Fig. 1). Specifically, ROS 2
provides a client library rcl with language-specific libraries
(e.g., rclcpp, rclpy) containing the executors, and middleware
library (rmw) containing the publisher-subscriber mechanism
for inter-process communication to the Data Distribution Ser-
vice (DDS). ROS 2 integrates with open source and commer-
cially available DDS systems [11], [10], [13].

The minimum executable unit of the ROS 2 application
layer is called callback. There are four types of callbacks in
ROS 2 such as timer, subscriber, service, and client with a
semantic priority order: timer ≻ subscriber ≻ service ≻ client.
For ease of presentation, throughout this paper, we refer to
non-timer callbacks as regular callbacks. Callbacks can be run
in response to messages, service calls, or timers in the ROS 2
system. Callbacks are organized into nodes, which separate re-
lated callbacks into logical groups. In ROS 2, applications are
typically composed of a series of individual nodes distributed

A
pp

lic
at

io
n

M
id

dl
ew

ar
e

ROS2

O
S

Topic

Node

Callback

H
W Processor Processor Processor

Linux/RTOS

Client Library Language-Specific Client Library
rcl rclpyrclcpp Executor

Data Distribution Service (DDS)

Fig. 1: Simplified ROS 2 Architecture

in the application layer. Nodes use DDS for real-time message
exchange through a publish-subscribe mechanism. Nodes can
listen for messages from other nodes (including itself) using
subscribers. Service calls are an extension of messages, where
a service provider responds to all incoming messages with
a response message. Nodes use timers to run callbacks at
specific periods.

Callbacks are usually arranged into chains, where each chain
starts with a timer, and each callback in the chain sends a
message that starts another callback until the last callback,
which produces a result or controls an actuator.

Multiple nodes can be launched within a single process,
where the callbacks are managed and run by an executor. The
executor maintains a set, denoted as readySet, for ready
callbacks. The executor continuously polls the readySet for
an eligible callback to run. By default, the executor searches
the readySet in order of callback type [8], [27]. readySet
maintains the default priority order of the callbacks in the set.
Callbacks of the same type are ordered by registration order.

ROS 2 offers two default executors: a single-threaded ex-
ecutor and a multi-threaded executor. Fig. 2 shows the callback
selection flow of a multi-threaded executor. The multi-threaded
executor spins on multiple cores. ROS 2 offers the concept of
callback groups such as: mutually exclusive callback groups,
where an executor will only run one callback from each
mutually exclusive group at a time, and reentrant callback
group, where an executor is allowed to run multiple instances
of a callback at any given time. Mutually exclusive callback
groups affect how the readySet is managed. If a callback
from a mutually exclusive group is currently running, callbacks
in the same group are considered not eligible, even if one of
them is in the readySet.

There is a drawback to the default ROS 2 multi-threaded
executor: the callbacks in the readySet are only refreshed
in two cases—when the readySet is empty, or when all
callbacks in the readySet are not eligible. We show this
point in Fig. 2. In previous works, this refresh is known as a
polling point. To refresh the readySet, the default executor
clears all the lists and attempts to retrieve one message (or
timer release) for each callback. Since a polling point does
not happen every callback execution, there can be cases where
response times are increased [16]. Additionally, if the multi-
threaded executor cannot find a callback to run due to mutually
exclusive callback groups, the executor clears the readySet
and adds only callbacks that can be run at that instant.

2

Failed
Success

Obtain
Lock

Yes

No

Is readySet
empty?

Refresh
readySet

cb ← the first callback
in readySet

YesNo
can be
taken?

Release
Lock

No

Yes

cb ← next callback
in readySet

return cb
Clear

readySet

Last
Callback?

Start

Fig. 2: Thread workflow inside the default ROS 2 executor

Callbacks that were removed from the readySet will only
be added back to the readySet at the next polling point.

III. SYSTEM MODEL

This section presents the formal analytical model for ROS 2
workload and default executor scheduler. We consider a set of
n processing chains1 Γ = {C1, C2, . . . , Cn} as the workload
of ROS 2. Each processing chain (in short, chain) consists
of a sequence of callbacks. Executors select and dispatch the
callbacks in threads to execute following scheduling policies.
Our focus in this paper is limited to scheduling ROS 2
workloads inside a single ‘multi-threaded’ executor. Without
loss of generality, we consider integer time instances only
aligned with the granularity of the processor clock tick. All
the notations used in the paper are listed in Table I.
Callbacks. Each callback belongs to a processing chain. Let
us denote the jth callback of ith processing chain as ci,j .
The worst-case execution time (WCET) of ci,j is denoted as
ei,j . Callbacks are scheduled to execute non-preemptively. The
priority of a callback is determined by its semantic priority
and registration order. Each callback can potentially release
infinitely many instances where the timer callback is periodi-
cally released, and regular callbacks are event-triggered.

A ROS 2 callback system has a single reentrant callback
group and may have multiple mutually exclusive callback
groups. Each callback either belongs to the reentrant callback
group or belongs to one of the mutually exclusive callback
groups. For notational simplicity, we index the callback groups
by integers where index 0 denotes the reentrant callback group,
and each of the positive integers denotes a mutually exclusive
callback group. Then, we define G(ci,j) as a function that
takes a callback ci,j as an argument and returns the index
of the callback group the callback ci,j belongs to. Then,
θi = ∪1≤j≤|Ci|∧G(ci,j)̸=0{G(ci,j)} is the set of indices of

1In ROS 2 workload graph, a callback can be shared by multiple chains.
However, due to decomposing the workload graph as independent processing
chains, each will contain an independent replica of a shared callback [8].

TABLE I: Notation Summary

Symbol Description
n Number of processing chains
Γ Set of processing chains
Ci ith processing chain
|Ci| Number of callbacks in Ci
ci,j jth callback of chain Ci
cki,j jth callback of kth instance of chain Ci
ei,j WCET of callback ci,j

Ei WCET of chain Ci
Di Relative deadline of chain Ci
Ti Period of chain Ci
Ck
i kth instance of chain Ci

aki Arrival time of kth instance of chain Ci
dki Absolute deadline of kth instance of chain Ci

G(ci,j) Index of the callback group where ci,j belongs to
θi Union of G(ci,j) ̸= 0 for all j’s
E Executor
m Number of threads in a executor E
πi ith thread

R(Ck
i) Response time of kth instance of chain Ci

Ri WCRT of chain Ci
Ω readyQueue

S
Ak
t Problem window of length t for an instance of Ck

all mutually exclusive callback groups to which a callback
in chain Ci belongs.
Chains. A chain Ci = {ci,1, ci,2, · · · , ci,|Ci|} is a sequence
of |Ci| callbacks, where ci,1 is the first callback and ci,|Ci|
is the last callback of the chain. Depending on the type of
first callback, a chain can be classified as time-triggered (i.e.,
ci,1 is timer callback) or event-triggered (i.e., ci,1 is a regular
callback) chain. Except for the first callback, any ci,j can only
become ready to execute once ci,j−1 finished its execution
since each callback is released by the previous callback in
the chain publishing its results (i.e., intermediate callbacks in
the chain cannot be time-triggered callback). A chain Ci is
characterized via tuple (Ei, Di, Ti), where

• Ei =
∑

∀j ei,j is the WCET of the chain Ci, which is the
sum of its callbacks’ WCET.

• Ti is the minimum inter-arrival time (period) between
two chain instances. A time-triggered chain Ci will be
periodically released every Ti time instants. A chain can
potentially release infinite instances, and kth instance of
chain Ci is denoted as Ck

i .
• Di is the relative deadline of the chain and Di ≤ Ti.
The response time of Ck

i , R(Ck
i), is the time difference

between the release instant of its first callback cki,1 and the
completion time instant of the last callback cki,|Ci|. The worst-
case response time (WCRT) is the maximum response among
all possible release instances of the chain, Ri = max∀k R(Ck

i).
A chain is considered schedulable if all its instances meet
the deadline, i.e., Ri ≤ Di. A ROS 2 workload Γ will be
schedulable if all chains are schedulable, i.e., ∀i, Ri ≤ Di.
Executor. We consider a multi-threaded executor E consisting
of m working threads E = {π1, π2, · · · , πm}. Aligning with
previous works in multi-threaded executor for ROS 2 [16],
[24], we consider the one-to-one assignment of each thread πi

3

to a processor core for maximizing the concurrent executions
of callbacks. We assume processing cores are homogeneous.
We further assume a dedicated resource supply to each thread
from the corresponding processing core and, without loss of
generality, all processing cores as unit-speed cores. Therefore,
the total resource supply for m threads is m.
Default Scheduling Model for Executor. Any callback
ci,j in a chain Ci can only be ready once ci,j−1 com-
pletes in execution. The default ROS 2 executor maintains
a readySet to record ready callback instances that can be
selected for execution. However, a ready callback instance
cannot directly enter the readySet. Instead, it can only
enter the readySet once the readySet becomes empty
or any thread in the executor is idle. A callback instance
is ready but waiting to enter the readySet is denoted as
“pending.” The set of pending callbacks is known as wait set.
The readySet update instances are known as polling points,
and the duration between the two consecutive polling points is
known as polling window. Once a callback instance is selected
from the readySet, it begins executing non-preemptively.

A pending callback instance can also be in the state of “not
eligible” to be in the readySet depending on the member-
ship of a mutually exclusive callback group. For instance, only
one callback from each mutually exclusive group can enter
the readySet at a time. A callback of a mutually exclusive
group can receive two types of blocking from other members
of the group. First, if a callback is pending but cannot enter to
readySet due to the presence of another callback from the
same mutual exclusive callback group, then the blocking is
denoted as “pending and blocked” (i.e., P-blocked). Second,
if a callback is currently in the readySet but cannot be
selected if another callback from the same mutual exclusive
group is executing in any thread. This blocking is denoted as
“ready and blocked” (i.e., R-blocked).

IV. DYNAMIC-PRIORITY-BASED EXECUTOR

This section presents the design and scheduling model of a
dynamic-priority-based ROS 2 executor.

A. Design of Dynamic-Priority based Executor

We extend the default multithreaded executor by re-
placing the readySet with a readyQueue, where the
readyQueue is implemented as a PriorityQueue. Each
callback instance is wrapped in a struct that contains the
scheduling parameters of the callback, as well as its type. The
readyQueue stores these structs and sorts them using a cus-
tom comparator. The comparator sorts the callback instances in
order of their absolute deadline2, placing earlier deadlines first.
Callbacks without explicitly defined scheduling parameters3

are placed last. Similar to ROS 2’s default executor, ties are
broken by the registration order. However, unlike the default
ROS 2 scheduler, our comparator does not consider the call-
back type; i.e., all callback types are considered equally. The

2The comparator can be replaced by the user to use different comparison
metrics, such as fixed callback-level priorities, or mixed scheduling policies–
where some callbacks have dynamic priorities, and some have fixed priorities.

3This may include automatically created callbacks by ROS 2, such as the
one for the parameter system.

executor also respects the overload handler in timers, which
is a default ROS 2 feature that detects if a timer callback is
blocked for more than one period, and moves the next release
forward by one period. This prevents two successive timer
callback executions, allowing in-progress chains to complete
in an overloaded system. If this happens, the executor adjusts
the chain’s deadline to reflect the new timer release. The
readyQueue is defined as follows:

Definition 1. (readyQueue Ω) is maintained in the executor
to record the ready callbacks similar to readySet in default
ROS 2. However, readyQueue is always updated before any
executor thread selects a callback to run. The priority of the
callbacks in readyQueue is set based on the deadline of
each callback, where a callback with an earlier deadline has
a higher priority than the one with a later deadline.

To account for the fact that the first callback on the
readyQueue may not be executable (due to mutually-
exclusive callback groups), we use a custom queue implemen-
tation that allows iterating through its elements.

We now discuss three key components and principles related
to the design of a dynamic-priority-driven executor.

(i) Callback Selection. Algorithm 1 presents the details related
to the callback selection policies from readyQueue. At the
very beginning, the executor starts some worker threads, where
the number of threads is specified by the user. Each worker
thread is pinned to a CPU core. Each worker thread polls for
callbacks similarly to that of the single-threaded executor. A
mutex lock protects the readyQueue so that only one worker
thread can update it at a time. When a thread becomes idle, it
attempts to take the lock, update the readyQueue, and select
a callback. If another thread is holding the lock, the thread is
blocked until the lock is available. To select a callback, it
selects the highest priority callback that is currently eligible
to execute. The executor removes the selected callback from
the readyQueue, releases the lock, and begins to execute
the selected callback non-preemptively (ref. line 21). Once
the lock is released, other worker threads can access the
readyQueue. Callbacks that are not selected for execution
immediately are kept in the readyQueue and can be run
later. To prevent race conditions caused by callback groups
running in other threads, if a callback is running as part of a
group at any point during the callback selection process, the
group will always be skipped (ref. line 8), even if the offending
callback stops execution during the selection process.

(ii) readyQueue Updating. To update the readyQueue,
the executor checks all callbacks in the system for newly
released instances and adds them to the readyQueue. The
executor also updates the positions of callbacks that are
already in the readyQueue, if any new callback instance
is added to the queue. To maintain the assumptions and
restrictions of ROS 2’s DDS interface4, the readyQueue is
restricted to hold one and only one instance of each callback
at a time. This does not affect the execution order – all

4Due to API design, the DDS interface only exposes whether it has at least
one message available per topic.

4

Algorithm 1: Callback selection from readyQueue
Data: readyQueue, mutex

1 if lock(mutex) = success then
2 refresh(readyQueue);
3 skippedGroups ← [];
4 foundExecutable ← false;
5 iter ← readyQueue.iter();
6 while !iter.empty() && !foundExecutable do
7 executable ← next(iter);
8 if executable.group in skippedGroups then
9 continue;

10 end
11 if !executable.group.can be run() then
12 // can be run() is false if the group is mutually

exclusive, and another callback instance is
running. It is always true for reentrant groups
skippedGroups.append(executable.group);

13 continue;
14 end
15 readyQueue.remove(executable);
16 foundExecutable ← true;
17 break;
18 end
19 unlock(mutex);
20 if foundExecutable then
21 executable.run();
22 end
23 end

Algorithm 2: Updating the readyQueue
Data: readyQueue, callbacks

1 for callback ← callbacks do
2 if not callback.ready then
3 continue;
4 end
5 if callback instance in readyQueue then
6 update position;
7 else
8 add the callback instance to the queue;
9 end

10 end

instances of the same callback have the same scheduling
parameters. Once an executor removes a callback instance
from the readyQueue, another instance of the callback will
re-enter the queue the next time an executor updates the queue
(if another callback instance exists). Algorithm 2 presents the
pseudo-code related to the readyQueue updating.

Depending on the DDS configuration, published messages
may not immediately appear in the ready queue, even though
they are refreshed during callback selection. By default, ROS 2
DDS runs in asynchronous mode, where message transport
happens in a separate thread. If a message is published
at the end of a callback, the DDS thread running in the
background may not complete before the executor threads
poll the readyQueue. To ensure that recent publications
always appear on the readyQueue, the DDS must be set
to synchronous mode, which causes calls to publish to block
until the message is ready to be processed.

(iii) Preventing Priority Inversion from Race Conditions.
During callback selection, additional steps are required to
avoid priority inversion (where a lower-priority task is incor-
rectly selected over a higher-priority task). We illustrate how
race conditions can occur and how to prevent priority inversion

TABLE II: Thread Interleave: a race condition resulted in
priority inversion (for ease of presentation in the table, we use
{c1, c2, c3} as mutually exclusive callbacks without matching
notion for callback defined earlier)

Threads readyQueue

π1 π2 (1st ci is the head of queue)
- - [c1, c2, c3]

(↑)c1 - [c2, c3]

c1 - [c2, c3]

c1 - [c2, c3]

c1(↓) - [c2, c3]

− c3 [c2] (priority inversion!)

via a toy example. Let us consider a thread-interleaving
diagram for the race condition presented in Table II, where the
status of the search of readyQueue is indicated by putting
the callback in bold. Suppose on a two-thread (π1, π2) system,
there are three callbacks (c1, c2, c3) sharing the same resource
and thus belong to the same mutually exclusive group; c1
is executing on the thread π1, and the other two are in the
readyQueue. The thread π2 searches the readyQueue
for a callback to run. It reaches the first callback (c2) in
the readyQueue, but skips it due to its membership in a
currently-executing callback group. During the time instant
between checking c2 and c3, the thread π1 finishes its callback
and sets the callback group to eligible. The thread π2 then
checks the callback c3 in the readyQueue, finds it eligible,
and selects it for execution, even though c2 (who has higher
priority) in the readyQueue is now also eligible, preventing
the c2 on the readyQueue from running. To prevent this rac-
ing scenario during callback selection from the readyQueue,
as a design principle, the executor should skip any callbacks
that are part of a callback group that was running at any
point during the readyQueue search. Once the executor
encounters a blocked callback group, it adds it to a set and
skips any callbacks that are part of a group in the set, even
if those callbacks are eligible later in the search. This is done
using the skippedGroups set in Algorithm 1. From this
point, the executor can either (i) pick a ready callback that is
not part of the callback group, or, (ii) if none exists, restart the
readyQueue selection process, and pick the highest priority
task from that callback group. Note that choosing the first
option does not cause priority inversion by selecting a lower-
priority task—remember that the thread π1 will also be in task
selection, and will not skip the callback group.

Remark 1. The callback eligibility defined in our proposed
method differs from the one defined for the default multi-
threaded executor in [16]. In our proposed readyQueue,
blocking for a callback due to a mutually exclusive group
membership is checked only once before dispatching to a
thread. Once a callback becomes pending, it will always enter
the readyQueue in the following update instant. However,
in the default readySet-based scheduling scheme, there are
two ways of blocking a callback from a mutually exclusive
callback group. A callback can receive blocking before enter-
ing the readySet (i.e., P-blocked) as well as after entering

5

the readySet (i.e., R-blocked).

Remark 2. Once a callback enters the readyQueue, it will
remain in the queue until being dispatched to a thread, which
implies that the readyQueue is built only once. Then, in
updating instances, the readyQueue needs to update the
priority of newly entrant callbacks. However, in the case of
readySet, it needs to be empty before updating with new
callback instances by either dispatching all exiting callbacks
to threads or returning them to the wait set again. Therefore,
the maintenance cost of readyQueue (e.g., O(log n)) is sig-
nificantly less than the readySet (e.g., O(n log n)); where
n is the number of callbacks.

B. Dynamic Scheduling Model for Executor

Our proposed executor maintains a readyQueue Ω during
runtime to record the dynamic priority of all eligible callbacks.
The dynamic priority of a callback ci,j is determined using
the absolute deadline of chain Ci; i.e., all callbacks within a
chain share the same deadline. For instance, if the arrival time
of chain instance Ck

i is aki , then the absolute deadline of the
chain instance is dki = aki + Di. Now, any callback cki,j (for
1 ≤ j ≤ |Ci|) will have an absolute deadline of dki . A callback
with an earlier deadline has a higher priority than the one
with a later deadline. In other words, the callback scheduling
decisions are determined following the EDF algorithm.

An executor thread is either ‘busy’ if a callback instance is
executing on it, or ‘idle’ if no callback instance is executing
on the thread. A dispatch point occurs whenever a thread
becomes idle. At the dispatch point, the Ω is updated with
all pending callbacks. Among the callbacks in Ω, callbacks
are checked one by one, following the priority order (i.e., the
highest priority one is selected first). The idle thread selects the
highest priority callback that is eligible to run. A callback runs
non-preemptively as soon as it is selected. A thread sleeps if
it fails to find a callback, while it can be waked by the release
of the next callback, which leads to a repetition of the process.

To update Ω, the executor checks all callback types in the
system for eligible callbacks. Any new releases will be placed
in Ω according to the priority provided by the scheduling
parameters. Callbacks in the Ω persist between updates so that
the queue does not need to be entirely rebuilt during updates.

Note that not all callbacks in Ω are eligible to run. Depend-
ing on the membership of callback groups, a callback instance
ci,j in Ω is either ‘eligible’ or ‘ready and blocked’ (R-blocked):

• If the callback ci,j is a member of the reentrant callback
group, as soon as ci,j enters Ω, it is eligible to run.

• If the callback ci,j is a member of a mutually exclusive
callback group, there can be two cases. Case A: if there
are no other callbacks (including an instance of ci,j itself)
from the same mutually exclusive group in Ω or currently
executing in a thread, then the callback becomes eligible
as soon as it enters Ω. Case B: otherwise, the callback
ci,j is R-blocked and skipped during task selection.

V. RESPONSE TIME ANALYSIS

This section presents the response time analysis (RTA) for
the ROS 2 processing chains under deadline-based schedul-

ing. We first present the RTA for processing chains without
callback groups and then the RTA with callback groups.

A. RTA without Callback Groups

To avoid deriving the RTA for ROS 2 workloads with-
out callback groups from the first principles, we will di-
rectly utilize the existing state-of-the-art (SOTA) analysis for
GEDF [31] with fixed preemption points in homogeneous
multi-processors. Notably, such usage of existing results was
the motivation for our novel executor design of ROS 2. First,
we will state the scheduling model, denoted as FPP-GEDF,
for a workload with fixed preemption points for each task
scheduled on homogeneous multi-processors following the
GEDF algorithm. Then, we will prove the equivalence of our
proposed ROS 2 scheduling model and FPP-GEDF. We then
state the SOTA RTA presented by Zhou et al. [31] for FPP-
GEDF. Then, we will expand the RTA for ROS 2 workloads
with callback groups, which is the focus of this paper.

FPP-GEDF scheduling model. A set of n tasks T =
{τ1, . . . , τn} with constrained deadlines, where each task
has a fixed number preemption point, are scheduled on m
homogeneous processors following the GEDF algorithm. If
ith task τi has k preemption point, then there are k + 1 non-
preemptive regions in τi which higher-priority tasks cannot
preempt once they start executing. In addition, priority is
dynamically assigned to each instance of a task, not to each
non-preemption region of a task instance.

Proposition 1. FPP-GEDF scheduling model and the pro-
posed ROS 2 scheduling model without considering the call-
back groups are equivalent.

Proof. We will establish a bijection by mapping the FPP-
GEDF scheduling model to the ROS 2 scheduling model and
vice versa to prove the equivalence of the scheduling models.
FPP-GEDF to ROS 2. Each task τi can be mapped as a
ROS 2 chain Ci, where each non-preemptive region of τi would
work as a callback in Ci. Therefore, if a task τi in FPP-GEDF
has k preemption points, then corresponding chain Ci in ROS 2
has k + 1 callbacks. Now, m homogenous processors can be
mapped to m threads in a ROS 2 executor as each thread
is assigned to an individual core. Therefore, the scheduling
problem of the workload T in m processors following global-
EDF can directly reduce to the scheduling problem of a set
processing chains Γ on m threads using GEDF in ROS 2.
ROS 2 to FPP-GEDF. Using a similar argument, we can
show that the scheduling problem of a set of processing chains
Γ on m threads using GEDF directly reduces to the problem
of a task set T on m processors using GEDF.

Hence, the scheduling model of FPP-GEDF and ROS 2
processing chains without callback groups are equivalent.

We will leverage SOTA RTA for FPP-GEDF proposed by
Zhou et al. [31] for RTA of ROS 2 processing chain without
callback groups. First, we report the supporting results in
Lemma 1, 2, 3 to use the RTA from [31].

Let us consider the jth instance of chain Ck, Cj
k, as the

chain instance under consideration for RTA. As soon as Cj
k

is released at ajk, the first callback cjk,1 is also released and

6

becomes eligible. The subsequent callbacks of Cj
k will become

ready once the preceding callbacks complete their execution.
Let us define the problem window for Cj

k for RTA as follows:
Problem Window. Given a chain instance Cj

k, denote t′ as the
start time of the last callback with priority lower than ck,l (for
1 ≤ l ≤ |Ck|) that starts its execution before ajk, and denote
t′′ as the earliest time instant satisfying that all processors are
busy in [t′′, akj). Then, a problem window of Cj

k is [t0, t1),
where t0 = max{t′, t′′} and t1 ∈ [ajk + Ek − ek,|Ck| + 1, djk].

Let us denote the problem window for Cj
k as SAk

t , where
t = t1 − t0 and Ak = ajk − t0. We denote a chain as carry-in
if it releases an instance before t0 and has a deadline after t0;
others are non-carry-in chains.

Next, we will bound the work done by the carry-in and
non-carry-in chains in the problem window of SAk

t .

Lemma 1. [31] Given a chain instance Cj
k with a problem

window SAk
t , the interference on Cj

k by any chain Ci as
non-carry-in chain and i ̸= k in SAk

t is upper bounded by
INC
i,k (t, Ak), satisfying following equation,

INC
i,k (t, Ak) =

⌊
t
Ti

⌋
Ei +min{t mod Ti, Ei},

if α ≤ L⌊
t
Ti

⌋
Ei +min{γ, t− β},

if α > L and β < Ak⌊
t
Ti

⌋
Ei +min{λ, t− β},

if α > L and β ≥ Ak

(1)

where L = Ak + Dk, α =
⌊

t
Ti

⌋
Ti + Di, β =

⌊
t
Ti

⌋
Ti,

γ =
∑min{|Ci|,|Ck|}

l=1 ei,l − min{|Ci|, |Ck|} + 1, and λ =∑min{|Ci|,|Ck|−1}
l=1 ei,l −min{|Ci|, |Ck| − 1}.

Lemma 2. [31] Given a chain instance Cj
k with a problem

window SAk
t , the interference on Cj

k by any chain Ci as
a carry-in chain and i ̸= k in SAk

t upper bounded by
ICI
i,k (t, Ak), satisfying following equation,

ICI
i,k (t, Ak) =

A+ B; if α ≥ 0 and β ≤ L

max{C,D}; if α ≥ 0 and β > L

min{t, Ei}; if α < 0 and γ ≤ L

max{E,F}; if α < 0 and γ > L

(2)

here L = Ak +Dk; α = t− Ei − Ti +Ri;

β = Ei + Ti −Ri +
⌊

α
Ti

⌋
Ti +Di; γ = Ei +Di −Ri;

A = (⌊α/Ti⌋+ 1) · Ei; B = min{α mod Ti, Ei};
C = A + min{

∑min{|Ci|,|Ck|}
l=1 ei,l − min{|Ci|, |Ck|} +

1, α mod Ti};
D = ⌊(L−Di)/Ti⌋Ei+min{Ti−L+ t, Ei}+max{(L−

Di) mod Ti − Ti +Ri, 0};
E = max{min{L−Di +Ri, t}, 0}; and
F = min{

∑min{|Ci|,|Ck|−1}
l=1 ei,l −min{|Ci|, |Ck| − 1}, t}.

So, by Lemma 1 and Lemma 2, we get the non-carry-in
and carry-in interference from any chain Ci (i ̸= k) on Cj

k in
SAk
t . Now, the following lemma will bound non-carry-in and

carry-in interferences from the instances of Ck.

Lemma 3. [31] Given a chain instance Cj
k with a problem

window SAk
t , the non-carry-in interference and carry-in in-

terference on Cj
k by Ck upper bounded by INC

k,k (t, Ak) and
ICI
k,k(t, Ak), respectively,

INC
k,k (t, Ak) = ICI

k,k(t, Ak)

= max{min{Ak − Tk +Rk, ek,|Ck|}, 0} (3)

Lemma 4. [31] Given a ROS 2 workload Γ scheduled on m-
threads in an executor using deadline-based readyQueue
and a chain instance Cj

k with a problem window SAk
t , the

non-carry-in and carry-in interference on Cj
k by any chain Ci

in SAk
t are upper bounded by FINC

i,k (t, Ak) and FICI
i,k (t, Ak),

respectively,

FINC
i,k (t, Ak) = min{INC

i,k (t, Ak), t− Ek + ek,|Ck|} (4)

FICI
i,k (t, Ak) = min{ICI

i,k (t, Ak), t− Ek + ek,|Ck|} (5)

Now, we can calculate the total inference from all carry-in
and non-carry-in chains on Cj

k in SAk
t . Let FIdiffi,k (t, Ak) =

max(FICI
i,k (t, Ak) − FINC

i,k (t, Ak), 0) and F (t, Ak, x) as
the sum of the first x items of non-increasing order of
FIdiffi,k (t, Ak) for all Ci. Then following are two upper bound
of the interferences, Ψ1(t) and Ψ2(t), on Cj

k by all chains in
Γ,

Ψ1(t) =
∑

∀Ci∈Γ

FINC
i,k (t, Ak) + F (t, Ak,m− 1) (6)

Ψ2(t) =m ·Ak+∑
i ̸=k

max{FICI
i,k (t−Ak, 0), F INC

i,k (t−Ak, 0)} (7)

Now, the response time of chain Ck can be determined using
the following theorem:

Theorem 1. [31] Given a ROS 2 workload Γ to be scheduled
on a m-threaded executor following EDF (without considering
the callback groups among callbacks), the last callback of
any chain instance Cj

k with a problem window SAk
t must be

executed before ajk + t′, where t′ is the minimum solution of,

Ek−ek,|Ck|+1+

⌊
min{Ψ1(x+Ak),Ψ2(x+Ak)}

m

⌋
≤ x+Ak

(8)
Then, the WCRT of Ck is,

Rk = t′ + ek,|Ck| − 1 (9)

B. RTA with Callback Groups

Due to the presence of callback groups and the prevention
of concurrent execution of callbacks from a mutually exclu-
sive group, an additional blocking (for a mutually exclusive
callback group) must be considered in the RTA.

Let us first derive the maximum blocking received by a
callback solely for the membership in a mutually exclusive
callback group,

Lemma 5. A callback ck,j ∈ Ck of a mutually exclusive
callback group with index G(ck,j) ̸= 0 can receive a maximum
blocking of max∀G(ci,l)=G(ck,j){ei,l}, where callback ci,l from
any chain Ci ∈ Γ \ Ck.

7

Proof. Following the readyQueue design, a callback only
experiences the blocking from other members of a mutually
exclusive callback group by the ‘R-blocked’ state. As an
‘R-blocked’ callback can be selected to execute as soon as
the currently executing callback (that is also a member of
the same mutually exclusive callback group), the maximum
blocking due to the member of a mutually exclusive callback
is equal to the maximum execution time of a callback in
that group. Note that if there exist callbacks in a mutually
exclusive group with publisher-subscriber relation (i.e., from
the same callback chain), then the additional blocking due to
precedence constraint for those callbacks is not required to
take in the account as these callbacks cannot be ready at the
same time. However, the Theorem 1 already includes blocking
for precedence constraints. Therefore, the maximum blocking
of a ci,j callback from a mutually exclusive group callback is
by the one that is not in the same callback chain Ci.

Let IX
k be the total blocking received by the callbacks of

chain instance Cj
k. Using Lemma 5,

IX
k =

∑
1≤j≤|Ck|∧G(ck,j)∈θk

max
∀G(ci,l)=G(ck,j)

{ei,l} (10)

where, callback ci,l can be from any chain Ci.
Finally, we state the following theorem for ROS 2 process-

ing chains scheduling on a m-threaded executor with mutually
exclusive callback groups.

Theorem 2. Given a ROS 2 workload Γ to be scheduled on
a m-threaded executor following EDF, the last callback of
any chain instance Cj

k with a problem window SAk
t must be

executed before ajk + t′, where t′ is the minimum solution of,

Ek − ek,|Ck| + 1 + IX
k +⌊

min{Ψ1(x+Ak),Ψ2(x+Ak)}
m

⌋
≤ x+Ak (11)

Then, the WCRT of Ck is given by

Rk = t′ + ek,|Ck| − 1 (12)

Proof. The proof of the theorem follows a similar approach
for Theorem 1 except for the inclusion of blocking due to
the mutually exclusive callback groups. Note that the effective
blocking received by chain Ck for m-threads is m · IX

k , as
in the worst case, even if m − 1 threads are idled, and one
thread is executing one callback from the group, others cannot
execute. So total blocking added in the L.H.S. of Equation (12)
is m · IX

k /m = IX
k .

It is obvious that for a schedulability check of the workload
Γ, one must verify the WCRT of each processing chain is
on greater than the deadline. I.e., a ROS 2 workload Γ is
schedulable on an m-threaded executor following EDF if the
following inequality holds for any chain Ci: Ri ≤ Di; ∀i,
where Ri is given by Equation (12).
RTA for chains span over multiple executors. To compute
the response time of processing chains spanning over multiple
executors, one potential way could be a similar approach used
in the existing single-threaded works [8], [9], [2], where the

lidar_node

T = 25 ms;
C = 1.2 ms

obstacle_detection

C = 6 ms

pathfinding

C = 8 ms

convert_controls

C = 0.5 msC = 2 ms
steering_driver

C = 2 ms
throttle_driver

dummy_timer

T = 35 ms;
C = 5 ms

dummy_task

C = 5 ms C = 5 ms

dummy_task

Driving
Chain

Dummy
Chain

get_candidates

C = 0.8 ms

Fig. 3: Layout of the workloads used in the experiment with
F1Tenth car. Each box is a callback. In the driving chain, each
callback is in its own node, except get_candidates and
pathfinding, which share a node. convert_controls
splits the control output from pathfinding into two mes-
sages, a steering and acceleration message, which is sent
to the appropriate hardware driver nodes. The chain is
considered complete once both steering_driver and
throttle_driver have completed. Besides the driving
chain, we used two dummy chains with similar configurations.

RTA for each executor is computed independently. Then, the
end-to-end response time is computed using the Compositional
Performance Analysis tool [15] and adding communication
latencies for every two consecutive executors where the chain
segments are executed. However, further studies are needed
on whether these approaches can directly be extended to
multithreaded executors, which we have left for future work.

VI. EVALUATION

In this section, we present the evaluation of our proposed
executor using on-board case studies, overhead analysis, and
schedulability test of response time analysis for the dynamic
scheduler and compare it against two existing analyses for
default ROS 2 executor.

A. On-Board Case Studies

We run our case studies on an Nvidia Jetson Xavier AGX
in MAXN mode, where the main frequency of all CPU
cores is fixed at 2.2 GHz. Executor threads are set to run
using the SCHED FIFO class at the highest priority (99). For
multithreaded executors, each thread is pinned to a unique
CPU core. Other implementation details can be found in
Section IV . The workloads are controlled to run no longer
than their specified WCETs.

1) Case Study 1: To show a real-world use case, we use
ROS 2 executor to schedule tasks that drive an F1Tenth car.
Experimental Setup. We use our modified ROS 2 executor
implementation to schedule a taskset that drives the F1Tenth
car around a track. Nodes in the system poll a LIDAR sensor,
process the incoming LIDAR data, make driving decisions,
and pass actions to motor controllers. Together, the callbacks
in these nodes form a chain, which we refer to as the driving
chain, as shown in Fig. 3. Each callback is in its own mutually-
exclusive callback group. The driving chain and dummy chains
represent most of the load on the system, but some auxiliary
tasks exist as well, which produce odometry output and
other system statistics. These auxiliary tasks have a collective
utilization of 0.07. The auxiliary tasks are configured as fixed
priority tasks, where deadline tasks always take precedence.

8

1 2
cores

0

100

200

300
La

te
nc

y
(m

s)
Driving

1 2
cores

Dummy 1

1 2
cores

8660

Dummy 2
Executor

Default
Ours
Fixed Priority [25]

Fig. 4: Average and maximum latencies for each chain in the
case study system. We tested the default executor and our
executor with 1 and 2 threads. The driving chain performed
better under our executor compared to the default, especially
in single-core mode, where the system is overloaded. In
the overloaded single thread case under the fixed priority
executor, the maximum latency of the second dummy chain
was 8660 ms, due to the second dummy chain having the
lowest priority in the system.

We ran this test with two dummy chains to increase the
utilization of the system. Each chain uses implicit deadlines,
so the driving chain has a deadline of 25 ms, and the dummy
chains have a deadline of 35 ms. Running the system with
the modified executor decreases the average and maximum
latency of the main driving chain, and improves the latency
of the dummy chains in an overload scenario.
Observations. Using the modified executor, we observed
improved response time of the driving chain in both the one
and two-core tests and all three chains in the single-core tests
(Fig. 4). In the two-core test, the driving chain had a maximum
latency of 46.16 ms on the default executor and 19.23 ms on
our executor. With fixed priorities, the driving chain had a
worst-case latency of 17.25 ms.

In the single-core case, where the system is overloaded,
the driving chain had a maximum latency of 208.19 ms on
the default executor and 66.48 ms on ours. When running
under the fixed-priority executor, the second dummy chain was
frequently blocked by the driving chain and first dummy chain,
and had a maximum response time of 8.66 seconds.

We also ran a single core test with just the driving chain
and the auxiliary system tasks. In this case, the driving chain
had a maximum latency of 21.43 ms on the default executor,
and 20.00 ms on ours. This improvement comes from the fact
that our executor will not preempt the driving chain to service
callbacks from auxiliary tasks.

2) Case Study 2: We use the same workload defined
in [16], which inspired our earlier discussion on callback
group concurrency bugs. The workload is presented again in
Table III. All chains are placed in a single mutually exclusive
callback group, ensuring that only one callback, and therefore
one thread, can execute at any time.
Experimental Setup. We ran two tests: one with the ROS 2
multithreaded executor (using two threads), and another with
the single-threaded executor (using one thread), both modified
with our task selection process. The Fixed-Priority and EDF

TABLE III: Case Study 2

Ci Ti = Di ci,j Callback Group WCET Priority
C1 100 c1,1 M1 50 1
C2 150 c2,1 M1 60 2
C3 900 c3,1 M1 50 3

1 2 3
Chain ID

0

100

200

300

La
te

nc
y

Multi Threaded Executor (M=2)
ROS2-Default
ROS2-FP
ROS2-EDF

1 2 3
Chain ID

0

100

200

300

La
te

nc
y

Single Threaded Executor
ROS2-Default
ROS2-FP
ROS2-EDF

Fig. 5: Demonstration of a weakness of ROS 2’s default
multithreaded executor. The callback group assignments only
allow one thread to perform work at any given time. The
same workload performs worse in the default multithreaded
executor than in the default single-threaded executor (although
intuitively and theoretically, they should perform the same, as
all callbacks are in the same group). The Fixed Priority and
Deadline based schedulers, which refresh the readyQueue
before every callback execution, behave similarly in single-
threaded and multithreaded mode.

schedulers always refresh the readyQueue before selecting
a callback to run and, therefore, behave the same within
both the single-threaded and multithreaded executors, meeting
deadlines in both situations.
Observations. The results are shown in Fig. 5. The default
scheduler behaves differently due to the fact that the default
multithreaded executor will clear the readySet if none of
the callbacks are eligible to run due to membership in callback
groups.

To understand how this affects execution, assume all three
callbacks have been released. The default multithreaded execu-
tor runs c1,1 on Thread 1. During this time, Thread 2 attempts
to find an eligible callback to run, but cannot as c2,1 and c3,1
are both in the same mutually exclusive callback group as c1,1.
Thread 2 clears the readySet, and since no callbacks are
eligible to run, the readySet remains empty. This continues
until c1,1 completes, making c2,1 and c3,1 eligible to run. Since
the readySet is now empty, a thread (whichever takes the
mutex lock first) refreshes the readySet and places c2,1 and
c3,1 back. This cycle repeats with c2,1 instead of c1,1. During
c2,1’s execution, c1,1 is released again. Since the idle thread
clears the readySet, the readySet gets rebuilt with one
of c1,1 and c2,1 taking priority over c3,1.

In the single-threaded executor, ineligible callbacks are not
removed from the readySet, and there is no second thread
to refresh the readySet, so after c1,1 and c2,1 starts to run,
c3,1 is the only item in the readySet, even though c1,1 may
have been released again during c2,1. Only after c3,1 runs, does
the executor refresh the readySet.

The Fixed Priority and Deadline-based executors avoid this
problem by 1) storing ready callbacks in a queue, and 2)
keeping callbacks in the queue, even if they are not imme-
diately runnable due to membership in a mutually exclusive
callback group. In this case, like the default multithreaded

9

TABLE IV: Asymptotic overhead for Queue/Set refresh and
callback selection for different executors

Executor Refresh Select Best Case Select Worst Case
Default O(n) O(1) O(n)

Fixed Priority [25] O(n) O(n) O(n)

Ours O(n logn) O(1) O(n)

1 3 5 7
Number of Subscribers

1

2

3

4

L
at

en
cy

(m
s)

Executor
ROS2-Default

ROS2-FP [25]

ROS2-EDF (Ours)

ROS2-EDF-NO-DDS (Ours)

RTeX [20]

Fig. 6: End-to-end latency of multiple subscribers on a single
topic. Each subscriber has an execution time of 0 ms, so the
effects of executor are evident in the end-to-end times.

executors, only one thread can be running a callback at
any given time, but the idle thread does not manipulate the
readyQueue, except for when the timers release, where it
simply adds the released callback to the queue. When the
working thread finishes executing the callback, either thread
(whichever takes the lock first) will perform another check
for newly-released callbacks, and select the callback with the
highest priority or earliest absolute deadline. By not clearing
the readyQueue/readySet, our modified executor behaves
more consistently than the default executors when running in
single-threaded and multi-threaded modes, preventing deadline
misses, which can occur when using the default executor.

B. Overhead Analysis

Table IV reports the asymptotic overhead of executor’s
queue/set refresh, and callback selection for ours, default
ROS 2, and existing fixed-priority [24] executors.

To empirically measure the overhead of our modified execu-
tor, we compare it to existing works by Sobhani et al. [24] (de-
noted as ‘Fixed Priority’) and RTeX [19], and default ROS 2
executor. We measure the end-to-end latency of a system with
a timer callback publishing to multiple subscriber callbacks.
To accurately represent the effects of the different executors,
we use the publicly-available implementations of [24], [19].

The Fixed Priority executor selects callbacks by searching
the readySet for the highest-priority eligible callback. The
RTeX executor removes the locks held during the queue
refresh step, and replaces the readySet with a concurrent
linked-list. The RTeX executor is unique in that immediately
after a callback is run, the executor adds the subsequent
callback in the chain to the queue directly, avoiding the need
to refresh the queue and poll the DDS layer. This significantly
decreases the overhead of the RTeX executor, but at the
expense of DDS compatibility. To support receiving messages
from other processes or over the network, users of the RTeX
executor need to use an additional thread to listen for incoming

messages and add them to the queue. For a fair comparison
with RTeX, we also test a variant of our executor (EDF-NO-
DDS), which updates the queue similarly to RTeX, where
published messages are placed directly into the readyQueue,
removing the need for queue refreshes.

Workloads. We take the test parameters from [19]. Each
callback has an execution time of 0 ms, and the end-to-end
latency is the time between timer releases and the completion
of the last subscriber callback. Our test uses 2 threads. Because
the callbacks themselves do not perform any work and only
publish to the next callback in the chain, the end-to-end latency
reflects the time taken to receive, sort, and select the callbacks.

Observations. We show the results of this test in Fig. 6.
Since no callback groups exist, the default executor and our
executor always exhibit the best-case callback selection per-
formance. Due to the extra overhead in queue refreshes, and a
refresh is always performed before each callback selection, our
executor’s response time increases quickly as more callbacks
are added to the system. The NO-DDS version of our executor
is competitive with the default executor and RTeX.

The additional work required during the queue refreshes
means that our modified executor has a larger overhead,
especially as the number of callbacks in the system increases,
but the case study demonstrates that using the readyQueue
and dynamic priorities allows the executor to make decisions
that reduce the overall system latency.
Compatibility of executor with default ROS 2 architecture.
Our modified executor is implemented as a ROS 2 package,
and does not outright replace the default ROS 2 multithreaded
executor. Instead, it uses subclasses of existing data structures,
so it does not interfere with packages that rely on the default
ROS 2 data structures and classes. The package can be placed
in any ROS 2 workspace and called from user code when
required. It does not change any of the existing data structures
in rclcpp or rmw, and does not require any modification
of the DDS layer, allowing the use of both open-source and
proprietary DDS systems.

Not all callbacks need to have explicitly declared deadlines,
but callbacks without deadlines are always given a lower
priority than callbacks with deadlines.

C. Schedulability Evaluation via Synthetic Workload

Experimental Setup. We use the workload parameters from
[16]. Workloads are randomly generated from parameters: m:
the number of threads the workload will be run on, n: the
maximum number of chains in the workload, b: the maximum
number of callbacks in any chain, Unorm: the utilization of
the workload, g: the maximum number of mutually exclusive
callback groups, and α: the ratio of callbacks that will be
members of a mutually exclusive callback group. The total
utilization of the workload is m · Unorm. The utilization of
each chain is found with UUnifast-discard. Chain utilizations
above 1 are set to 1. For each chain, generate the utilization
of each callback with UUnifast-discard. Each chain’s period
is randomly selected from [50, 200]. The chain’s period is
also its deadline. Each callback’s WCET is the chain’s period
multiplied by the callback’s utilization. Callback WCETs are
rounded to the nearest integer. Chains not in a mutually

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0

0.2

0.4

0.6

0.8

1.0
ROS2 EDF (Ours)
Static Priority (Sobhani, 2023)
ROS2 Default (Jiang et al., 2022)

(a) Unorm

2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

ROS2 EDF (Ours)
Static Priority (Sobhani, 2023)
ROS2 Default (Jiang et al., 2022)

(b) n

2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

ROS2 EDF (Ours)
Static Priority (Sobhani, 2023)
ROS2 Default (Jiang et al., 2022)

(c) b

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

ROS2 EDF (Ours)
Static Priority (Sobhani, 2023)
ROS2 Default (Jiang et al., 2022)

(d) g

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0

0.2

0.4

0.6

0.8

1.0
ROS2 EDF (Ours)
Static Priority (Sobhani, 2023)
ROS2 Default (Jiang et al., 2022)

(e) α

2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

ROS2 EDF (Ours)
Static Priority (Sobhani, 2023)
ROS2 Default (Jiang et al., 2022)

(f) m

Fig. 7: Schedulability ratio (percentage of schedulable tasksets) comparisons by varying one parameter at a time.

exclusive callback group are assigned to their own reentrant
callback group. The number of groups in the workload is
randomly chosen from [0, g], and the number of callbacks in
any group is |C| ·α. We randomly select |C| ·α callbacks, and
distribute them to the callback groups.

We compare our schedulability test with the test given
in [16] and [24]. The workload parameters are m = 4, n = 8,
b = 5, Unorm = 0.3, g = 2, and α = 0.2. We ran 2000 task
sets per data point.

Observations. Fig. 7 shows how varying each parameter
affects the percentage of schedulable tasksets for the deadline-
based, static priority, and default ROS 2 executors. For most
situations, the deadline-based analysis schedules more work-
loads than the default ROS 2 executor by a significant mar-
gin. Varying Unorm (Fig. 7a) results in expected behavior—
workloads with higher utilization are less likely to be schedula-
ble. Increasing n (Fig. 7b), the maximum number of callbacks
in a workload, caused a slight decrease in schedulability for
each executor. The default executor was largely invariant to
changes in b (Fig. 7c), the maximum number of callbacks in
any chain. This is likely due to the fact that the default ROS 2
executor tries to make progress along all running chains. In
contrast, the priority-based executors will run a higher priority
chain to completion at the cost of blocking others. The results
in Fig. 7d are best understood when remembering that the
ratio of callbacks that are within some group compared to
those not in any group is constant (α = 0.2). The exception
is that when g is 0, there are no mutually exclusive callback
groups, and no callback group blocking can occur. When g is
1, 20% of the callbacks are in one mutually exclusive group,
so the chances of callbacks blocking each other are high. As
the number of mutually exclusive groups increases, there is a
smaller chance that any two callbacks will block each other.
Cases where more than 60% of callbacks are in a mutually
exclusive group are an exception—the analysis of the default
ROS 2 multi-threaded executor by [16] handles these cases

especially well, as shown in Fig. 7e.

VII. RELATED WORKS

Earlier works related to the ROS mostly focused on improv-
ing the real-time performance [21], [30], [20]. Satio et al. [20]
developed a priority-based message transmission algorithm for
publishers to send data to multiple subscribers; [14] performed
an empirical study and measured WCRT between nodes for
ROS 2; [30] proposed RT-ROS to run two OS—one for non-
real-time tasks and another for real-time tasks.

Several works have been done analyzing and improving
the performance of ROS 2’s executor system following the
pioneering work of Casini et al. [8]. [8] first formally modeled
the ROS 2 executor scheduling policies and figured out the
unique scheduling strategy of ROS 2. [8] also developed
the first response time analysis of ROS 2 processing chains.
Later, Tang et al. [27] improved the previous analysis by
observing the properties of polling points and processing
windows of default ROS 2 executor. Blaß et al. [7] further
improved the response time, exploiting the execution time
uncertainties and starvation properties of ROS 2 callbacks.
Teper et al. [28] developed end-to-end response-time analysis
for ROS 2 considering the data age and reaction time between
sensor outputs and actuation. Tang et al. [26] presented the
analysis modeling ROS 2 workload as the directed-acyclic-
graph (DAG) workload model. All these works model the
ROS 2 workload using default priority orders and types of
callbacks. Choi et al. [9] added unique priorities to each
processing chain and the callbacks instead of using the default
priority order among callbacks. They also designed a static
callback-thread assignments policy. [9] demonstrated that de-
signing fixed-priority orders among callbacks reduces the self-
blocking of a processing chain by its past and future instances
and improves the processing chains’ response time.

Recent works [16], [24] presented the scheduling model
and analysis frameworks for multi-threaded ROS 2. Their

11

works demonstrated significant differences between the single-
and multi-threaded scheduling policies, mainly for adding
complexities for multiple threads and introducing callback
groups. Sobhani et al. [24] further enhanced the callbacks
with a fixed-priority order similar to PiCAS [9] to further
improve the timing performance. Compared with existing
works, our work falls under the customized multi-threaded
ROS 2 executor. We present a modified executor to support a
priority-based scheduler without breaking the key properties
of ROS 2. However, earlier, Arafat et al. [2] presented the
modified single-threaded executor for dynamic-priority-based
scheduling. Compared with this work, designing a multi-
threaded executor involves more challenges than a single-
threaded one, such as issues related to the callback groups ne-
cessitating careful ‘update policy design’, concurrency and/or
racing bugs that only exist for a multi-threaded one.

In real-time scheduling, many works analyzed processing
chains such as [4], [22], [23] and non-preemptive scheduling
such as [3], [12]. However, our scheduling model falls under
the limited preemptive scheduling, and existing works [29],
[31], [5] analyzed schedulability for limited preemptive
scheduling problems. Our analysis is based on [31].

Besides the scheduling analysis of ROS 2 executor,
Blaß et al. [6] discussed the benefits, challenges, and opportu-
nities related to ROS 2; Li et al. [17] analyzed timing disparity
between messages. Moreover, Suzuki et al. [25] developed
ROS extension on CPU/GPU mechanism, and Li et al. [18]
developed a real-time ROS 2 GPU management framework.

VIII. CONCLUSION

This paper presented the design, implementation, and analy-
sis of a dynamic-priority-driven scheduler for a multi-threaded
ROS 2 executor. Our proposed executor has the flexibility to
support user-defined scheduling schemes. With such freedom,
one can easily develop a formal timing verification method
to verify the timing correctness of the to-be-implemented
scheduler by leveraging the rich existing schedulability re-
sults. Specifically, we developed an efficient queue updating
policy for ready callbacks and callback selection policies
for dispatching to threads without priority inversion. Finally,
we developed a response time analysis for non-preemptive
callback scheduling using the EDF algorithm and implemented
it via both case studies and synthetic workload. We compared
our response time analysis with the default ROS 2 executor and
another priority-enhanced executor, finding that ours allows
for schedulable workloads. We believe our modified executor
design opens the door to designing more efficient middleware,
allowing ROS 2 to adapt standard real-time scheduling models,
enabling existing results to be used ROS 2 systems.
Limitations and Challenges. By checking for new callback
releases before all selections, our modified executor adds
additional overhead compared to the default executor. Users
of our modified executor must carefully select deadline values
in order to ensure safe behavior of the system. It is the
user’s responsibility to declare callback chains, and determine
appropriate deadlines for each.

Since ROS 2 already supports changing the executor be-
havior by using a subclass of rclcpp::Executor, the

modified executor could be added as a component of rclcpp,
or added as a separate optional package. Our executor adds
additional complexity to the executor implementation, so in-
clusion in the default ROS 2 distribution could add work to
documentation, testing, and maintenance tasks. Including our
executor in the default ROS 2 distribution is made easier by the
fact that our executor does not require changes to the existing
data structures in rclcpp.

REFERENCES

[1] ROS 2 Documentation. https://docs.ros.org/en/foxy/index.html.
[2] A. A. Arafat, S. Vaidhun, K. M. Wilson, J. Sun, and Z. Guo. Response

time analysis for dynamic priority scheduling in ros2. In DAC, 2022.
[3] S. K. Baruah. The non-preemptive scheduling of periodic tasks upon

multiprocessors. Real-Time Systems, 2006.
[4] M. Becker et al. End-to-end timing analysis of cause-effect chains in

automotive embedded systems. Journal of Systems Architecture, 2017.
[5] M. Bertogna and S. Baruah. Limited preemption edf scheduling of

sporadic task systems. TII, 2010.
[6] T. Blaß et al. Automatic latency management for ros 2: Benefits,

challenges, and open problems. In RTAS. IEEE, 2021.
[7] T. Blaß et al. A ros 2 response-time analysis exploiting starvation

freedom and execution-time variance. In RTSS. IEEE, 2021.
[8] D. Casini et al. Response-time analysis of ros 2 processing chains under

reservation-based scheduling. In ECRTS, 2019.
[9] H. Choi, Y. Xiang, and H. Kim. Picas: New design of priority-driven

chain-aware scheduling for ros2. In RTAS. IEEE, 2021.
[10] Eclipse Foundation. Eclipse cyclone DDS™. https://projects.eclipse.

org/projects/iot.cyclonedds.
[11] eProsima. eProsima fast DDS. https://github.com/eProsima/Fast-DDS.
[12] N. Guan et al. New schedulability test conditions for non-preemptive

scheduling on multiprocessor platforms. In RTSS. IEEE, 2008.
[13] GurumNetworks. GurumDDS. https://gurum.cc/gurumdds rmw eng.
[14] C. S. V. Gutiérrez et al. Towards a distributed and real-time framework

for robots: Evaluation of ros 2.0 communications for real-time robotic
applications. arXiv preprint arXiv:1809.02595, 2018.

[15] R. Henia et al. System level performance analysis–the symta/s approach.
IEE Proceedings-Computers and Digital Techniques, 2005.

[16] X. Jiang et al. Real-time scheduling and analysis of processing chains
on multi-threaded executor in ros 2. In RTSS. IEEE, 2022.

[17] R. Li et al. Worst-case time disparity analysis of message synchroniza-
tion in ros. In RTSS. IEEE, 2022.

[18] R. Li et al. Rosgm: A real-time gpu management framework with plug-
in policies for ros 2. In RTAS. IEEE, 2023.

[19] S. Liu et al. Rtex: an efficient and timing-predictable multi-threaded
executor for ros 2. TCAD, 2024.

[20] Y. Saito et al. Priority and synchronization support for ros. In CPSNA.
IEEE, 2016.

[21] Y. Saito et al. Rosch: real-time scheduling framework for ros. In RTCSA.
IEEE, 2018.

[22] J. Schlatow and R. Ernst. Response-time analysis for task chains in
communicating threads. In RTAS. IEEE, 2016.

[23] S. Schliecker and R. Ernst. A recursive approach to end-to-end
path latency computation in heterogeneous multiprocessor systems. In
CODES+ISSS, 2009.

[24] H. Sobhani, H. Choi, and H. Kim. Timing analysis and priority-driven
enhancements of ros 2 multi-threaded executors. In RTAS, 2023.

[25] Y. Suzuki, T. Azumi, S. Kato, and N. Nishio. Real-time ros extension on
transparent cpu/gpu coordination mechanism. In ISORC. IEEE, 2018.

[26] Y. Tang et al. Real-time performance analysis of processing systems on
ros 2 executors. In RTAS. IEEE, 2023.

[27] Y. Tang, Z. Feng, et al. Response time analysis and priority assignment
of processing chains on ros2 executors. In RTSS. IEEE, 2020.

[28] H. Teper et al. End-to-end timing analysis in ros2. In RTSS. IEEE,
2022.

[29] A. Thekkilakattil et al. Multiprocessor fixed priority scheduling with
limited preemptions. In RTNS, 2015.

[30] H. Wei et al. Rt-ros: A real-time ros architecture on multi-core
processors. Future Generation Computer Systems, 2016.

[31] Q. Zhou et al. Response time analysis for tasks with fixed preemption
points under global scheduling. TECS, 2019.

12

