
Journal of Systems Architecture 130 (2022) 102683

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Towards an energy-efficient quarter-clairvoyant mixed-criticality system
Zhe Jiang a, Kecheng Yang b, Nathan Fisher c, Neil Audsley a, Zheng Dong c,∗

a University of York, United Kingdom
b Texas State University, USA
c Wayne State University, USA

A R T I C L E I N F O

Keywords:
Real-time systems
Mixed-criticality system
Energy-efficient
Hardware–software co-design

A B S T R A C T

Mode switch is the key strategy in mixed-criticality systems, enabling a dynamic balance between system
performance and safety. Mode switch in conventional MCS frameworks is always triggered by over-execution
of a task, i.e., a task overrunning the less pessimistic worst-case execution time. In cyber–physical systems, the
data volume generated by I/O affects and even dominates task execution time. Based on this observation, we
propose a novel MCS framework, named Pythia-MCS, which predicts task execution time according to I/O run-
time behaviors. With the new feature of future-prediction, Pythia-MCS provides more timely, but still accurate,
mode switches. We specifically introduce the Pythia-MCS design methods, including different allocations of
I/O monitoring and an efficient energy management framework. We present a new theoretical model (quarter-
clairvoyance), which guarantees the timing predictability of the design, and a new schedulability analysis
for Pythia-MCS, which demonstrates improved schedulability compared to conventional MCS frameworks. In
addition, Pythia-MCS is comprehensively evaluated using a number of metrics.
1. Introduction

In modern safety-critical systems, it is increasingly important to
integrate components with different levels of criticalities (e.g., Auto-
motive Safety and Integrity Levels (ASILs) in ISO26262 [1]), onto a
shared hardware platform driven by the diverse functionalities required
by modern safety-critical systems (e.g., automated driving [1]) and the
rapid evolution of underlying platforms [2]. Such systems are called
Mixed-Criticality Systems (MCS)s [3].

A widely studied theoretical model for dual-criticality MCSs as-
sumes that the Worst-Case Execution Time (WCET) of a task is es-
timated with different levels of confidence [3,4].1 The high-critical
WCET (hi-WCET) is confident, but extremely pessimistic (obtained by
static timing analysis, for example); whereas, the low-critical WCET
(lo-WCET) is much less pessimistic, but has relatively lower confidence
(obtained by measurement, for example). In general, a high-critical task
(hi-task) is developed and verified with more rigorous procedures than
a low-critical task (lo-task). Therefore, a hi-task has both hi- and lo-
WECTs; whereas, a lo-task only has a lo-WCET [1,3]. The correctness
criterion in this model specifies that if all tasks finish executing within
their lo-WCETs, then they will all finish executing by their deadlines.
However, if any task does not complete execution within its lo-WCET,
then the hi-tasks should complete execution by their deadlines [5].
To satisfy this criterion, mode switch is often used [3,6]. That is,

∗ Corresponding author.
E-mail address: dong@wayne.edu (Z. Dong).

1 Like much of the current research on mixed-criticality scheduling, this paper restricts attention to two criticality levels (lo and hi).

a system initializes from low-critical mode (lo-mode), in which the
scheduling policy assumes the execution time of each task (lo-task or
hi-task) does not exceed its lo-WCET. If this assumption is violated,
the system switches into high-critical mode (hi-mode), in which the
scheduling policy assumes the execution time of hi-tasks may exceed
their lo-WCETs, but will not exceed their hi-WCETs [7,8].

Many previous frameworks are based on this theoretical model,
e.g., Richard et al. [9], Gadepalli et al. [10], and Kim et al. [11].
These frameworks, which trigger a mode switch when they detect over-
execution of a hi-task, are also called ‘‘non-clairvoyant MCSs’’ [12,13].
Different from non-clairvoyant MCSs, Baruah et al. [12] and Agrawal
et al. [13] introduce clairvoyant and semi-clairvoyant MCS theoretical
models, which assume that whether a hi-task will overrun its lo-
WCET is known before or at release [14,15]. As shown in [12,13],
both clairvoyant and semi-clairvoyant MCSs outperform non-clairvoyant
MCSs. However, it is challenging to build a practical MCS framework
with a degree of clairvoyance, since most run-time situations must be
known beforehand, and for example, it is difficult to predict an external
environmental change before it happens [12].

Inputs/Outputs (I/Os) are important in MCSs, as the volume of input
data may significantly affect the execution time of a task, determining
the necessity of a mode switch. Taking an autonomous vehicle as an
vailable online 30 July 2022
383-7621/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2022.102683
Received 22 January 2022; Received in revised form 3 June 2022; Accepted 25 Ju
ly 2022

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:dong@wayne.edu
https://doi.org/10.1016/j.sysarc.2022.102683
https://doi.org/10.1016/j.sysarc.2022.102683
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2022.102683&domain=pdf

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.

1

1

e
i
a
t
t
p
p

o

T

Algorithm 1: Pseudo-Code an Ethernet Control Task

1 RawPacket[i] = ∅; Buf = ∅;
2 if (System.Status() == Correct) then
3 while (IO.Status (Ethernet.ID) == Busy)2 NOP;
4 PacketSize = I/O.Check (Ethernet.ID, Recv);
5 if (PacketSize > 0) then
6 for 𝑖 = 0; 𝑖 < PacketSzie; 𝑖 + + do
7 I/O.Read (Ethernet.ID, Buf[i]);
8 end
9 for 𝑖 = 0; 𝑖 < PacketSzie; 𝑖 + + do

10 RawPacket[i] = AUTOSAR.E2E.Decoding (Buf, 𝑖×
PacketLen)

11 end
12 else
13 NOP;
14 end
5 else

16 Err.Ctrl();
7 end

Fig. 1. Ethernet control task timing chart.

xample, a sensor/lidar usually receives an additional volume of data
n an urgent situation, e.g., a greater number of objects to be identified
nd tracked compared with driving on an empty road, with no objects
o be identified and tracked [1]. Therefore, a mode switch may be
riggered due to more computation time being required by a task to
rocess the additional received data. Based on these observations, we
ropose a novel MCS framework architecture (Pythia-MCS [16]) which

can acquire a certain level of clairvoyance. Based on the previous
work [16], we extend the design with the following key features:

• continuously monitors and analyses I/O behaviors. The system
can trigger a mode switch when a large amount of data is gen-
erated by an I/O.

• contains two optional allocations for I/O monitoring, at intercon-
nects or pins, providing a trade-off between design compatibility
and monitoring timeliness.

• integrates an energy management framework, which mitigates
the power consumption introduced by I/O-driven mode switch.

Correspondingly, we also present

• Comprehensive experiments to evaluate Pythia-MCS in terms of
overhead, power consumption and scalability.

• A real-world case study to examine benefits and prediction accu-
racy of Pythia-MCS over a conventional MCS.

The rest of this paper is organized as follows: Section 2 presents
the concepts of I/O-driven MCS. Sections 3 and 4 give the system
architecture and design methods of Pythia-MCS, followed by schedula-
bility analysis given in 5. Section 6 evaluates Pythia-MCS, and Section 7
concludes.

2 The busy-waiting is monitored by a timeout monitoring in the system, in
rder to avoid endless waiting.
2

2. Preliminary: I/O-driven MCS

We first study relationships between I/Os and task execution time,
then explain concepts of I/O-driven MCSs.

2.1. I/Os and task execution time

Based on the usage of I/Os, a task can be decomposed into:

I/O-independent computation — pure software calculation without
I/O access. Computation time usually depends on system micro-
architectures, e.g., CPU architecture.

I/O-related computation — I/O accesses and I/O-bounded calcula-
tion. Computation time is usually determined by the data vol-
ume generated by the I/Os [17].

If a task involves I/O-related computation, we call it an I/O-related
task, otherwise it is an I/O-independent task. Algorithm 1 uses pseudo-
code to demonstrate an example of an Ethernet control task (I/O-
related task) from Renesas’ automotive use cases [18]. I/O-related
computation is highlighted in blue, with the status check in line 3
and 4, the Ethernet read in line 7 and E2E decoding in line 10.
Fig. 1 further illustrates the timing chart for this task. As shown, the
task releases at time point 𝑡0 with I/O-independent computation and
changes to I/O-related computation at time point 𝑡1. Additionally, Fig. 1
highlights the lo-WCET and hi-WCET estimates for the task. In this
example, the executing times of I/O-independent computation (e.g.,
buffer initialization) are constant; whereas, the executing times of the
I/O-related computation (Ethernet read and E2E decoding) vary with
the volume of received Ethernet packets. Clearly, in an I/O-intensive
system, the data volume generated by I/Os affects, and even dominate,
task execution time.

Therefore, we can predict execution time of an I/O-related hi-task
at its I/O access point and determine necessity of a mode switch before
task overrun. We term this I/O-driven mode switch. The MCS enabling
I/O-driven mode switch is termed an I/O-driven MCS.

2.2. I/O-driven mode switch

Achieving an I/O-driven mode switch based on a conventional MCS
model requires two more features for each I/O-related hi-task, which
must be acquired offline:

I/O access point (denoted 𝐶s𝑖). I/O-related computation always
starts with processing I/O accesses (e.g., line 7 in Algorithm
1), which obtains the I/O data packets to be processed in the
following computation. The I/O data received before/after 𝐶s𝑖
will be processed in the current/next task release.

hreshold I/O data volume (TH-I/O, denoted 𝛶 l𝑖). At 𝐶s𝑖 , if the
data volume accumulated by the task (denoted 𝜐𝑖) exceeds its
TH-I/O (i.e., 𝜐𝑖 > 𝛶 l𝑖), we can predict that the task will exceed
its lo-WCET, and therefore a mode switch is required.

Similar to the other tuples in the system (specifically described
in Section 5), the two introduced features can be obtained using ei-
ther static analysis or experimental measurements. Here, we give a brief
introduction to finding the experimental measurements.

Finding experimental measurements for 𝐶s𝑖 and 𝛶 l𝑖 . Firstly, we
removed the non-examined tasks and initialized the system without
any I/O data input. We then linearly increased the volume of I/O
data input and executed the system 10,000 times under each system
configuration. In each experiment, we recorded the I/O access time-
point and checked whether the examined task overran its lo-WCET.
Following the experiments, the probability of task over-execution under

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.

o

3

3

o
d
t
a
c

d
a

3

D
a
f
i
T
m

D
I
c
h

D
t
c
m
I

b
c
t
T
S

1

Fig. 2. Find TH-I/O for Ethernet control task.

different volumes of I/O data input was plotted. The system designer
was then able to select an appropriate TH-I/O for the examined task
based on the experiment results. The results of the example above
measured on our experimental platform (Xilinx VC709 [19] with the
configurations introduced in Section 6) are shown in Fig. 2. We chose
20 MB as the TH-I/O for the examined task i.e., over-execution may
ccur when the I/O data volume is greater than 20 MB.

. Pythia-MCS architecture

.1. Context

In this paper, we assume: (i) The platform is an embedded Network-
n-Chip (NoC). Although Pythia-MCS is agnostic to the types of bus,
eployment of NoC can enhance the predictability of on-chip transac-
ions [20]. (ii) Pythia-MCS is applicable to both single- and many-core
rchitectures. A fully-partitioned scheme is adopted in a multi-/many-
ore Pythia-MCS. That is, tasks are statically assigned to a given proces-

sor. Existing task allocation heuristic [2] (e.g., first-fit) can be applied
irectly for partitioning. (iii) A task can access one I/O at most, whereas
n I/O can be accessed by multiple tasks.

.2. Design concepts

We now present three design concepts for Pythia-MCS:

esign Concept 1: online I/O monitoring. Pythia-MCS introduces
coprocessor, which monitors and analyzes run-time data generated

rom I/Os. Pythia-MCS presents two options for allocating I/O mon-
toring: at the system interconnects (i.e., NoC) or at the I/O pins.
his allows the option of design compatibility or timeliness of I/O
onitoring.

esign Concept 2: adaptive mode switch. Pythia-MCS supports both
/O-driven and conventional mode switches. In practice, tasks may only
ontain I/O-independent computations (i.e., be I/O-independent tasks);
ence, Pythia-MCS can execute all types of task.

esign Concept 3: efficient energy management. Pythia-MCS con-
ains an energy management framework which can switch off the
locks/power of particular parts when they are not being used. Energy
anagement effectively mitigates power consumption generated by

/O-driven mode switches.
In the context of conventional non-clairvoyant MCS theory, a num-

er of practical frameworks have been proposed, e.g., [9–11]. To ensure
ompatibility with the state-of-the-art, the proposed system architec-
ure for Pythia-MCS is derived from conventional MCS frameworks.
herefore, Section 3.3 first reviews a conventional MCS architecture,
ection 3.4 then presents the system architecture.
3

Fig. 3. System architectures of conventional MCS and Pythia-MCS.

Algorithm 2: Context and Mode Switch in Conventional MCS

1 ⊳ OS Kernel: Context Switch
2 Intrp.disable();
3 ExeMonitor.Timer.suspend (TaskSet.Current.ID);
4 ExeMonitor.Timer.activate (TaskSet.Next.ID);
5 Scheduler.run (TaskSet.Next.ID);
6 Intrp.enable();
7 ⊳ Interrupt Handler: Mode Switch
8 Function Timeout_ISR(Timer.ID):
9 Lib_mode_switch (hi-Mode);

10 Intrp.clear(Timer.ID);
1 End Function

3.3. Conventional MCS system architecture

The generalized architecture of a conventional MCS (shown in the
upper part of Fig. 3) is illustrated by considering conventional em-
bedded/computer architectures with an additional execution monitor,
usually implemented at the Operating System (OS) level to give more
privileges than user applications. Two essential functionalities must be
supported by the execution monitor: (i) monitoring task execution time;
and, (ii) triggering a mode switch when the over-execution of a hi-task
is detected. These two functionalities are achieved using co-operation
between a dedicated timer in the hardware and an additional library
in the OS kernel (named lib_mode_switch). Note that the execution
monitor can be implemented using different methods. For example, Kim
et al. [11] integrate the execution monitor with the OS kernel, while
Li et al. [21] implements the execution monitor as an independent
hypervisor.

Run-time behaviors. At system initialization, the lo-WCETs of the hi-
tasks are preloaded to the memory. During context switches, the OS
kernel suspends the timer of the currently executing task and then (re-
)activates the timer for the next executing task. If a hi-task runs over
its lo-WCET, an interrupt sent from the hardware timer will trigger
the execution of lib_mode_switch for the mode switch. The pseudo-code
demonstrating this procedure is shown in Algorithm 2.

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.

1

s

t
d
𝜐

Algorithm 3: Context and Mode Switch in Pythia-MCS

1 ⊳ OS Kernel: Context Switch
2 Intrp.disable();
3 Coprocessor.sync (TaskSet.Next.ID);
4 Scheduler.run (TaskSet.Next.ID);
5 Intrp.enable();
6 ⊳ Interrupt Handler: Mode Switch
7 Function Pythia_ISR():
8 Lib_mode_switch (hi-Mode);
9 Intrp.clear();
0 End Function

3.4. Pythia-MCS system architecture

The Pythia-MCS has architecture changes in both the hardware and
software layers compared to conventional MCS system architecture
(shown in the lower part of Fig. 5):

Hardware layer. As introduced in the design concepts, the run-time
monitoring and the mode switch triggering in the proposed architecture
are managed by the Pythia-coprocessor. Hence, in the hardware layer,
we replace the timer (monitoring task execution time in the conven-
tional MCS architecture) with the new coprocessor. We present the
design details of the coprocessor in Section 4.

Software Layer. Like the hardware timer, we also remove the execu-
tion monitor (which manages the hardware timer in the conventional
MCS architecture) from the OS level. In the Pythia-MCS, the interrupt
sent from the Pythia-coprocessor, triggering a mode switch, is directly
routed to the lib_mode_switch in the OS kernel. The removal of the
execution monitor effectively reduces the software overhead and sys-
tem complexity compared to conventional solutions. We analyze the
improvements in Section 6.1.

Run-time behaviors. At system initialization, I/O-related hi-tasks’ TH-
I/Os and I/O-independent hi-tasks’ lo-WCETs are preloaded to the
coprocessor. During context switches, the OS kernel synchronizes the ID
of the scheduled task with the coprocessor (line 3 of Algorithm 3). If an
I/O-independent hi-task exceeds its lo-WCET or an I/O-related hi-task
exceeds its TH-I/O, the coprocessor generates an interrupt to trigger
mode switch by invoking lib_mode_switch. The pseudo-code demonstrat-
ing this procedures is shown in Algorithm 3.

Compatibility. Although the Pythia-MCS introduces a new system ar-
chitecture, the design minimizes modifications to the software (shown
in the comparison of Algorithms 2 and 3). Moreover, the design main-
tains the original OS-application interfaces presented by the traditional
MCS (shown in Fig. 3). Therefore, user applications designed for a
conventional MCS can be mapped to the Pythia-MCS directly.

In the new system architecture, acquiring the functionality of clair-
voyance relies on the coprocessor; we hence present the coprocessor
design details in the next section.

4. Pythia-coprocessor

Fig. 4 illustrates the typical use of the Pythia-coprocessor in a NoC-
based many-core architecture: the coprocessor connects a router/arbiter
and I/Os, which enables on-chip communication and run-time I/O
monitoring, respectively. In Fig. 5, we introduce the design of the
coprocessor, which comprises three main modules:

I/O Monitor Unit (IMU) — observes the run-time status of the con-
nected I/O, decomposes the I/O data packets, and reports the
volume to the Mode Switch Unit (MSU).

Mode Switch Unit (MSU) — receives messages from the IMU, and
4

then checks whether mode switch is necessary. d
Energy Management Unit (EMU) — synchronizes with the MSU, de-
termining the current system status, and switches off power/clock
of unused I/Os and related parts.

A complete I/O access path usually involves different system compo-
nents, e.g., OS kernel, interconnects, I/O controllers and I/O pins [22],
which allows I/O monitoring to be placed at any system level. As
described in Design Concept 1, I/O monitoring in Pythia-MCS can be
allocated either to the routers or the I/O pins. Placing the monitoring
at the I/O pins, i.e., the boundary of a system, achieves the most
timeliness, but involves a more complicated design. This is because
the method needs to decompose and analyze the I/O packets for
different serial communication protocols. Conversely, allocating the
monitoring at the routers, only requires understanding of an on-chip
communication protocol. This brings compatibility to the design, but
loses some of the monitoring timeliness. To support these two types of
I/O monitoring, we propose two IMU variants: IMU at Routers (IMU_R)
and IMU at Pins (IMU_P).

4.1. I/O Monitor Unit at Routers (IMU_R)

I/O data decomposition. Monitoring and decomposing I/O data pack-
ets at the routers requires clear understanding of the protocol spec-
ifications for on-chip communication. In this paper, we explain the
I/O data decomposition using the example of AMBA AXI [23], since
it is the most commonly used protocol for on-chip communications
in embedded architectures [23] and is also used in our experimental
platform.

The AMBA AXI protocol contains five communication channels:
write/read address channels, write data channel and write/read re-
sponse channels. An on-chip transaction always initializes from the
write/read address channel, which presents the necessary information
of the transaction. Hence, the IMU is only required to monitor these
two channels. For example, in the write address channel, a transaction
initializes by setting the AWVALID and AWREADY signals to 1. At the
same time, the control signals AWID, AWLEN and AWSIZE become
valid for representing the destination, length and size of the transac-
tion.2 The data volume of this transaction (denoted as 𝜐∗) is calculated
in Eq. (1).

𝜐∗ = AWLEN × AWSIZE, if AWVALID & AWREADY = 1 (1)

As shown in Fig. 6, the example initializes three I/O data packets,
which are sent to tasks 1, 2 and 6 with volume (5×64÷8 =) 40, 32 and
16 bytes, respectively.

IMU_R design. The design of the IMU_R is shown in Fig. 7, which con-
tains the main components of a run-time sampler, an access interface
and memory banks.

The memory banks store the volume of unprocessed data for each
task (i.e., 𝜐𝑖). The memory address reserved for 𝜐𝑖 is calculated as
𝑖 × 0𝑥04. During system execution, the sampler decomposes each cap-
ured I/O packet using the previously introduced method, returning its
estination (i.e., task 𝜏𝑑) and volume (i.e., 𝜐∗). The sampler then adds
∗ to the volume of unprocessed data for 𝜏𝑑 (i.e., 𝜐𝑑 = 𝜐𝑑+𝜐∗) and stores

the calculated result back in the corresponding address in the memory
(i.e., 𝑑 × 0𝑥04).

Additionally, the access interface introduces two control registers
and a data register, accessed by the MSU via an internal bus. Write-only
Register 0 determines the operated address of the memory bank, Register
2 controls operations (e.g., value clear), and Register 1 (read-only)
reports the unprocessed data volume of the selected memory address
given by Register 0. For example, to acquire the task 𝜏4 unprocessed
data volume, the MSU first sets Register 0 to 0𝑥10, then reads data from
Register 1.

2 The relationship between AWID and a task ID is defined by the system
esigner. In this paper, we consider these two IDs are always equal.

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.

o

4

I
t
n
n
c
d
t
s
d
m
d
o
t

Fig. 4. Pythia-coprocessor in a NoC system (C: Processor core; Cop: Pythia-coprocessor; R: Router/Arbiter; MC: Memory controller). The blue and pink circles indicate two locations
f I/O monitoring: at a router or I/O pins. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Top-level design of Pythia-coprocessor.
Fig. 6. Example of write address channel (Waveform) in AMBA AXI.
u
m
f
f
d

S

S

.2. I/O Monitor Unit at I/O Pins (IMU_P)

/O data decomposition. When transferring I/O data to a system,
ransactions are always first sent to the I/O pins via serial I/O commu-
ication protocols [17], e.g., SPI, I2C, etc. Unlike the on-chip commu-
ication protocols unified throughout the system, multiple serial I/O
ommunication protocols are often involved in the same system for
ifferent application scenarios. For instance, LIN, CAN and FlexRay are
hree commonly used serial communication protocols in automotive
ystems, designed for different communication speeds. In Pythia-MCS,
ifferent IMU_Ps have been designed and implemented to support com-
only used serial communication protocols. Here, we detail the I/O
ata decomposition and design methods of IMU_P using the example
f FlexRay [24], which is the most complicated high-speed protocol of
5

hose we implemented.
In order to save the usage of I/O pins, serial I/O communication
sually involves fewer channels than on-chip communication. This
eans that in serial I/O communication, most information is trans-

erred using the same channel and organized with a restricted frame
ormat. Therefore, we propose a 2-step method to decompose the I/O
ata:

tep 1 — Protocol decomposition: the 1 and 0 signals at the I/O
pins are converted to valid transaction messages based on the
corresponding serial communication protocol.

tep 2 — Frame format decomposition: the converted transaction
messages are analyzed to extract their targets and volumes based

on the corresponding frame format.

Journal of Systems Architecture 130 (2022) 102683

6

Z. Jiang et al.

Fig. 7. Design of IMU_R (MC: Memory Controller; DES: Register for Destination; VOL: Register for Data Volume).

Fig. 8. Example of FlexRay transaction frames and waveform.

Fig. 9. Design of IMU_P. The decoder is required to be updated to support different serial communication protocols.

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.

f

i

I
n
I
I
d
M

C
l
u
r
t
t
c
i
u
b
T
e
t
‘
t
i
r
t
a
c
t

4

i
i
I
W
p
t
T
a
T
a

e

P

P

P

M

H
c
M
p
m
a

H
h
m
E
D
p
D
s
m
D
w

g
s
c
a

4

t
e
m

P
a
d
d
C
s
I

j
m

E
e
t
A
a
c
c

C

The FlexRay communication protocol involves four essential pins
(single-bit) [24]: TX_D, RX_D, TX_EN, and RX_EN. Specifically, TX_D
(RX_D) indicates the data sent from a master (slave) to a slave (master),
and the TX_EN (RX_EN) determines the validness of the corresponding
data line (see the lower part of Fig. 8). Therefore, to acquire valid
transaction messages in protocol decomposition, IMU_P must capture
these 4 I/O pin values. Moreover, the data transferred on the TX_D or
RX_D always follows a fixed format (see the upper part of Fig. 8): the
first 5 bits initialize a transaction, followed by header frames, payload
frames and trailer frames. These frames respectively store the necessary
information, payload, and the transaction CRC check. In the header
frame, the 6th–17th bits and the 18th–25th bits indicate the transaction’s
destination and data volume (𝜐∗), respectively, which are desired in
rame format decomposition.

As shown in Fig. 8, the example initializes an I/O data packet, which
s sent to task 5 with volume 7 bytes.

MU_P design. Fig. 9 shows the design of IMU_P. The main compo-
ents are a run-time sampler, an access interface and memory banks.
MU_P uses the same design of access interface and memory banks as
MU_R, ensuring compatibility between the two types of IMU — the
esigns abstract unified access interfaces and memory addresses for the
SU.

The run-time sampler in IMU_P contains three main modules: a
lock Domain Cross (CDC) module, a decoder and a memory control

ogic. Since the signals sent to the I/O pins are generated off-chip,
sually belonging to an unknown frequency domain, a CDC module is
equired to avoid occurrences of metastable states [17]. We implement
he CDC module as a two-level register chain, eliminating 99% of
he metastable states [17]. The decoder decomposes the transactions
aptured at the I/O pins using the introduced 2-level method, returning
ts destination (i.e., 𝜏𝑑) and volume (𝜐∗). The decoder (shown in the
pper part of Fig. 9) is based on a counter, a status checker, and two
uffers. At run-time, the counter records orders of transmitted bits on
X_D (RX_D), and it increases when both TX_EN (RX_EN) and CLK are
qual to ‘1’. At the same time, the status checker synchronizes with
he counter and determines current transaction status: ‘payload length’,
frame ID’, ‘others’, or ‘end’. When the payload length or frame is
ransmitted, the decoder stores the value received from TX_D (RX_D)
n a data buffer. When the current status is ‘end’, the status checker
esets the counter, and the decoder omits the ‘others’ status. At the same
ime, the status checker also updates the acquired transaction status to
status buffer. When both data and status are transmitted to memory

ontrol logic, the memory control logic updates the corresponding
ask’s data volume in the memory banks after a simple calculation.

.3. Mode Switch Unit (MSU)

As the brain of the Pythia-coprocessor, MSU takes charge of trigger-
ng a mode switch. As introduced in Design Concept 2, a mode switch
s triggered by: (i) any I/O-related hi-task exceeding its TH-I/O at the
/O access point; or, (ii) any I/O-independent hi-task exceeding its lo-

CET. To optimize the design of the MSU, we set a virtual I/O access
oint and a virtual TH-I/O for each I/O-independent hi-task, where
he virtual I/O access point was the lo-WCET and the TH-I/O was −1.
herefore, when an I/O independent task executes at its virtual I/O
ccess point, the task will always exceed the corresponding TH-I/O.
his method unifies the criteria for mode switch for both I/O-related
nd I/O-independent tasks.

The MSU determines the necessity of a mode switch using three
xecuting phases:

hase 1 — Offline preloading: before run-time, the (virtual) I/O ac-
cess point (𝐶s𝑖) and (virtual) TH-I/O (𝛶 l𝑖) of each hi-task (𝜏𝑖) are
7

grouped and stored in the MSU.
hase 2 — Online synchronization: during run-time, the MSU con-
tinuously synchronizes with the OS kernel, which updates the
computation time (𝐶𝑖) of the currently executing hi-task (𝜏𝑖), and
the IMUs, which update the currents hi-task’s unprocessed I/O
data volume (𝜐𝑖).

hase 3 — Decision making: at 𝐶s𝑖 of each 𝜏𝑖, the MSU compares the
𝜐𝑖 against 𝛶 l𝑖 . If 𝜐𝑖 > 𝛶 l𝑖 , the MSU triggers an interrupt for mode
switch. After comparison, the MSU resets 𝜐𝑖 to 0, as the data will
be now processed by 𝜏𝑖.

To support these three executing phases, we introduce two possible
SU design methods:

ardware/software co-design (Fig. 10(a)). The hardware/software
o-design propounds software executed on a ready-built processor (e.g.,
icroBlaze [25] or RISC-V [26]). The preloaded (virtual) I/O access

oint and (virtual) TH-I/O of each hi-task (Phase 1) are stored in a
emory unit; the run-time synchronization and comparison (Phases 2

nd 3) is handled by the software executed on the processor.

ardware-only design (Fig. 10(b)). Compared to the
ardware/software co-design, the hardware-only method retains the
emory unit, but replaces the processor with two decision-makers.
ach decision-maker contains a synchronizer and a comparator.
ecision-maker I synchronizes with the OS kernel and then com-
ares the synchronized result with the (virtual) I/O access point.
ecision-maker II synchronizes with the IMU and then compares the

ynchronized result with the (virtual) TH-I/O. When both decision-
akers return 1, an interrupt for mode switch is generated. Note that
ecision-maker I returns 1 when 𝐶𝑖 = 𝐶s𝑖 . Decision-maker II, returns 1
hen 𝜐𝑖 > 𝛶 l𝑖 .

In both design methods, we introduce (i) a shadow register to
uarantee timing synchronization between the MSU and the entire
ystem; and, (ii) communication interfaces to the EMU to report the
urrent system mode (denoted 𝐿). The current system mode is stored
t the last memory address.

.4. Energy Management Unit (EMU)

Pythia-MCS brings extra hardware implementation, which poten-
ially increases overall power consumption. To improve the energy
fficiency of Pythia-MCS, we now propose an energy management
ethod with a corresponding EMU.

ower Domains We partition Pythia-MCS into two power domains:
lways-on power domain (AON domain) and isolated power domain (ISO
omain). The clocks and power of AON domain cannot be switched off
uring run-time. This domain contains the core system, MSU and EMU.
onversely, the clocks and power of the ISO domain can be optionally
witched off by EMU. This domain includes all IMUs and the connected
/Os. Fig. 5 also shows this partitioning.

The partitioning of power domains provides a possibility to ad-
ust energy consumption in Pythia-MCS. We now detail the energy
anagement framework and EMU design.

nergy Management Framework Fig. 11 shows an overview of the
nergy management framework: an EMU connects the many-core sys-
em, MSU, IMUs, I/Os, and a DC-DC converter (off-chip), respectively.
t run-time, EMU periodically synchronizes with the many-core system
nd MSU, and then controls the clocks and power of the ISO domain
orrespondingly. Power consumption of the system is controlled via
lock gating and power gating :

lock gating: clock gate modules are inserted between ISO domain
and the clock sources. Hence, the EMU can turn the clock of

any specified IMU and I/O on/off.

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.
Fig. 10. Design of MSU (MC: Memory Controller).
Power gating: The EMU is connected to an off-chip DC-DC converter,
which drives the voltage of ISO domain. Hence, the EMU can
switch the power of the entire ISO domain on/off.

The clock and power gating can effectively reduce the static and
dynamic power consumption of Pythia-MCS, respectively.

Energy Management Methods and EMU Design. We now introduce
two energy management methods:

Passive control: The EMU receives energy control requests from the
core system (applications) and then manages the clocks/power
correspondingly.

Active control: The EMU checks the current system mode and then
automatically switches off the clocks/power of the unused part(s)
in the ISO domain.

Unlike passive control, which directly forwards energy control re-
quests, active control involves more complicated execution procedures.
Before system execution, the criticality of each I/O is stored (denoted
as 𝑙io𝑖) in the EMU. Here, the ‘criticality of an I/O’ indicates the highest
criticality of the task which may access this I/O. During system execu-
tion, the EMU continuously synchronizes with the MSU to acquire the
current system mode (𝐿), which it then compares against each 𝑙io𝑖 . If
𝑙io < 𝐿, the EMU switches off the clock of this I/O and the associated
8

𝑖

IMU. If 𝐿 is higher than all 𝑙io𝑖 , EMU turns off the power of the entire
ISO domain.

To support energy management methods, we introduce the EMU
design in Fig. 12. Its main components are a power control IP, a
decision-maker and a memory module. The power control IP manages
low-level control of clock and power gating, which can be configured
using an off-the-shelf IP, e.g., an ARM power policy unit [27]. In
passive control, energy control requests are directly passed through
to the power control IP. In active control, the pre-loaded criticality
of each I/O is stored in memory banks; the run-time synchronization
and comparison are respectively handled by a synchronizer and a
comparator in the decision-maker. Finally, a multiplexer is presented
to switch the two energy control methods.

Conflicts Handler. The two energy control methods could cause a
conflict when they manage the clocks/power at the same time. As
discussed above, passive control is generated by applications during
system execution, whereas active control is determined before system
execution. Therefore, passive control is more flexible, as it can react
to practical run-time situations, e.g., malfunctions from underlying
hardware or the external environment. We hence deem that passive
control is more privileged than active control.

With this in mind, we propose a conflicts handler to detect and man-
age conflicts: passive control can always switch on/off the clocks/power

of the parts managed by active control. That means when both active

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.
Fig. 11. Energy management framework in Pythia-MCS.
Fig. 12. Energy Management Unit (EMU).
S

a
o
c
l
e
n
T
t
c
d

5

o

and passive controls try to manage the clocks/power simultaneously,
the conflicts handler will disable passive control as erroneous. More-
over, the system designer can also configure the conflicts handler to
decide the time effectiveness of a passive control request, allowing the
system to switch back to active control automatically. For instance, a
passive control request can always be valid, or only be valid for a
specific time period.

We have described the system architecture and the design methods
of the Pythia-MCS. In the next section, we study the benefits for
schedulability analysis that can be obtained from enabling clairvoyance
in the Pythia-MCS.

5. Schedulability analysis

Although clairvoyance in general indicates the ability to look into
the future, in MC scheduling, a few different degrees of clairvoyance are
investigated in the recent literature [13]. An intermediate concept of
semi-clairvoyance, which lies between the two extremes of clairvoyance
and non-clairvoyance, has been introduced [13]. The terms are briefly
explained below:

Clairvoyance. Whether any job will overrun its lo-WCET is known
from the beginning, i.e., at time 0. That is, whether this system
run is in lo- or hi- mode would have been known before the
system started.
9

emi-Clairvoyance. Whether a job will overrun its lo-WCET becomes
known right at the release of a job. The system is notified of a
mode switch from lo to hi at the release of the first job that will
overrun its lo-WCET.

Non-Clairvoyance. Whether a job will overrun its lo-WCET remains
unknown until an overrun is observed during run-time. The
system can only be notified of a mode switch from lo to hi when
a job misses its lo-WCET, but has not completed.

In terms of the above terminology, our system architecture provides
certain degree of clairvoyance, as it falls between the two extremes

f clairvoyance and non-clairvoyance. However, the limitations of the
lairvoyance our architecture provides does not exactly match the
imitations defined by semi-clairvoyance. In particular, our architecture
nables looking-into-the-future, but not when a job releases; the job
eeds to execute for a certain amount of time first (up to lo-WCET).
herefore, we position the degree of clairvoyance our system archi-
ecture provides between semi-clairvoyance and non-clairvoyance. We
all this degree of clairvoyance quarter-clairvoyance, specified in more
etail below.

.1. System model

We consider the scheduling of a set of 𝑛 MC tasks 𝜏 = {𝜏1, 𝜏2,… , 𝜏𝑛}
n a single processor to which 𝜏 is assigned. Each MC sporadic task

𝜏 releases a (potentially infinite) sequence of jobs with a minimum
𝑖

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.

r

𝜏
h
o
f
d
a
n
i

(
W

𝑈

S
M

A
𝐶
c

Q
d
p
d
f
b
b
m
o
w
u
a
s
𝐶
c
M

Fig. 13. An illustration for dividing an hi-job into sub-jobs in lo-mode.
separation of 𝑇𝑖 time units between any two consecutive jobs of 𝜏𝑖,
where 𝑇𝑖 is the period of 𝜏𝑖. The 𝑗th job of task 𝜏𝑖 is denoted 𝜏𝑖,𝑗 . It is
eleased at time 𝑎𝑖,𝑗 and has an absolute deadline at 𝑑𝑖,𝑗 = 𝑎𝑖,𝑗+𝐷𝑖 where
𝐷𝑖 is the relative deadline of task 𝜏𝑖. We focus on implicit deadlines, i.e.,
𝐷𝑖 = 𝑇𝑖 for all 𝑖.

We consider a dual-criticality task system, where each task in 𝜏 is
a hi-task or a lo-task. That is, 𝜏hi ∪ 𝜏lo = 𝜏 and 𝜏hi ∩ 𝜏lo = ∅ where
hi denotes the set of hi-tasks and 𝜏lo denotes the set of lo-tasks. A
i-task 𝜏𝑖 has two WCET estimates: one extremely pessimistic but safe
ne (e.g., by static timing analysis and/or inflated by a safety-margin
actor) denoted 𝐶h𝑖 , and a less pessimistic one (e.g., by measurement)
enoted 𝐶l𝑖 , where it is clear that 𝐶h𝑖 ≥ 𝐶l𝑖 . By contrast, the WCET of
lo-task 𝜏𝑘 has only one (less-pessimistic) estimate denoted 𝐶l𝑘 . Please
ote, a hi-task (lo-task) job is also called a hi-job (lo-job, respectively)
n the paper.

Each hi-task 𝜏𝑖 has lo-utilizations (𝑢l𝑖 = 𝐶l𝑖 ∕𝑇𝑖) and hi-utilizations
𝑢h𝑖 = 𝐶h𝑖 ∕𝑇𝑖), while lo-tasks 𝜏𝑘 have only a lo-utilization (𝑢l𝑘 = 𝐶l𝑘∕𝑇𝑘).
e also denote:

l
hi =

∑

𝜏𝑖∈𝜏hi
𝑢l𝑖 , 𝑈

h
hi =

∑

𝜏𝑖∈𝜏hi
𝑢h𝑖 , and 𝑈llo =

∑

𝜏𝑖∈𝜏lo
𝑢l𝑖 .

chedulability criteria. The MC sporadic task system 𝜏 is deemed
C-schedulable if and only if it is guaranteed that:

• all (hi- and lo-) jobs meet their deadlines if every job 𝜏𝑖,𝑗 com-
pletes within 𝐶l𝑖 time units of execution; and,

• all hi-jobs meet their deadlines if every hi-job 𝜏𝑖,𝑗 completes within
𝐶h𝑖 time units of execution.

ny hi-job 𝜏𝑖,𝑗 having executed 𝐶h𝑖 , or any lo-job having executed
l
𝑖 , but not completing is terminated immediately, or the system is
onsidered erroneous.

uarter-clairvoyance. So far, the above task model matches the tra-
itional MC sporadic task model introduced in [6]. In light of the
redicting coprocessor architecture presented in this paper, we intro-
uce one more parameter, 𝐶s𝑖 (see Section 2.2 for the measurement),
or each hi-task 𝜏𝑖 to model the certain clairvoyance our architecture
rings.3 Specifically, it is not necessary to wait until observing the
ehavior of a hi-job 𝜏𝑖,𝑗 overrunning 𝐶l𝑖 to switch the system to hi-
ode; once a hi-job 𝜏𝑖,𝑗 has completed 𝐶s𝑖 ≤ 𝐶l𝑖 time units execution,

ur proposed architecture can predict4 whether 𝜏𝑖,𝑗 is able to complete
ithin 𝐶l𝑖 time-unit accumulative execution or may need up to 𝐶h𝑖 time-
nit accumulative execution to finish. That is, the scheduler may foresee
future hi-job overrun and make the mode switch earlier to obtain better
chedulability. In addition, please note that in the special case where
s
𝑖 = 𝐶l𝑖 for every hi-task 𝜏𝑖 (e.g., an I/O-independent task), quarter-
lairvoyance MC scheduling reduces to traditional non-clairvoyance
C scheduling.

3 The ‘‘s’’ in 𝐶s𝑖 stands for triggering mode switch.
4 We would also like to note that given the definition of 𝐶s𝑖 , the specific

time instant at which a prediction can be made also depends on the specific
scheduling algorithm that is applied. In contrast, in the semi-clairvoyance
model [13], such prediction is always made at a job’s release regardless of
10

which scheduling algorithm is applied. s
5.2. Algorithm EDF-VDSD

For the traditional scheduling of implicit-deadline sporadic tasks,
EDF-VD [6] has been widely studied. Under EDF-VD, each hi-job is
assigned a virtual deadline, which is earlier than its actual deadline. In
lo-mode, both hi- and lo-tasks are scheduled by EDF according to the
virtual deadlines of hi-jobs and actual deadlines of lo-jobs. On a mode
switch to hi-mode, lo-tasks are dropped and hi-jobs are then scheduled
by EDF according to their actual deadlines.

With quarter-clairvoyance MC tasks, we propose a new scheduling
algorithm, called EDF-VDSD,5 to improve schedulability by leveraging
the clairvoyance obtained from the coprocessor.

Pre-runtime processing. Similar to EDF-VD, EDF-VDSD also calculates
a relative virtual deadline for each hi-task 𝜏𝑖 using 𝐷v𝑖 = 𝑥 ⋅ 𝑇𝑖, where

𝑥 =
𝑈lhi

1−𝑈llo
. Furthermore, a relative switching deadline, 𝐷s𝑖 , for each

hi-task is calculated using

𝐷s𝑖 =
𝐶s𝑖
𝐶l𝑖

⋅𝐷v𝑖 ⟹
𝐶s𝑖
𝐷s𝑖

=
𝐶l𝑖
𝐷v𝑖

=
𝑢l𝑖
𝑥

(2)

That is, each hi-job 𝜏𝑖,𝑗 has a virtual deadline at 𝑑v𝑖,𝑗 = 𝑎𝑖,𝑗 + 𝐷v𝑖 and a
switching deadline at 𝑑s𝑖,𝑗 = 𝑎𝑖,𝑗 +𝐷s𝑖 .

Run-time scheduling. During run-time, a deadline-based scheduling
scheme is applied. In lo-mode, every lo-job is scheduled using its
actual deadline as the priority, and every hi-job is considered as split
into two sub-jobs. In particular, for every hi-job 𝜏𝑖,𝑗 , its first 𝐶s𝑖 time
units execution is considered as the first sub-job and scheduled by the
switching deadline 𝑑s𝑖,𝑗 as the priority; any execution beyond 𝐶s𝑖 time
units up to 𝐶l𝑖 is considered as the second sub-job with a pseudo-release
time at 𝑑s𝑖,𝑗 and a maximum execution of 𝐶l𝑖 − 𝐶s𝑖 time units. The
second sub-job is scheduled by the virtual deadline 𝑑v𝑖,𝑗 as the priority.
Fig. 13 illustrates sub-job splitting. Please note that during run-time,
the second sub-job may be executed even before its pseudo-release, 𝑑s𝑖,𝑗
without jeopardizing any schedulability result, because early released
sub-jobs have no impact on schedulability analysis under preemptive
EDF scheduling, as long as their deadlines (and therefore, priorities)
are not altered [28,29].

A mode switch from lo-mode to hi-mode may happen at the moment
when a hi-job 𝜏𝑖,𝑗 has completed 𝐶s𝑖 time units of execution, i.e., at
the time instant when its first sub-job has completed. At that moment,
it would be revealed to the scheduler whether 𝜏𝑖,𝑗 needs to execute
for more than 𝐶l𝑖 time units to complete, and therefore the scheduler
decides whether a mode switch should be triggered. On a mode switch
to hi-mode during run-time, all lo-jobs are immediately discarded, and
all (pending and to-be-released) hi-jobs are henceforth scheduled by
EDF according to their actual deadlines. That is, all switching and virtual
deadlines are disregarded and do not have an effect in hi-mode.

5.3. Schedulability test

We now analyze schedulability under EDF-VDSD and propose a
schedulability test running in polynomial time.

5 EDF-VDSD stands for ‘‘earliest-deadline-first with virtual deadlines and
witching deadlines’’.

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.

d
a

𝑥

𝜏
c
f
h
v
s
t
c
r

𝜏

T

𝑡
b

t
c

𝑢

5

i
S

C
c
c
t
E
E

i
q
t
T
e
E

E
𝜏
𝐶
s
𝐶

Lemma 1. Under EDF-VDSD, in lo-mode, all lo-jobs meet their actual
eadlines, all first sub-jobs of hi-jobs meet their switching deadlines, and
ll second sub-jobs meet their virtual deadlines, if

≥
𝑈lhi

1 − 𝑈llo
. (3)

Proof Sketch. First, we consider a fluid schedule, where each lo-task
𝑖 is continuously assigned an execution rate of 𝑢l𝑖 and each hi-task 𝜏𝑘 is
ontinuously assigned an execution rate of 𝑢l𝑘∕𝑥. It is clear that in this
luid schedule all lo-jobs meet their actual deadlines, all first sub-jobs of
i-jobs meet their switching deadlines, and all second sub-jobs meet their
irtual deadlines. By viewing these lo-jobs, first sub-jobs, and second
ub-jobs as just a set of ‘‘jobs’’ with each ‘‘job’’ having its ‘‘deadline’’ at
heir corresponding actual, switching, and virtual deadline in the three
ases, all ‘‘jobs’’ meet their ‘‘deadlines’’. Furthermore, the total assigned
ates are

∑

𝑖∈𝜏hi

𝑢l𝑖
𝑥

+
∑

𝜏𝑖∈𝜏lo
𝑢l𝑖 =

𝑈lhi
𝑥

+ 𝑈llo
{by(3)}
≤ 1.

herefore, this fluid schedule is feasible.
On the other hand, under EDF-VDSD, the ‘‘job set’’ of these lo-jobs,

first sub-jobs, and second sub-jobs is scheduled exactly, following EDF,
where their ‘‘deadline’’ is defined by their corresponding actual, switch-
ing, and virtual deadlines, respectively. Due to the optimality of EDF
in preemptive uniprocessor scheduling, the existence of a feasible fluid
schedule implies that EDF-VDSD also guarantees that all ‘‘deadlines’’ of
the ‘‘jobs’’ are met. The lemma is as follows: □

Lemma 2. Given that 𝑥 ≥
𝑈lhi

1−𝑈llo
, under EDF-VDSD, in the hi-mode, all

hi-jobs meet their actual deadlines, if

∑

𝜏𝑖∈𝜏hi
max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢h𝑖

1 −
𝐶s𝑖
𝐶l𝑖

⋅ 𝑥
,
𝑢l𝑖 −

𝐶s𝑖
𝑇𝑖

1 − 𝑥

⎫

⎪

⎪

⎬

⎪

⎪

⎭

≤ 1. (4)

Proof Sketch. Given that 𝑥 ≥
𝑈lhi

1−𝑈llo
, by Lemma 1, the switching

deadline is the latest time instant for each hi-job to trigger a mode
switch.

We consider the density (i.e., the ratio of the remaining workload
to the remaining time units until its deadline) of each carry-over (i.e.,
released before 𝑡∗ but has not completed by 𝑡∗) hi-job at the mode
switch time instant 𝑡∗. Then, an arbitrary carry-over hi-job 𝜏𝑖,𝑗 must be
in one of the following two cases: (i) 𝑡∗ ≤ 𝑑s𝑖,𝑗 and (ii) 𝑑s𝑖,𝑗 < 𝑡∗ ≤ 𝑑v𝑖,𝑗 .
Note that it cannot be the case that 𝑡∗ > 𝑑v𝑖,𝑗 , because in that case, either
the mode switch would have been triggered by 𝜏𝑖,𝑗 at 𝑑s𝑖,𝑗 earlier than
∗ (𝜏𝑖,𝑗 executes for more than 𝐶l𝑖) or 𝜏𝑖,𝑗 would have been completed
y 𝑑v𝑖,𝑗 < 𝑡∗ (𝜏𝑖,𝑗 executes for at most 𝐶l𝑖).

In case (i), the density of 𝜏𝑖,𝑗 is at most

𝐶h𝑖
𝑑𝑖,𝑗 − 𝑡∗

≤
𝐶h𝑖

𝑑𝑖,𝑗 − 𝑑s𝑖,𝑗
=

𝐶h𝑖
𝑇𝑖 −𝐷s𝑖

=
𝑢h𝑖

1 −
𝐷s𝑖
𝑇𝑖

=
𝑢h𝑖

1 −
𝐶s𝑖
𝐶l𝑖

⋅ 𝑥
,

where the last equality is because of (2).
In case (ii), 𝜏𝑖,𝑗 ’s total execution time is at most 𝐶l𝑖 ; otherwise, it

would have triggered the mode switch earlier. In addition, it must have
executed 𝐶s𝑖 time units by 𝑡∗ which is after 𝑑s𝑖,𝑗 . Therefore, the density
of 𝜏𝑖,𝑗 is at most

𝐶l𝑖 − 𝐶s𝑖
𝑑 − 𝑡∗

≤
𝐶l𝑖 − 𝐶s𝑖

v =
𝐶l𝑖 − 𝐶s𝑖

v =
𝑢l𝑖 −

𝐶s𝑖
𝑇𝑖

1 − 𝑥
.

11

𝑖,𝑗 𝑑𝑖,𝑗 − 𝑑𝑖,𝑗 𝑇𝑖 −𝐷𝑖
Thus, in a fluid schedule in hi-mode, if each hi-task 𝜏𝑖 is assigned a
constant execution rate

𝑓𝑖 = max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢h𝑖

1 −
𝐶s𝑖
𝐶l𝑖

⋅ 𝑥
,
𝑢l𝑖 −

𝐶s𝑖
𝑇𝑖

1 − 𝑥

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

hen all deadlines in hi-mode must be met. Please note that all non-
arry-over hi-jobs in hi-mode will also meet their deadlines due to

h
𝑖 ≤

𝑢h𝑖

1 −
𝐶s𝑖
𝐶l𝑖

⋅ 𝑥
≤ 𝑓𝑖.

That is, if ∑

𝜏𝑖∈𝜏hi
𝑓𝑖 ≤ 1, then the fluid schedule (starting from 𝑡∗)

is feasible. Due to the optimality of EDF in preemptive uniprocessor
scheduling, the existence of a feasible fluid schedule implies that EDF
scheduling (by actual deadlines) the hi-tasks starting from 𝑡∗, which
is exactly what EDF-VDSD does, also guarantees that all deadlines (of
hi-tasks) are met in hi-mode. Thus, the lemma follows. □

Theorem 1. The task system is MC-schedulable if

∑

𝜏𝑖∈𝜏hi
max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢h𝑖

1 −
𝐶s𝑖
𝐶l𝑖

⋅
𝑈lhi

1−𝑈llo

,
𝑢l𝑖 −

𝐶s𝑖
𝑇𝑖

1 −
𝑈lhi

1−𝑈llo

⎫

⎪

⎪

⎬

⎪

⎪

⎭

≤ 1. (5)

Proof. Setting 𝑥 =
𝑈lhi

1−𝑈llo
and by the above two lemmas, the theorem

follows. It directly implies a sufficient schedulability test running in
(𝑛) time, where 𝑛 is the number of tasks. □

.4. Discussions

We next discuss the benefits EDF-VDSD brings from an analyt-
cal perspective. Empirical studies and evaluation are presented in
ection 6.

omparison with non-clairvoyance EDF-VD. It is clear that the spe-
ial case where ∀𝑖 ∈ 𝜏hi, 𝐶

s
𝑖 = 𝐶l𝑖 reduces quarter-clairvoyance to the

onventional non-clairvoyance MC scheduling model. By investigating
his special case, we find our schedulability test dominates the first
DF-VD analysis in [30], which is also dominated by a later improved
DF-VD analysis in [6].

Unfortunately, our schedulability test does not have a strict dom-
nance over the improved EDF-VD analysis in [6]. Nonetheless, the
uarter-clairvoyance MC scheduling model and EDF-VDSD bring cer-
ain advantages over EDF-VD, even with the improved analysis in [6].
he following example is not deemed schedulable under EDF-VD,
ven with the analysis in [6], while it is deemed schedulable under
DF-VDSD by our analysis.

xample 1. Consider a system with only two tasks 𝜏1 and 𝜏2, where
1 is a hi-task and 𝜏2 is a lo-task. For the hi-task 𝜏1, 𝑇1 = 10, 𝐶h1 = 8,
l
1 = 3, and 𝐶s1 = 1; for the lo-task 𝜏2, 𝑇2 = 10, 𝐶l2 = 5. That is, in this
ystem, 𝑈hhi = 0.8, 𝑈lhi = 0.3, 𝑈llo = 0.5, 𝑥 = (0.3)∕(1 − 0.5) = 0.6, and
s
1∕𝐶

l
1 = 1∕3.

Under non-clairvoyant EDF-VD,

𝑈lhi
1 − 𝑈llo

= 0.3
1 − 0.5

= 0.6 > 0.4 = 1 − 0.8
0.5

=
1 − 𝑈hhi
𝑈llo

,

which means that even the improved EDF-VD schedulability test in [6]
fails.

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.

a

T

A
d
t
a
c
p
s

1

-

By contrast, under EDF-VDSD,

𝑢h1

1 −
𝐶s1
𝐶l1

⋅
𝑈lhi

1−𝑈llo

= 0.8
1 − 1

3 × 0.6
= 1,

nd
𝑢l1 −

𝐶s1
𝑇1

1 −
𝑈lhi

1−𝑈llo

= 0.3 − 0.1
1 − 0.6

= 0.5.

hus, by Theorem 1, this system is schedulable by EDF-VDSD.

n integrated algorithm EDF-VDSD+. Because schedulability can be
etermined offline by system parameters that are known prior to run-
ime, we can integrate algorithms EDF, EDF-VD, and EDF-VDSD to
chieve even better schedulability. The resulting integrated algorithm,
alled EDF-VDSD+, is presented in Algorithm 4. Intuitively, by ex-
loring the respective schedulability tests, EDF-VDSD+ will select the
implest of the three algorithms which can guarantee schedulability.

Algorithm 4: Pseudo-Code for EDF-VDSD+

1 if 𝑈llo + 𝑈hhi ≤ 1 then
2 Apply ordinary EDF from the beginning (i.e., no MC and no mode

switch at all), and declare SUCCESS;
3 else

4 if
𝑈lhi

1−𝑈llo
≤

1−𝑈hhi
𝑈llo

then

5 Apply EDF-VD, and declare SUCCESS;
6 else

7 if ∑

𝜏𝑖∈𝜏hi
max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢h𝑖

1−
𝐶s𝑖
𝐶l𝑖

⋅
𝑈lhi

1−𝑈llo

,
𝑢l𝑖 −

𝐶s𝑖
𝑇𝑖

1−
𝑈lhi

1−𝑈llo

⎫

⎪

⎪

⎬

⎪

⎪

⎭

≤ 1 then

8 Apply EDF-VDSD, and declare SUCCESS;
9 else

10 Declare FAILURE.
11 end
12 end
3 end

6. Experimental evaluation

In this section, we conduct extensive experiments and a real-world
case study to evaluate Pythia-MCS.

Experimental Platform. We built the Pythia-MCS on a Xilinx VC709
evaluation board. Specifically, the Pythia-coprocessor was implemented
using BlueSpec System Verilog [31] and connected to a 7 × 7 mesh type
open-source NoC [20]. As well as the Pythia-coprocessor, the NoC also
contained 32 MicroBlaze processors [25], memory and I/O peripherals.
The software executing on the processors (OS kernels and user applica-
tions) was compiled using a Xilinx MicroBlaze GNU tool-chain [25]. We
selected FreeRTOS (v.9.0.0) as the OS kernel for all processors, with the
modifications introduced in Section 3.4. The IMU in Pythia-coprocessor
was implemented using the methods described in Section 4.1 to support
I/O monitoring at the routers (denoted as PY_R) and pins (denoted
as PY_P). The MSU in the coprocessor was implemented using the
method described in Section 4.3, with hardware/software co-design
(denoted PY|hs) and hardware-only design (denoted PY|hw). Following
this naming strategy, we denote the implementation of Pythia-MCS
as PY_A|B, where A and B indicate the implementation methods of
the IMU and MSU, respectively. For instance, PY_R|hw represents the
system monitoring I/Os at the routers, designed using the hardware-
only method. To enable comparison, we also built a conventional MCS
framework (reviewed in Section 3.3) on a similar hardware architecture
(denoted MC|conv) without Pythia-coprocessor. The MC|conv system
architecture is shown in the upper part of Fig. 3. All architectures ran
at 100 MHz.
12
Fig. 14. Run-time software overhead. The software overhead is evaluated via memory
footprint (unit: KB).

6.1. Software overhead

In this section, we compare software overheads of the legacy sys-
tem,6 with MC|conv and all the variants of Pythia-MCS.

Experimental Setup. The software overhead was evaluated using the
run-time memory footprint [32], with specific consideration of the OS
kernel and execution monitor (memory size tool: Xilinx MicroBlaze
GNU tool-chain [25]). The legacy OS kernel was fully-featured with
essential I/O drivers [33]. Since PY_R and PY_P abstract a unified
interface to software level (described in Section 4), adopting different
methods of I/O monitoring does not affect the software overhead
of Pythia-MCS. In experimental results, we use PY_X to denote the
Pythia-MCS configured as either PY_R or PY_P.

Obs.1. An additional software overhead was sustained by the con-
ventional MCS framework compared to the legacy system. This is
effectively reduced in Pythia-MCSs.

This observation is shown in Fig. 14. In MC|conv, the introduction
of an execution monitor and the modifications to OS kernel bring an
additional 60 KB (75.9%) memory footprint compared to the legacy
system. By contrast, in both PY_X|hs and PY_X|hw, run-time monitoring
and mode switch triggers rely on the coprocessor. Hence, the imple-
mentation of the execution monitor was not required. The removal
of the execution monitor significantly reduced the run-time memory
footprint to 85 KB, which is slightly higher than the memory footprint
in the legacy system (7.6% extra). Please note, PY_X|hs requires an 18.3
KB memory footprint for the software execution on the coprocessor,
which is not counted in the software overheads of the main CPU(s).

6.2. Hardware overhead

Pythia-MCS requires additional hardware implementation for the
coprocessor. Hence, in this section, we evaluate the hardware overhead
of the Pythia-coprocessor.

Experimental Setup. We first configured Pythia-coprocessor to moni-
tor two I/Os (FlexRay); and then evaluated the coprocessor and both
basic and full-featured MicroBlaze processors (MB-B and MB-F), as well
as two mainstream I/O controllers (SPI and CAN). All components were
synthesized and implemented by Vivado (v2019.2) [19] and compared
using Look Up Tables (LUTs), registers, DSPs, Block RAMs (BRAMs) and
average power consumption [34].

Obs.2. The design of Pythia-coprocessor was resource-efficient com-
pared to generic CPUs. Its hardware consumption was slightly higher
than evaluated I/O controllers.

As shown in Table 1, when we implemented MSU using the hardware
only method, the coprocessor in PY_R|hw and PY_P|hw, required less
hardware than either MB-F (12.0% and 14.5% LUTs; 9.0% and 12.0%

6 A naive system, which does not support any MCS features.

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.

P
p
f
l
s

6

P

S

P
e
I

T

m
s
o

Fig. 15. Case study: success ratios of the hi-tasks in conventional MCS and Pythia-MCS (the 𝑥-axis denotes the target utilization).
W
p
d
s
r
o
c
S
d
a
f

f
s
f

E
s
t
c
f
1
F
s

E
s
(
e
t
e

O

a
a
t
t
a
i

O
s
e

a
o
o
r
g

h

Table 1
Hardware overhead (Implemented on FPGA).

LUTs Registers DSP RAM (KB) Power (mW)

MB-B 854 529 0 16 127
MB-F 4908 4385 6 128 258

CAN 711 604 0 0 5
SPI 632 427 0 0 4

PY_R|hw 587 396 0 16 109
PY_R|hs 973 583 0 16 133
PY_P|hw 714 527 0 16 122
PY_P|hs 1093 773 0 16 140

registers; 42.2% and 47.3% power consumption) or MB-B (68.7% and
83.6% LUTs; 74.9% and 99.6% registers; 85.8% and 96.1% power con-
sumption). Due to the integration of a mature processor,
PY_R|hs (PY_P|hs) consumed more hardware than PY_R|hw (PY_P|hw).
When compared to the CAN and SPI controllers, all variants of Pythia-
MCS had similar consumption of both LUTs and registers, but additional
memory consumption. The memory consumed additional power for
refresh [17]; hence, the coprocessors consumed more than 20 times
the power of the I/O controllers.

Obs.3. In Pythia-MCS, placing I/O monitoring at pins consumed more
hardware than placing it at routers.

This observation can be seen by comparing PY_R|hs (PY_R|hw) and
Y_P|hs (PY_P|hw) in Table 1. This is because monitoring I/O data at the
ins requires a more complicated decomposition of protocol and frame
ormat (see Section 4.2). The IMUs in PY_P hence involve more control
ogic and state machines compared to PY_P (detailed in Section 4.2) to
upport these procedures.

.3. Automotive case study

We now use an automotive case study to examine the benefits of
ythia-MCS over a conventional MCS framework.

ystems Configuration. To analyze the benefits brought by Pythia-
MCS with different I/O monitoring methods, MC|conv, PY_R|hs and
Y_P|hs were examined. We configured PY_X|hs as PY_X|hs-40∕70∕100,
nabling 40∕70∕100% of I/O-related tasks using I/O-driven mode switch.
n other words, PY_X|hs-z indicated the system was z% of Pythia-MCS.

ask sets. We introduced two sets of I/O-related tasks7:

• 20 automotive safety tasks, selected from Renesas automotive use
case database [18], e.g., CRC, RSA32, etc..

• 20 automotive function tasks, selected from EEMBC benchmark
[35], e.g., fast Fourier transform.

7 In order to demonstrate wide applicability, and the value of a true
ixed-criticality system, we randomly selected tasks from both real automotive

oftware and open-source benchmarks, in an attempt to capture a wide range
f tasks.
13
• synthetic workloads (in the lo-task category), selected from
EEMBC benchmark, which could be added into system to control
overall system utilization.

The hi-tasks had been certified as ASIL-D tasks [1], with analyzed
CETs (𝐶hi𝑖). Additionally, we employed a hybrid-measurement ap-

roach [36] to obtain measured WCETs for all tasks (𝐶lo𝑖). The raw
ata for processing by the tasks was randomly generated off-chip and
ent to the evaluated systems via two Ethernet controllers (10 Gbps) at
un-time. The hi-tasks experimental measurements (𝐶s𝑖 and 𝛶 l𝑖) were
btained using the method described in Section 2. The MC|conv also
ontained a simulated hi-task for the execution monitor (described in
ection 3.2), which was not required by PY_X|hs. Each task had a
efined period, with overall system utilization in both lo- and hi-mode
pproximately 50%. Following Section 5, we adopted implicit deadlines
or all tasks.

Notably, in practice, execution time of a task is affected by diverse
actors (e.g., cache miss rate); hence, adding synthetic workloads to a
ystem only gives the system a target utilization, which may be different
rom the actual system utilization.

xperimental Setup. We introduced three groups of experimental
etups, which activate 8∕16∕32 processors to execute the experimental
ask sets and synthetic workloads. In each experimental group, we exe-
uted the examined systems 500 times under varying target utilization
rom 50% to 100% (at intervals of 5% increases). Each execution lasted
00 s, which guaranteed all tasks could execute at least 250 times.
or fair comparison, we also ensured the data input to the examined
ystems was identical in each execution.

xperimental metrics. We used two metrics to evaluate the examined
ystems under each target utilization, success ratio and number of services
NoS). The success ratio recorded the percentage of an examined trail
xecuted without deadline miss of any hi-task, and the NoS measured
he number of lo-tasks executions. Figs. 15 and 16 demonstrate the
xperiment results.

bs.4. Introducing I/O-driven mode switch is beneficial.
This observation is supported by the results in Figs. 15(a), 15(b),

nd 15(c). As shown, with the same configuration, the Pythia-MCSs
lways outperform the conventional MCS. Moreover, we also obverse
hat a full Pythia-MCS (PY_X|hs-100) consistently outperformed the par-
ial Pythia-MCSs (PY_X|hs-70 and PY_X|hs-40). This means that having

higher percentage of the system involving I/O-driven mode switch
ntroduces more benefits.

bs.5. Increasing the number of processors significantly reduced the
uccess ratio of the conventional MCS framework. Such issues were
ffectively eliminated by Pythia-MCS.

This observation is shown in the comparison between Figs. 15(a)
nd 15(c). In a 8-core MC|conv, a significant drop in the success ratio
ccurred at 65% of target utilization, whereas this drop moved to 50%
f target utilization in a 32-core MC|conv. This observation mainly
esults from the additional on-chip interfaces and resource contention
enerated by the introduced processors and tasks.

In the Pythia-MCS, run-time monitoring is placed in hardware level;
ence, the Pythia-coprocessor can detect abnormal behaviors due to

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.
Fig. 16. Case study: Average NoS of lo-tasks (normalized by MC|conv).
large amounts of data generation promptly, and trigger a mode switch.
In a 32-core system (Fig. 15(c)), when target utilization approaches
100%, PY_X|hs-100 maintains a success ratio which is still higher than
95%. This observation demonstrates the benefits and applicability of
introducing the Pythia-MCS in multi-many-core architectures.

Obs.6. In Pythia-MCS, placing I/O monitoring at pins brought more
benefits than placing monitoring at routers.

As shown in Fig. 15, for the Pythia-MCSs with the same settings,
PY_P|hs always outperformed PY_R|hs. This is because monitoring I/O
data at the pins ensures the most timely mode switches, increasing the
overall success ratios.

Obs.7. Introducing the I/O-driven mode switch in Pythia-MCS de-
creased the lo-tasks’ NoS. The decrement is caused by the
miss-predictions of the mode switches.

This observation is given by Fig. 16. Compared to the conventional
MCS (MC|conv), the PY_X|hs-40 decreased the lo-tasks’ NoS by 7%.
Such decrement was further magnified in PY_X|hs-70 and PY_X|hs-100.
In the worst case, i.e., in PY_P|hs-100, the decrement of the lo-tasks’ NoS
reached up to 14.7%. This decrement is caused by the miss-prediction
of the mode switches, where the Pythia-MCS triggers a mode switch
when it is not necessary (i.e., false-positive). In the following section,
we specifically evaluate the accuracy of the prediction in Pythia-MCS.

6.4. Accuracy of prediction

Although Section 6.3 demonstrates the benefits brought by I/O-
driven mode switch in Pythia-MCS, we acknowledge that accuracy of
the prediction mechanism finally determines feasibility of the proposed
design. We now examine the accuracy of the prediction mechanism
considering two scenarios:

Scenario I: false negative. The Pythia-MCS misses a required mode
switch. This scenario causes safety hazards, since the lo-tasks
cannot be terminated in time.

Scenario II: false positive The Pythia-MCS triggers a mode switch
when it is not necessary. This scenario leads to system perfor-
mance loss, since lo-tasks are terminated unexpectedly.

Experimental Setup. We adopted the same experimental setup and
methods introduced in Section 6.3 with MC|conv and PY_X|hs (PY_X|hs-
100) being executed. Prediction accuracy was calculated using two
measures. Firstly, for all executing cases where MC|conv triggers mode
switch, accuracy of switch prediction calculates the percentage of ex-
ecuting cases where PY_X|hs also triggers the switch. Secondly, for
all executing cases where PY_X|hs triggers mode switch, accuracy of
overrun prediction calculates the percentage of executing cases where
MC|conv also triggers the switch. From the results (Fig. 17), we observe:

Obs.8. The prediction mechanism does not introduce additional safety
concerns in Pythia-MCS, as the system never missed a required mode
switch.
14
Fig. 17. Prediction accuracy of Pythia-MCS.

As shown in Fig. 17, the accuracy of switch prediction was constant
at 100% without experimental variance. This means that in all cases
where MC|conv triggered a mode switch, PY_X|hs also triggered the
mode switch. Therefore, Pythia-MCS successfully avoids Scenario I. This
observation benefited from the conservative selection of TH-I/O for
each hi-task introduced in Section 2.2.

Obs.9. The prediction mechanism leads to a certain level of system
performance loss, as the Pythia-MCS may pessimistically trigger a
mode switch when it is not required.

As shown in Fig. 17, in a 8-core PY_X|hs, the accuracy of over-
run prediction averaged around 90%, which means the Pythia-MCS
has about 10% probability of triggering an unrequired mode switch.
Therefore, Pythia-MCS does not completely avoid Scenario II.

Fortunately, with an increasing number of processors, this weakness
can be effectively alleviated. As shown, PY_X|hs raises the accuracy
of overrun prediction to around 93% for the 16-core system, and
95% for the 32-core. An explanation for this observation may be that
although the Pythia-MCS cannot provide 100% accuracy of overrun
prediction for every single task, the increasing number of tasks from
the introduced processors raises the likelihood that more than one
task triggers a mode switch simultaneously (and at least one actually
overruns 𝐶𝐿

𝑖 execution), which effectively mitigates the prediction gap
from the perspective of the entire system. With the observation, we
conjecture that the accuracy of overrun prediction in Pythia-MCS would
approximate to 100% with more processors.

6.5. Scalability

We now examine the scalability of Pythia-MCS using a varying
number of processors and I/Os.

Experimental Setup. As seen in Section 6.2, placing I/O monitoring
at the pins usually consumes more resources than monitoring at the
routers under the same settings. Hence Pythia-MCS was configured
as PY_P|hs and PY_P|hw. We adopted the same method described in
Section 6.2 to synthesize and implement PY_P|hs, PY_P|hw and conven-
tional MCS, firstly with a scaling number of basic MicroBlaze processors
and then with a scaling number of I/Os (Ethernet). In the experiments,

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.
Fig. 18. Area, power, and the maximum frequency v.s. scaling factor 𝜂𝑐𝑜𝑟𝑒 (CoP: Pythia-coprocessor, the 𝑥-axis denotes 𝜂𝑐𝑜𝑟𝑒).
Fig. 19. Area, power, and the maximum frequency v.s. scaling factor 𝜂𝑖𝑜 (CoP: Pythia-coprocessor, the 𝑥-axis denotes 𝜂𝑖𝑜).
-

we introduced two scaling factors: 𝜂𝑐𝑜𝑟𝑒 to control number of processors
(2𝜂𝑐𝑜𝑟𝑒) and 𝜂𝑖𝑜 to control number of I/Os (2𝜂𝑖𝑜).

Scalability of area consumption. We compared the area consumption
of the evaluated systems with varying 𝜂𝑐𝑜𝑟𝑒 and 𝜂𝑖𝑜. The evaluated
results were normalized by using the overall area of the experimental
platform (Xilinx VC709).

Obs.10. The area consumption of both the conventional MCS and
Pythia-MCS is linearly scaled by 𝜂𝑐𝑜𝑟𝑒 and 𝜂𝑖𝑜.

This observation is supported by Figs. 18(a) and 19(a). As shown,
when the system scaled with 𝜂𝑐𝑜𝑟𝑒, the area consumption of PY_P|hs and
PY_P|hw was consistently similar to MC|conv. For instance, in a 64-core
system (𝜂𝑐𝑜𝑟𝑒 = 6), both PY_P|hs and PY_P|hw introduced less than 0.3%
additional area consumption with respect to the MC|conv. When the
system scaled with 𝜂𝑖𝑜 (Fig. 19(a)), both PY_P|hs and PY_P|hw suffered
from slight increment on area consumption with respect to MC|conv,
since the Pythia-coprocessor required to integrate additional IMUs for
I/O monitoring. For example, in a 64-I/O system (𝜂𝑖𝑜 = 6), PY_P|hw and
PY_P|hs brought an additional 2% and 3% area consumption com-
pared to MC|conv, respectively. This observation also illustrates the
area-efficiency of the proposed design.

Obs.11. When the system scales with 𝜂𝑖𝑜, PY_P|hs has better area
consumption scalability than PY_P|hw.

This observation is given by Fig. 19(a). This is because that PY_P|hs al
ways adopted a fixed MSU design (based on a mature processor),
whereas PY_P|hw required additional hardware implementation when
𝜂𝑖𝑜 increased. Please see Section 4 for the design details of the MSU.

Scalability of power. We now compare the power consumption of the
evaluated systems, calculated as the sum of static and dynamic power,
by varying 𝜂𝑐𝑜𝑟𝑒 and 𝜂𝑖𝑜.

Obs.12. 𝜂𝑐𝑜𝑟𝑒 and 𝜂𝑖𝑜 linearly scale the power consumption of both
conventional MCS and Pythia-MCS.

The power consumption of a system is usually determined by four
factors [37]: voltage, clock frequency, toggle rate and design area.
Because the same voltage, clock frequency and simulated toggle rate
were assigned to the evaluated systems, the design area dominated
the overall power consumption. As expected, in Figs. 18(b) and 19(b),
we observed linearly increased power consumption in the evaluated
systems when either 𝜂𝑐𝑜𝑟𝑒 or 𝜂𝑖𝑜 increased.

Scalability of maximum frequency. We examine the maximum fre-
quency of the Pythia-coprocessor (in PY_P|hs and PY_P|hw) and
MC|conv using varying 𝜂𝑐𝑜𝑟𝑒 and 𝜂𝑖𝑜.

Obs.13. Introducing I/O-driven mode switch in conventional MCS does
not affect the system’s maximum performance.
15
Fig. 20. Power distribution in Pythia-MCS (CoP: Pythia-coprocessor).

As shown in Figs. 18(c) and 19(c), when the system scaled with
𝜂𝑐𝑜𝑟𝑒 or 𝜂𝑖𝑜, the maximum frequency of the coprocessor was always
greater than the MC|conv. This indicates that the coprocessor did
not become a critical path and could not reduce maximum system
performance.

6.6. Power distribution

Although the design of Pythia-MCS keeps energy-efficiency in mind,
the introduction of a coprocessor still increases its power consumption
compared to conventional MCS, especially when the number of I/Os
increases (Obs. 11.). In this section, we report the power distribution
in Pythia-MCS with different numbers of I/Os. We then examine its
energy-efficiency with different workloads.

Experimental Setup. We first configured PY_P|hs and PY_P|hw to sup-
port 16 cores and 32/64 I/Os. We then use the same method described
in Section 6.2 to synthesize and implement the system. Lastly, we
decompose and analyze the relative power consumption of the system.
The experimental results show the power distribution in Pythia-MCS
and determine the percentage of switchable power consumption.

Obs.14. In 32-I/O Pythia-MCS, more than 45% of the power con-
sumption can be switched off by power management; this percentage
increases to about 58% in a 64-I/O system.

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.
Fig. 21. Energy-efficiency of PY_P|hw with different numbers of I/Os (normalized by MC|conv). 𝑥-axis: target I/O utilization.
This observation is given by Figs. 20. In 32-I/O PY_P|hs and PY_P|hw,
45.1% and 46.0% of power consumption is generated by I/Os and their
associated modules. With the proposed energy management (detailed in
Section 4.4), we can switch the clocks/power of these portions off. This
means the proposed energy management can maximally save more than
46% of power consumption in Pythia-MCS. When it comes to 64-I/O
PY_P|hs and PY_P|hw, this percentage increases to 57.7% and 58.5%,
which demonstrates the effectiveness of energy management.

6.7. Energy-efficiency: Synthetic I/O workloads

Experimental Setup. We used PY_P|hw synthesized and implemented
in Section 6.6, and deployed the processors as I/O requesters, generat-
ing synthetic I/O workloads without processing. At the same time, we
introduced a utilization checker to indicate the utilization of each I/O.
During experiments, the requesters continuously checked the utilization
of each I/O: if an I/O did not reach a target utilization, the requesters
continuously generated synthetic workloads for this I/O. The I/O then
operated the workloads and acknowledged the requesters; if all I/Os
were executed under the target utilization, the requesters paused. We
recorded the clock frequency of each I/O and its associated modules
(i.e., ISO domain), and calculated their dynamic energy consumption
using the energy model presented in [17]. We executed the experiments
for 100 times.

Obs.15. Implementing EMU in Pythia-MCS effectively reduced the
overall dynamic energy consumption.

As shown in Fig. 21, in 32-I/O PY_P|hw (i.e., Fig. 21(a)), introducing
the EMU saved about 40% energy consumption. This improvement
increased to about 50% in a 64-I/O PY_P|hw (i.e., Fig. 21(b)). However,
in both experimental groups, we also reported that such benefits were
slightly reduced with the increase of I/O utilization. This is because the
EMU could not gate the clocks when the I/Os were busy.

6.8. Energy-efficiency: Case study

Experimental Setup. We now examine the energy-efficiency of Pythia-
MCS using real-world use cases. We first configured MC|conv, PY_P|hs,
and PY_P|hw with 8/16/32 processors and 2 I/Os (Ethernet controllers).
We then executed the case study described in Section 6.3 with differ-
ent target processors utilization [50%, 100%], and recorded the clock
frequency of each I/O and its associated modules. With the recorded
clock frequencies, we calculated the dynamic energy consumption of
the ISO domain using the energy model presented in [17]. We executed
the experiments 100 times. In Fig. 22, we report the average energy
consumption of PY_P|hs and PY_P|hw. The experimental results are
normalized by MC|conv.

Obs.16. Deploying EMU in Pythia-MCS effectively reduced the ISO
domain’s dynamic energy consumption while running the use cases.
The improvement was reduced when the number of processors or the
volume of workloads increased.

This observation is given by Fig. 22. With 8-core configurations,
the ISO domain in PY_P|hw and PY_P|hs only consumed about 20%
dynamic energy compared to MC|conv. This benefited from deploying
16
Fig. 22. Energy efficiency of PY_P|hs and PY_P|hw, examined using use case. 𝑥-axis:
target processor utilization.

the EMU in Pythia-MCS, gating the source clocks when the I/Os were
idle. The improvement was reduced when the number of processors
or the volume of workloads increased, since they led the I/Os to
be operated for the longer time duration, and the EMU had fewer
opportunities to gate their clocks. As observed in Fig. 22, with 32-
core configurations, the ISO domain in PY_P|hw and PY_P|hs consumed
nearly 100% dynamic energy compared toMC|conv, since the I/Os were
always busy. This observation aligns with experimental results using
synthetic workloads, i.e., Obs. 15.

Obs.17. With the same experimental setting, PY_X|hs consumed slightly
more energy than the PY_X|hw.

This observation is shown in the comparison between PY_X|hs and
PY_X|hs (in Fig. 22). Under the same experimental setting, PY_X|hs usu-
ally consumed 3%–7% extra energy than PY_X|hw. This is because
the IMUs are designed differently in PY_X|hs and PY_X|hs, where
PY_X|hs deploys a mature processor in the IMU, and the processor
consumes slightly more energy during execution.

7. Conclusion

In this paper, we proposed a novel MCS framework (named Pythia-
MCS), which simultaneously supports run-time I/O monitoring and
I/O-driven mode switch. With these new features, Pythia-MCS achieves
future-prediction, being able to foresee the over-execution of a task and
triggering a timely mode switch. Moreover, we proposed two possible
methods of allocating I/O monitoring, i.e., at routers or pins, which
provides a trade-off between design compatibility and monitoring time-
liness. We also proposed an energy management framework to miti-
gate the power consumption caused by the new features. Correspond-
ingly, we presented a new theoretical model (quarter-clairvoyance) and
schedulability analysis to provide a timing guarantee for Pythia-MCS
and to demonstrate improved schedulability compared to conventional
MCS frameworks. As shown in the evaluation, Pythia-MCS outper-
formed the state-of-the-art MCS frameworks with varying hardware
architectures. In addition, Pythia-MCS is resource- and energy-efficient.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Journal of Systems Architecture 130 (2022) 102683Z. Jiang et al.
Data availability

No data was used for the research described in the article.

Acknowledgments

The authors would like to thank the anonymous reviewers for their
constructive and helpful feedback. This work was supported in part by
the U.S. National Science Foundation under Grants CNS-2103604, CNS-
2140346, CNS 2113817, CNS-2038609, IIS-1724227, CCF-2118202
and CNS-2104181, in part by a start-up Grant from Wayne State
University, USA, in part by start-up and REP grants from Texas State
University, USA.

References

[1] ISO26262, Road vehicles-Functional safety, International Standard, 2018.
[2] A. Burns, R. Davis, Mixed Criticality Systems-A Review, Tech. Rep, Department

of Computer Science, University of York, 2013.
[3] S. Vestal, Preemptive scheduling of multi-criticality systems with varying degrees

of execution time assurance, in: RTSS, 2007.
[4] J. Caplan, Z. Al-Bayati, H. Zeng, B.H. Meyer, Mapping and scheduling

mixed-criticality systems with on-demand redundancy, IEEE Trans. Comput.
(2017).

[5] D. De Niz, B. Andersson, M. Klein, J. Lehoczky, A. Vasudevan, H. Kim, G.
Moreno, Mixed-trust computing for RTS, in: RTCSA, 2019.

[6] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti, et al., The preemp-
tive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task
systems, in: ECRTS, 2012.

[7] A. Easwaran, Demand-based scheduling of mixed-criticality sporadic tasks on one
processor, in: RTSS, 2019.

[8] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, C. Lu, Mixed-criticality federated
scheduling for parallel real-time tasks, Real-Time Syst. 53 (5) (2017) 760–811.

[9] R. West, Y. Li, E. Missimer, M. Danish, A virtualized separation kernel for
mixed-criticality systems, Trans. Comput. Syst. (2016).

[10] P.K. Gadepalli, G. Peach, G. Parmer, J. Espy, et al., Chaos: a system for
criticality-aware, multi-core coordination, in: RTAS, 2019.

[11] N. Kim, S. Tang, N. Otterness, J.H. Anderson, F.D. Smith, D.E. Porter, Supporting
I/O and IPC via fine-grained OS isolation for mixed-criticality real-time tasks,
in: RTNS, 2019.

[12] S. Baruah, V. Bonifaci, G. d’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, L.
Stougie, Scheduling real-time mixed-criticality jobs, IEEE Trans. Comput. (2011).

[13] K. Agrawal, S. Baruah, A. Burns, Semi-clairvoyance in mixed-criticality
scheduling, in: RTSS, York, 2019.

[14] A. Burns, R.I. Davis, Schedulability analysis for adaptive mixed criticality systems
with arbitrary deadlines and semi-clairvoyance, in: 2020 IEEE Real-Time Systems
Symposium, RTSS, IEEE, 2020, pp. 12–24.

[15] Q. Zhao, M. Qu, B. Huang, Z. Jiang, H. Zeng, Schedulability analysis
and stack size minimization for adaptive mixed criticality scheduling with
semi-clairvoyance and preemption thresholds, J. Syst. Archit. 124 (2022) 102383.

[16] Z. Jiang, K. Yang, N. Fisher, N. Audsley, Z. Dong, Pythia-MCS: Enabling quarter-
clairvoyance in I/O-driven mixed-criticality systems, in: 2020 IEEE Real-Time
Systems Symposium, RTSS, IEEE, 2020, pp. 38–50.

[17] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach,
Elsevier, 2011.

[18] R. Electronics, Automotive Use Cases, https://www.renesas.com/eu/en/
solutions/automotive/technology/safety.html.

[19] Xilinx official website, https://www.xilinx.com/.
[20] G. Plumbridge, Blueshell: a platform for rapid prototyping of multiprocessor

NoCs, Comput. Archit. News (2014).
[21] Y. Li, M. Danish, R. West, Quest-V: A virtualized multikernel for high-confidence

systems, in: RTSS, 2011.
[22] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, G. Buttazzo, Is your bus arbiter

really fair? restoring fairness in AXI interconnects for FPGA SoCs, ACM TECS
(2019).

[23] ARM, AMBA AXI and ACE Protocol Specification, ARM Ltd. 2012.
[24] R. Shaw, B. Jackman, An introduction to FlexRay as an industrial network, in:

ISIE, 2008.
[25] Xilinx, Microblaze, https://www.xilinx.com/products/microblaze.
[26] A. Waterman, et al., The RISC-V instruction set manual, 2014, Volume I:

User-Level ISA’, Version.
[27] ARM official website, https://www.arm.com/.
[28] J. Anderson, A. Srinivasan, Mixed Pfair/ERfair scheduling of asynch-ronous

periodic tasks, J. Comput. System Sci. (2004).
[29] K. Jeffay, S. Goddard, A theory of rate-based execution, in: Real-Time Systems

Symposium, 1999.
[30] S.K. Baruah, V. Bonifaci, G. d’Angelo, A. Marchetti-Spaccamela, S. Van Der Ster,

L. Stougie, Mixed-criticality scheduling of sporadic task systems, in: European
Symposium on Algorithms, 2011.
17
[31] Bluespec, Bluespec System Verilog, https://bluespec.com.
[32] A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Principles, John Wiley

& Sons, 2006.
[33] FreeRTOS, FreeRTOS official website, http://www.freertos.org/.
[34] E. Monmasson, M.N. Cirstea, FPGA design methodology for industrial control

systems—A review, IEEE Trans. Ind. Electron. 54 (4) (2007) 1824–1842.
[35] EEMBC, EEMBC benchmark, https://www.eembc.org/.
[36] S. Law, M. Bennett, S. Hutchesson, I. Ellis, G. Bernat, A. Colin, A. Coombes,

Effective worst-case execution time analysis of DO178C level A software, Ada
User J. 36 (3) (2015).

[37] A. Bellaouar, M. Elmasry, Low-Power Digital VLSI Design: Circuits and Systems,
Springer Science & Business Media, 2012.

Zhe Jiang received his Ph.D. from University of York
(2019). He is currently working as the system design en-
gineer of Central Engineering Department in ARM Ltd and
visit research associate in University of York. He is research
interests include safety-critical system, system architecture,
and system micro-architecture. He can be reached at: zhe.
jiang@arm.com or zhe.jiang@york.ac.uk.

Kecheng Yang received the BE degree in computer science
and technology from Hunan University in 2013, and the
MS and PhD degrees from the University of North Carolina
at Chapel Hill in 2015 and 2018, respectively. He is an
assistant professor in the Department of Computer Science
at Texas State University. His research interests include real-
time systems and scheduling algorithms. He received an
Outstanding Paper Award and the Best Student Paper Award
at the 40th IEEE RTSS, and an Outstanding Paper Award at
the 26th RTNS.

Nathan Fisher received the Ph.D. from the University of
North Carolina at Chapel Hill in 2007, and M.S. degree
from Columbia University in 2002, and the B.S. degree
from the University of Minnesota in 1999, all in computer
science. He is an Associate Professor with the Department
of Computer Science, Wayne State University, Detroit, MI,
USA. His research interests include real-time and embedded
computer systems, sustainable computing, resource allo-
cation, game-theory, and approximation algorithms. His
current funded research projects are on composability of
real-time applications, multiprocessor real-time scheduling
theory, thermal-aware real-time system design, and algo-
rithmic mechanism design in competitive real-time systems.
Prof. Fisher was the recipient of the NSF CAREER Award
in 2010 and the best paper awards from publication venues
such as RTSS, ECRTS, and the IEEE TRANSACTIONS ON
INDUSTRIAL INFORMATICS.

Neil C. Audsley is a professor in the Department of
Computer Science at University of York, where he leads
a team researching Real-Time Embedded Systems. He is
currently serving as the Head of Department of Computer
Science. Specific areas of research include high performance
real-time systems (including aspects of big data); real-
time operating systems and their acceleration on FPGAs;
real-time architectures, specifically memory hierarchies,
Network-on-Chip and heterogeneous systems; scheduling,
timing analysis and worst-case execution time; model-driven
development. His research has been funded by a number
of national (EPSRC) and European (EU) grants, including
TEMPO, eMuCo, ToucHMore, MADES, JEOPARD, JUNIPER,
T-CREST, DreamCloud and Phantom.

Zheng Dong received his BSc degree from Wuhan Univer-
sity, China, in 2007, an MSc from the University of Science
and Technology of China, in 2011, and a Ph.D. degree from
the University of Texas at Dallas, USA, in 2019. He is an as-
sistant professor with the Department of Computer Science,
Wayne State University, Detroit, Michigan. His research
interests are in real-time embedded computer systems and
connected autonomous driving systems. His current research
focus is on multiprocessor scheduling theory and hardware–
software co-design for real-time applications. He received
the Outstanding Paper Award at the 38th IEEE RTSS. He is
a member of the IEEE Computer Society.

http://refhub.elsevier.com/S1383-7621(22)00188-6/sb1
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb2
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb2
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb2
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb3
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb3
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb3
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb4
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb4
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb4
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb4
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb4
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb5
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb5
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb5
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb6
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb6
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb6
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb6
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb6
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb7
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb7
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb7
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb8
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb8
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb8
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb9
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb9
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb9
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb10
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb10
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb10
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb11
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb11
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb11
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb11
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb11
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb12
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb12
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb12
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb13
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb13
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb13
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb14
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb14
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb14
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb14
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb14
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb15
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb15
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb15
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb15
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb15
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb16
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb16
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb16
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb16
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb16
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb17
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb17
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb17
https://www.renesas.com/eu/en/solutions/automotive/technology/safety.html
https://www.renesas.com/eu/en/solutions/automotive/technology/safety.html
https://www.renesas.com/eu/en/solutions/automotive/technology/safety.html
https://www.xilinx.com/
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb20
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb20
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb20
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb21
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb21
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb21
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb23
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb24
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb24
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb24
https://www.xilinx.com/products/microblaze
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb26
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb26
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb26
https://www.arm.com/
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb28
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb28
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb28
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb29
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb29
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb29
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb30
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb30
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb30
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb30
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb30
https://bluespec.com
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb32
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb32
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb32
http://www.freertos.org/
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb34
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb34
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb34
https://www.eembc.org/
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb36
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb36
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb36
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb36
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb36
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb37
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb37
http://refhub.elsevier.com/S1383-7621(22)00188-6/sb37
mailto:zhe.jiang@arm.com
mailto:zhe.jiang@arm.com
mailto:zhe.jiang@york.ac.uk

	Towards an energy-efficient quarter-clairvoyant mixed-criticality system
	Introduction
	Preliminary: I/O-driven MCS
	I/Os and task execution time
	I/O-driven mode switch

	Pythia-MCS architecture
	Context
	Design concepts
	Conventional MCS system architecture
	Pythia-MCS system architecture

	Pythia-Coprocessor
	I/O Monitor Unit at Routers ()
	I/O Monitor Unit at I/O Pins ()
	Mode Switch Unit (MSU)
	Energy Management Unit (EMU)

	Schedulability analysis
	System model
	Algorithm EDF-VDSD
	Schedulability test
	Discussions

	Experimental evaluation
	Software overhead
	Hardware overhead
	Automotive case study
	Accuracy of prediction
	Scalability
	Power distribution
	Energy-efficiency: Synthetic I/O workloads
	Energy-efficiency: Case study

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

