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Abstract—Deep neural networks have shown remarkable capa-
bilities in computer vision applications. However, their complex
architectures can pose challenges for efficient real-time deploy-
ment on edge devices, as they require significant computational
resources and energy costs. To overcome these challenges, Ten-
sorRT has been developed to optimize neural network models
trained on major frameworks to speed up inference and minimize
latency. It enables inference optimization using techniques such
as model quantization which reduces computations by lowering
the precision of the data type. The focus of our paper is to
evaluate the effectiveness of TensorRT for model quantization. We
conduct a comprehensive assessment of the accuracy, inference
time, and throughput of TensorRT quantized models on an edge
device. Our findings indicate that the quantization in TensorRT
significantly enhances the efficiency of inference metrics while
maintaining a high level of inference accuracy. Additionally, we
explore various workflows for implementing quantization using
TensorRT and discuss their advantages and disadvantages. Based
on our analysis of these workflows, we provide recommendations
for selecting an appropriate workflow for different application
scenarios.

Index Terms—deep neural networks, Network quantization,
SoC, TensorRT, PyTorch, ONNX, edge device.

I. INTRODUCTION

Over the last few years, deep learning (DL) has undergone
significant advancements and become one of the most suc-
cessful machine learning techniques. DL has enabled a wide
range of applications, including computer vision, natural lan-
guage processing, and autonomous control, which have been
widely integrated into various software systems, including
embedded ones. Unlike classical machine learning methods,
deep networks can achieve high accuracy with large and
over-parameterized models. The ImageNet classification leader
board [1] indicates that the parameter number in state-of-the-
art models for image classification have increased from 61
million to 2100 million since 2013.

Despite the high accuracy and precision achieved by large
and sometimes enormous deep neural networks, their training
and inference runtimes can become very slow and sluggish.
Moreover, such large model architectures require significant
amount of computing resources, even for inference alone.
However, many applications and systems, particularly embed-
ded ones, require real-time inference while utilizing limited
hardware resources due to size, weight, power, and cost
(SWaP-C) constraints. For example, autonomous vehicles must
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quickly process data from various sensors such as cameras and
lidars to make proper control decisions in System-on-Chip
(SoC). Similarly, a video surveillance system must analyze
videos in real-time to detect abnormal activities. Nevertheless,
for privacy and reliability reasons, this computation must
often be performed on the embedded platform with limited
computing resources.

The challenge posed by the inference computation barrier
has resulted in a significant gap between the success of
neural networks and their practical application in real-world
scenarios. To address this issue, several technologies have been
proposed and developed. These technologies can be broadly
categorized as follows: designing low-power, highly efficient
SoC chips specialized for DL inference, such as Google’s Ten-
sor Processing Unit (TPU) [6] and Intel’s Vision Processing
Unit (VPU) [8]; designing efficient DL model architectures
by optimizing the DL model architecture in terms of its
micro-architecture, designing Automated Machine Learning
(AutoML) and Neural Architecture Search (NAS) [12] meth-
ods; co-designing neural network architecture and hardware
together.

Despite such efforts and advances, the common, general-
purpose DL framework, such as PyTorch [13], is not particu-
larly optimized for the computing resource and time consump-
tion of inferences. To address this issue, NVIDIA published
TensorRT [2], a high-performance DL inference engine for
production deployments of deep learning models.

One of the optimizations that TensorRT provides is quan-
tization, which can reduce the precision of the weights and
activations of a deep learning model. Quantization in TensorRT
involves mapping the high-precision floating-point values in
a model to lower-precision fixed-point or integer values.
Reduced-precision inference significantly minimizes latency,
which is required for many real-time services, as well as
autonomous and embedded applications [2]. This quantization
by TensorRT is the focus of this paper.

In this paper, we examine the effectiveness of quantization
in TensorRT by comparing it to the Vanilla PyTorch (without
TensorRT and Quantization) framework on edge SoC. In
particular, there are three workflows that can convert the
PyTorch models to quantized TensorRT engines. We evaluate
the performance of three TensorRT quantization workflows
under a variety of workloads and identify the performance
bottlenecks in the inference using TensorRT quantization.
Contribution. Our main objective is to highlight the TensorRT



quantization on edge SoC. We conducted a thorough assess-
ment of the inference performance of quantized TensorRT en-
gines that were converted and deployed through various work-
flows using different software tools. Our assessment focused
on quantized model accuracy, inference time, throughput, and
accuracy vs calibration batch size for each workflow. The
results indicate that TensorRT quantization can significantly
improve inference efficiency without compromising accuracy.
There are several alternative workflows to adopt TensorRT
quantization, each with its advantages and disadvantages. We
analyze each workflow and suggest which one would be best
suited for different application scenarios.

Organization. The rest of this paper is organized as follows:
Sec. II gives a background overview of model quantization,
PyTorch, ONNX, and TensorRT in these three deep learning
frameworks. Sec. III presents a summary of the existing
research. Sec. IV describes the methodology for our exper-
iments, including evaluated models, workflows, and perfor-
mance measuring. Sec. V provides experiment results and
discussions, while Sec. VI concludes our work.

II. BACKGROUND AND RELATED FRAMEWORKS

In this section, we provide an overview of quantization,

TensorRT, and other related deep-learning frameworks.
Model quantization. Model quantization is a technique used
to reduce the memory and computation requirements of ma-
chine learning models by representing the model parameters in
a smaller number of bits [9]. Traditionally, the weights and bi-
ases are typically represented as 32-bit floating-point numbers,
which can be computationally expensive to store and process.
Model quantization aims at reducing the number of bits used
to represent these parameters, typically to 8-bit integers or
even lower, without significantly impacting the performance
of the model [5]. Model quantization can be applied to a
wide range of machine learning models, including deep neural
networks, convolutional neural networks, and recurrent neural
networks. It has become increasingly popular in recent years
due to the growing demand for deploying machine-learning
models in embedded systems where the computing resources
are constrained.
Quantization methodology. There are two common ap-
proaches to realize model quantization, namely post-
training quantization (PTQ) and quantization-aware training
(QAT) [11]. In PTQ, the models are trained using standard
non-quantization techniques until it achieves the desired ac-
curacy. Then, the weights and biases of the trained model
are quantized by replacing the original 32-bit floating-point
numbers with 8-bit or lower-precision fixed-point numbers.
In the end, a fine-tuning step can be performed to adjust the
quantized weights and biases to compensate for the loss of
accuracy caused by quantization. By contrast, QAT involves
training a neural network using quantization-aware optimiza-
tion algorithms. During training, the model is trained to mimic
the behavior of a quantized model by adjusting the weights and
biases in such a way that the resulting model is better suited
for hardware with limited precision.

PyTorch. PyTorch is a machine-learning framework that al-
lows for easy transitions from research to deployment. It is
primarily used as a deep learning research platform, pro-
viding speed and flexibility. It supports Tensor operations
on both CPU and GPU, resulting in faster computations.
It also offers various tensor routines for different scientific
computation needs. Unlike other frameworks where users must
repeatedly build the same neural network structure, PyTorch
uses reverse-mode auto-differentiation. This technique allows
users to change the network’s behavior without significant
overheads. PyTorch is integrated with acceleration libraries
like Intel MKL and NVIDIA (cuDNN, NCCL) to maximize
speed, making it fast for running networks of varying sizes.
It is also memory-efficient, enabling users to train large
deep-learning models [13]. Currently, PyTorch only supports
running quantized operators efficiently on x86 CPUs with
AVX2 support or higher and ARM CPUs. The support for
NVidia GPU via TensorRT through fx2trt is still an early-stage
prototype [14].

ONNX. The Open Neural Network Exchange (ONNX) [4]
is an open-source artificial intelligence ecosystem that uses a
common set of operators and a common file format to promote
collaboration and innovation in the Al sector. The standard
was created by many technology companies and research
organizations to facilitate interoperability between different
frameworks, tools, compilers, and runtimes. It supports multi-
ple software frameworks such as PyTorch, TensorFlow, Caffe2,
and Apache MXNet, and enables model optimization for
various hardware devices. This allows users to deploy ONNX
models using runtimes designed for specific hardware, which
accelerates the inference execution on the device. ONNX
Runtime leverages the TensorRT Execution Provider for per-
forming quantization on GPU. TensorRT generated quantized
models by taking in a full precision model and a calibration
result as inputs [15].

TensorRT. TensorRT is an SDK that enables high-
performance deep learning inference and is included in the
NVIDIA CUDA X AI Kit. The SDK provides a deep learning
inference optimizer and runtime, which ensure low latency and
high throughput during deep learning inference [2]. TensorRT
offers support for both PTQ and QAT techniques for creating
quantized networks. PTQ involves a calibration workflow in
which TensorRT measures the activation tensor distribution
during network execution on representative input data and then
uses that information to estimate a scale value for the tensor.
Additionally, TensorRT’s Quantization Toolkit is a PyTorch
library that can assist in producing QAT models that are
optimized by TensorRT. The toolkit also includes a recipe for
PTQ that can be used to perform PTQ in PyTorch and export
to ONNX [18].

III. RELATED WORK

Xu et al. quantify the inference performance using Ten-
sorRT. They compared the TensorRT inference for Resnet50
with INT8 vs FP32, which shows that INT8 mode is -
3.7x faster than FP32. The experiments that they did also



concluded that INTS8 can also achieve the comparable accuracy
with FP32 [26]. Stacker et al. evaluated the runtime of the
deployed DNN using TensorRT and TorchScript. They chose
to work with two DNN architectures: RetinaNet and Point-
Pillars. They observed that quantization significantly reduces
the runtime while having only little impact on the detection
performance. [23]. Ulker et al. presented an evaluation of
the inference performance of deep learning software tools
using CNN architectures for multiple hardware platforms.
They benchmarked these hardware-software pairs for a broad
range of network architectures, inference batch sizes, focusing
on latency and throughput. They considered both single and
and half-precision floating point numbers computation in the
DL frameworks. Their results reveal that TensorRT delivers
minimum average execution time and highest throughput for
the network models that can be translated into TensorRT en-
gines. The performance gain from half-precision floating-point
is dependent on both hardware and software tool support [24].
In Shin and Kim’s recent work, they introduced a performance
inference method that fuses the Jetson monitoring tool with
TensorFlow and TRT source code on the Nvidia Jetson AGX
Xavier platform. The CPU utilization, GPU utilization, object
accuracy, latency, and power consumption of the deep learning
framework were also compared and analyzed [22].

IV. METHODOLOGY
A. Neural Network Models to Evaluate

In the field of computer vision, image classification plays a
crucial role in categorizing images into specific labels. Con-
volutional Neural Networks (CNNs) are specifically designed
to handle this task. These networks employ multiple layers to
detect visual patterns directly from pixel images, making them
a popular choice for image classification tasks. The advantage
of using CNNs lies in their ability to automatically identify
significant features without any human intervention, result-
ing in high efficiency. This study focuses on the quantized
TensorRT engine inference of the Residual Neural Networks
(ResNet) [7], which was first introduced in “’Deep Residual
Learning for Image Recognition.” ResNet uses skip connec-
tions to improve the performance and convergence of deep
neural networks. Several variants of ResNet architectures use
the same concept but with varying numbers of layers. Our
experiment specifically tests ResNet-50 and ResNet-152.

We also experiment with MobileNet, a small network that
are well suited for platform with limited resources. It applies
smart tricks in their architecture to keep the models small and
efficient without sacrificing too much accuracy. MobileNet is
known to be challenging to quantize [25].

B. Workflows

We designed our experiments to evaluate the performance of
all possible workflows to speed up the PyTorch DL model in-
ference by quantizing the TensorRT engine. Fig. 1 provides an
overview of our experiment workflows and the software tools
used in each stage. We have also highlighted the quantization
tools employed in each workflow, which accelerates model

inference by reducing the required precision calculations at
runtime.

Pre-trained model loading. As illustrated in Fig. 1, all
workflows begin with loading a pre-trained PyTorch model.
During this stage, the pre-trained models are loaded using the
PyTorch TorchVision library, which includes both the model
architecture and pre-trained weights.

Quantization implementation. There are multiple alternative
workflows to choose to quantize a full precision model for
efficient inference. In this work, we compare the conventional,
default workflow in PyTorch that does not involve quantization
at all (denoted as WO0) with three workflows that do integrate
TensorRT quantization (tagged by W1, W2, W3, respectively).
These four workflows we evaluate in this work are explained
in more detail as follows.

WO: PyTorch Default

The pre-trained models are loaded on the CPU by default.
To execute the inference on the GPU, we need to transfer
the model from the CPU to the GPU. We also transfer the
input data to the GPU to ensure that the inference executes on
the GPU as well. We perform the model inference by using
PyTorch Python API [13].

W1: PyTorch-Quantization

In this workflow, we quantize a PyTorch model using
PyTorch-Quantization, a toolkit provided by NVIDIA for
training and evaluating PyTorch models with simulated quan-
tization. The quantized PyTorch model can be exported to
ONNX and imported by TensorRT.

There are six steps in this workflow: 1) adding quantized
modules, 2) PTQ, 3) QAT, 4) exporting to ONNX, 5) building
the engine, and 6) engine inference.

The first step is to add quantizer modules to the neural
network graph. This package provides a number of quan-
tized layer modules, which contain quantizers for inputs and
weights. These quantized layers can be substituted automati-
cally or by manually modifying the model definition. We apply
the automatic layer substitution by using quant-modules.

During the process of PTQ, a fixed range is selected for
each quantizer. One way to achieve this is through calibration.
To calibrate the activation ranges, we use a histogram-based
method. To collect activation histograms, we feed sample data
into the model. This is done by creating data loaders, enabling
calibration in each quantizer, and feeding the calibration data
into the model. A total of 1024 samples from the subset of
ImageNet training data are used to estimate the distribution of
activations.

Once the calibration process is complete, the quantizers will
have amax set, which indicates the maximum input value that
can be represented in the quantized space. The weight ranges
are typically defined per channel, whereas the activation ranges
are typically defined per tensor by default.

During the QAT, we fine-tune the calibrated model to
improve accuracy further [21].

It should be noted that the ONNX file exported from the
quantized PyTorch model cannot be directly used to build the
TensorRT engine. This is because the operator Identity_0,”
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Fig. 1. An illustration of experiment workflows.

which produces an int8 zero-point, is currently not supported
by TensorRT. We use Polygraphy’s surgeon tool, which in-
cludes a constant folding function [20], to resolve this issue.
W2: TensorRT API Quantization

There are six steps in this workflow: 1) exporting the
PyTorch model to the ONNX file, 2) defining the network, 3)
setting up the calibrator, 4) configuring the builder 5) building
the engine, and 6) running the engine.

In the first step, We use the torch.onnx.export ()
function in the PyTorch library exporting the PyTorch model to
ONNX files. The torch.onnx.export () function takes
an input tensor to run the model tracing its execution and then
exports the traced model to an ONNX file.

Defining a network for INT8 execution is exactly the
same as for any other precision. It involves operations such
as creating a network definition and importing the exported
ONNX model through the ONNX parser [19].

Similar to calibration in W1, we need to supply repre-
sentative input data on which TensorRT runs the network to
collect statistics for each activation tensor. In this project, we
use 1024 images from the training set in ImageNet [3] for
calibrating CNN models. Given the statistics for an activation
tensor, TensorRT uses calibrators to calculate the scale val-
ues. Among four different calibrators provided by TensorRT,
the IInt8EntropyCalibrator2 is recommended for CNN-based
networks. It chooses the tensor’s scale factor to optimize the
quantized tensor’s information-theoretic content and usually
suppresses outliers in the distribution [21].

In the TensorRT Python API calibration is implemented
by the INT8 calibrator class. Setting up the calibrator
consists of the following two sub-steps: 1) create an
ImageBatchStream object used to retrieve batch data
while calibrating. TmageBatchStream is a helper class
that takes care of file I/O, creating batch data for processing,
and applying image preprocessing functions, 2) create an Int8
calibrator object with input nodes names and batch stream.
The customized INTS8 calibrator class must provide an im-
plementation for getBatchSize () and getBatch () to
retrieve data from the TmageBatchStream object.

During the TensorRT builder configuration, we set the
builder precision to INT8 in addition to FP32. We also pass
the calibrator object to the builder.

After we configure the builder, we can build and serialize
the engine similar to the FP32 engine. Firstly, an inference

execution context needs to be created. Then, memory needs
to be allocated for input and output on the CUDA device.
The next step is to transfer the input data from the host to
the input memory that was allocated on the CUDA device.
After that, TensorRT engine inference can be performed using
the asynchronous execute API. The output then needs to be
transferred back to the host memory. Lastly, the stream that
was used for data transfers and inference execution needs
to be synchronized to ensure that all operations have been
completed [19].

W3: ONNX Runtime Quantization

This workflow also starts with exporting a model from
PyTorch to ONNX. After obtaining the ONNX model, we
perform the ONNX model quantization on GPU using the
ONNX Runtime execution provider (EP).

ONNX Runtime uses its EP framework to work with various
hardware acceleration libraries. This provides the flexibility to
deploy ONNX models in different environments and optimize
execution by taking advantage of the platform’s computation
capabilities. The software interacts with the EP(s) using an
API to assign specific nodes or sub-graphs for execution by
the EP library on supported hardware.

ONNX Runtime uses the TensorRT Execution Provider
to perform quantization on the GPU. TensorRT Execution
Provider requires a full precision model and a calibration result
as inputs and then determines how to quantize based on its own
logic [15].

We first need to configure TensorRT settings to enable
model inference in INTS8 precision. Then we perform quantiza-
tion using TensorRT EP. This process involves implementing
a CalibrationDataReader, computing the quantization
parameters using a calibration dataset, and saving the param-
eters into a flatbuffer file. Finally, the model and quantization
parameter files are loaded and run using the TensorRT EP [16].

C. Inference Performance Measurements

Quantized model accuracy. We assess the classification ac-
curacy of our quantized models using the ImageNet validation
dataset. This dataset comprises 50,000 photographs that have
been manually labeled with the presence or absence of 1000
object categories[3]. To evaluate the performance of the quan-
tized model, we employ two metrics: top-1 accuracy and top-5
accuracy. Top-1 accuracy measures the percentage of instances
where the predicted label matches the single target label. On



the other hand, top-5 accuracy considers a classification as
correct if any of the top five predictions align with the target
label. These metrics provide a comprehensive assessment of
the model’s classification performance.

Execution time measuring. To accurately measure the infer-
ence time of the model on the GPU, we conducted several
warm-up operations before taking measurements. This is be-
cause the execution speed can take some time to reach its
maximum capacity. We conducted 50 hot runs of the model
inference and tracked the execution time after the warm-up
steps to obtain an accurate measurement of the inference
time [24].

Throughput measuring. Throughput is a measure of the
amount of data processed or the number of tasks completed in
a specific time, usually one second. To calculate throughput,
divides the number of inputs by processing time. According
to [26], increasing the batch size may increase throughput.
Therefore, we measure inference throughput with various
batch sizes starting from one and doubling it until reaching
128 or the maximum batch size that can accommodate GPU
memory.

GPU usage measuring. To monitor GPU usage, we create a
separate thread alongside the inference script that is currently
running. This thread is responsible for tracking GPU usage
by reading the /sys/devices/gpu.0/load file, which
provides a value representing 10 times the GPU usage. The
GPU usage recording begins when the inference execution
starts and ends once the inference is finished.

D. Hardware Specifications

The NVIDIA® Jetson™ is a family of embedded computing
devices created by NVIDIA, designed for use in Al and
machine learning applications. These devices are small, low-
power, and feature-rich platforms that can run complex deep-
learning models in real time. We carry out our experiments
on the latest Jetson device, the NVIDIA Jetson AGX Orin
64GB. This SoC is based on the NVIDIA Ampere architecture
and includes a 12-core NVIDIA Carmel ARMvS8.2 CPU, a
384-core NVIDIA Volta GPU, and a 32-core NVIDIA Deep
Learning Accelerator (DLA) [10].

E. Software Specifications

In our experiment, we use the latest JetPack 5.1.1 which
include key components such as CUDA 11.4, TensorRT 8.5.2,
cuDNN 8.6.0 and VPI 2.2 [17].

V. EXPERIMENT RESULTS

We present our experiment results in the following five sub-
sections: model accuracy, inference execution time, inference
throughput, GPU usage and model accuracy versus calibration
batch size.

A. Model Acccuracy

Quantization has many benefits but the reduction in the
precision of the parameters and data can easily hurt a model’s
task accuracy. We verify the quality of quantized models by
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Fig. 2. Inference execution time for evaluated network architectures.

comparing their accuracy with the pre-trained PyTorch CNN
models offered by TorchVision. Table I to Table III presents
the highest top-1 accuracy and top-5 accuracies, respectively,
for three evaluated models that have been quantized using
different workflows.

Torch-Quantization and TensorRT API Quantization achieve
better accuracy than ONNX Runtime Quantization. Both of
them maintain accuracy within 1% of the floating-point base-
line on ResNets.

As reported in Table III, MobileNet v2, incurres a substan-
tial loss in accuracy when quantized with PTQ of all three
workflows. However, QAT in Torch-Quantization is able to
maintain accuracy to within 1% of fp32 accuracy.

Observation 1. Networks with more parameters like ResNets
are more robust to quantization compared to MobileNets
which have fewer parameters. ONNX Runtime Quantization
have higher accuracy loss compared to two other workflows.
The method used to create the calibration dataset in ONNX
Runtime may be the underlying cause.

B. Inference Execution Time

Time-critical applications often prioritize minimal forward
execution time, where minimizing latency is more important
than achieving higher throughput. In such deployments, the
batch size is typically set to a minimum value.

As shown in Fig. 2, we demonstrate that quantized Ten-
sorRT engines, acquired through the TensorRT API quanti-
zation, can achieve an inference speed up about ten times
faster than the PyTorch models on the NVIDIA Jetson AGX
Orin platform. For MobileNet and SqueezeNet, the quantized
TensorRT engine can make about 14.87 times speed up. Fig. 3
shows that the inference time of PyTorch model on GPU has
higher variability and includes more outliers compared to the
quantized TensorRT engines.

Observation 2. Applying TensorRT quantization can signifi-
cantly improve the inference time. For example, the quantized
TensorRT engine can perform up to 14.87X faster than the Py-
Torch model in full precision for MobileNet during inference.

Observation 3. The quantized TensorRT engines exhibit
much less variation in inference time compared to the PyTorch
model on ResNet architectures, indicating that they also result
in more predictable and consistent execution time.



TABLE I: Best achieved top-1 accuracy and top-5 accuracy by the default and

uantized ResNet-50 models

Model PyTorch Default | Torch-Quantization | TensorRT API Quantization | ONNX Runtime Quantization
Top-1 Accuracy 76.15% 75.524% 76.092% 75.524%
Top-5 Accuracy 92.87% 92.5% 92.938% 92.478%

TABLE II: Best achieved top-1

accuracy and top-5 accuracy by the default and

uantized ResNet-152 models

Model PyTorch Default | Torch-Quantization | TensorRT API Quantization | ONNX Runtime Quantization
Top-1 Accuracy 78.312% 77.762% 78.104% 74.862%
Top-5 Accuracy 94.046% 93.802% 94.030% 92.482%

TABLE III: Best achieved top-1 accuracy and top-5 accuracy by the default and quantized MobileNet models

Model PyTorch Default | Torch-Quantization | TensorRT API Quantization | ONNX Runtime Quantization
Top-1 Accuracy 71.878% 71.088% 70.644% 69.782%
Top-5 Accuracy 90.286% 89.942% 89.664% 89.342%
007 Inference Throughput: resnet50
©
5 0.06 3 1200 R — -
g g /'X/’ *
£005 Z9000 X S
€ 5 f PR
~0.04 3 | S
9 & 800- */ * —e— WO: PyTorch Default
€0.03 E] i« -+- W1: PyTorch-Quantization
[ < 600- *' P —#-- W2: TensorRT API Quantization
9 =3 4 W3: ONNX Runtime Quantization
©0.02 ] g
3 E 4004 + ~
£o.01 ; g &
~ 0.00 i : s
w0 w1 w2 w3 - 0 A ‘ | ‘
Workflows 0 20 40 60 80 100 120

Fig. 3. Inference execution time for ResNet-50.
C. Inference Throughput

Inference throughput is important for applications that in-
volve multiple inference operations in a single time frame.
In certain instances, delayed batch processing is acceptable.
An application can benefit from increased throughput by
increasing the inference batch size.

The throughput-vs-batch size curves shown in Fig. 4 and
Fig. 5 demonstrate that increasing the batch size leads to a
significant increase in throughput for both quantized and un-
quantized models until performance converges at a certain
batch size. A further increase produces a limited gain in
throughput because further parallelization inside the GPU is
not possible.

Observation 4. Quantization can lead to a considerable im-
provement in inference throughput across all three workflows.
Inference throughput continues to increase with an increase in
batch size until it reaches the hardware limitation.

D. GPU Utilization

For inference, our goal is to minimize inference time
and maximize inference throughput. Therefore, it is crucial
to maximize GPU utilization during inference, particularly
on embedded devices. Under-utilizing a GPU can leaves
application-level performance (e.g., frames per second) on the
table.
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Fig. 5. Inference throughput for MobileNet-v2 with varying batch size.

Among all TensorRT Quantization deployment workflows,
both PyTorch-Quantization and TensorRT API Quantization
have very high GPU utilization, close to 100%. The GPU
utilization of ONNX Runtime with TensorRT Integrated ranges
from 80% to 96.5% with varying input batch size and model
architecture.

Observation 5. TensorRT Quantization, especially via the
workflow PyTorch-Quantization and TensorRT API Quantiza-
tion, maximizes the GPU utilization during inference on the
edge SoC. This explains the noticable performance between
TensorRT and native PyTorch specially with relative small
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input batch size.

E. Accuracy vs Calibration Batch Size

In all three workflows, we use calibration to enhance the ac-
curacy of quantized models. During the calibration, TensorRT
updates the histogram distribution for each activation tensor.
If there is a new absolute max in the incoming calibration
batch data, the histogram is expanded by a power of two to
accommodate the new maximum value. Therefore, the size of
the calibration batch can also affect the accuracy of the result
TensorRT engine.

Fig. 8 to Fig. 13 display the top-1 and top-5 accuracy-vs-
calibration batch size curves. From these figures, we can see
that the calibration batch size does not have much impact on
W2 and W3. However, calibrating with multiple calibration
data of small batch size (equal to or smaller than four) can
lead to poor scale value and model accuracy degradation for
quantizing with the torch-quantization toolkit.

Observation 6. We need to carefully choose calibration batch
size as well as other hyper parameters during model quan-
tization especially when using the torch-quantization toolkit.
Using an inappropriate batch size can result in a decrease in
model accuracy.

VI. CONCLUSION

This paper presents an extensive comparative inference
performance evaluation of a set of workflows accelerating
PyTorch models with quantization using TensorRT on SoC.
We focus on the local computation of CNN model inference.
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Fig. 8. Top-1 accuracy with batched calibration on ResNet-50.
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Based on our evaluation results, we discuss framework perfor-
mance in terms of quantized model accuracy, throughput, and
accuracy vs calibration batch size characteristics.

We supplemented our interpretation with an investigation
of weakness and strength in each workflow. Our discussions
include workflow selection for common scenarios in deep
learning inference deployment for computer vision tasks.
The results indicate that TensorRT API Quantization offers
the most favorable overall performance for enhancing Py-
Torch model inference. In terms of latency and throughput,
ONNX Runtime Quantization outperforms Torch-Quantization
on ResNet, however, it exhibits the longest overall execution
time for MobileNet. Additionally, Torch-Quantization provides
QAT, which allows for fine-tuning of the calibrated model.
In our experiment, the calibrated model was only fine-tuned
for one epoch, but further improvement in accuracy can be
achieved by employing QAT for more epochs with learning
rate annealing.

We determine that no single inference workflow is optimal
for all scenarios. If high inference performance is needed
with limited computational resources, we recommend utiliz-
ing the TensorRT API Quantization. For applications that
employ lightweight neural networks, Torch-Quantization can
be employed. ONNX Runtime Quantization is suitable for
accelerating inference in systems that consist of multiple
frameworks like PyTorch, TensorFlow, and Apache MXNet.
Future work. In our future work, we plan to propose a new
PTQ scheme that can achieve comparable accuracy to the
QAT method. We also aim to conduct experiments with model



78 ”—; * * = 2
76— T

= D U — *

s 74 >

&

§72-

3

870

<

— 68

= —e— WO: PyTorch Default

£ 66- -+-- W1: PyTorch-Quantization
64 | —»-- W2: TensorRT API Quantization

-4 W3: ONNX Runtime Quantization

[}
[ S}

! ! J I
0 20 40 60 80 100 120
Calibration Batch Size

Fig. 10. Top-1 accuracy with batched calibration on ResNet-152.
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Fig. 11. Top-5 accuracy with batched calibration on ResNet-152.

quantization in 4-bit. Additionally, we intend to broaden our
research to include other model compression techniques such
as model pruning, and to co-design the system with real-time
schedulers and analysis to provide end-to-end guarantees.
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