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Abstract—In modern, real-time heterogeneous systems, ensuring the
predictability of interconnects is becoming increasingly important. Exist-
ing interconnects are mainly designed to achieve high throughput, with
their micro-architectures usually based on FIFO queues. This FIFO-based
design prevents prioritization of transactions based on their importance,
leading to difficulties in ensuring transaction predictability, especially in a
system with a large number of system components. In this paper, we intro-
duce AXI-InterconnectRT– a real-time AXI interconnect for heterogeneous
SoCs, which redefines the micro-architecture of interconnects by enabling
random accesses of buffered transactions and organizing transactions
using dedicated hardware units. With the new micro-architecture, AXI-
InterconnectRT can manage transactions based on their importance,
guaranteeing their predictability.

I. INTRODUCTION

The complexity of today’s System-on-Chips (SoCs) is increasing
dramatically, mainly driven by the diverse functionalities required by
modern embedded computing (e.g., image recognition in automated
driving [1]) and the rapid evolution of manufacturing processes
in the semiconductor industry (e.g., the ability to produce 5nm
ASICs [2]). Although modern SoCs developed by different vendors
usually have different architectures, heterogeneity is always the key to
more functionality [3], [4]. That is, the SoCs couple processing units
with different architectures, including hardware accelerators (HAs),
on the same chip. For instance, Apple’s M1 [5] integrates CPUs with
the GPU and a neural engine to accelerate image processing with
machine learning (ML) related applications.

As a ‘bridge’ between system components, an interconnect be-
comes a dominant factor when determining the real-time performance
of heterogeneous SoCs. It is impractical to manage interconnect
traffic flows solely from the system software level [6], as the
masters in heterogeneous SoCs are usually designed with different
instruction sets. This makes managing interconnect transactions at
the software level unpredictable, with an extremely high overhead, as
frequent inter-master communication and translation is required [3].
Therefore, it is crucial to guarantee predictability and throughput of
an interconnect at the hardware level.

ARM Advanced Microcontroller Bus Architecture Advanced eX-
tensible Interface (AMBA AXI) [6] is the most widely used de-facto

standard interface for interconnects, and is used by billions of SoCs
each year. A number of industrial interconnects are based on this pro-
tocol, e.g., Xilinx’s AXI-InterConnect [7] and AXI-SmartConnect [8].
However, most of these were not designed for real-time application
scenarios. Some prototype interconnects which consider real-time
performance include Restuccia et al.’s AXI-HyperConnect [9] and
Garside et al.’s BlueTree [10]. These interconnects usually adopt
different mechanisms (e.g., bandwidth reservation) to ensure specific
transaction path predictability. The designs of the interconnects are
usually based on FIFO queues, which prevent prioritization based on
importance and leave the real-time performance of an interconnect
entirely to scheduling from the software level. However, as mentioned
above, it is difficult to ensure the predictability of an interconnect
from the software level, as the system components in heterogeneous
SoCs usually execute independently.

In this paper, we propose a real-time AXI interconnect for het-
erogeneous SoCs (AXI-InterconnectRT), which redefines the micro-
architecture of the interconnects. AXI-InterconnectRT enables ran-
dom accesses of buffered transactions and introduces dedicated
Transaction Control Units (TCUs) to schedule them. With the new
features, AXI-InterconnectRT can prioritize transactions based on their
importance, ensuring their predictability.

II. PRELIMINARIES

A. Modern Heterogeneous SoC

We illustrate a prototype heterogeneous SoC architecture in Fig. 1,
satisfying commonly required functionalities in modern safety-critical
systems. The introduced SoC is built on a Xilinx VC709 evaluation
board and contains four major sub-systems: a core subsystem, a
memory subsystem, a BlueShell DNN HA, and I/O subsystems.
Core subsystem. The core subsystem is responsible for execution of
general-purpose software applications and operating systems (OSs).
It contains two dual-core RSIC-V processors with instruction caches,
data caches, and local static RAMs (SRAMs).
Memory subsystem. The memory subsystem manages memory re-
sources shared between different system components. This subsystem
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Fig. 1. Hardware architecture of heterogeneous SoC built on Xilinx VC709 (R: Router/Arbiter; PE: Processing element; GPIO: General-purpose Input/Output).
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has three types of memory: off-chip flash and Dynamic RAMs
(DRAMs), and on-chip SRAMs. The on-chip memory is smaller than
the off-chip memory, but can provide faster memory accesses.
BlueShell DNN HA. BlueShell is a specialized DNN inference HA,
containing 9 RSIC Processing Elements (PEs) arranged in a 3 ×
3 array. The PEs are connected to the routers of a 2D mesh type
open-source Network-on-Chip (NoC) [11]. The DNN HA accelerates
the execution of DNNs by enabling parallel computation of different
DNN blocks.
I/O subsystems. I/O subsystems manage shared I/O peripherals.
Based on common features of the I/Os, we split the subsystems into
three specialized domains for general-purpose I/Os, low-speed I/Os,
and high-speed I/Os.

These illustrated sub-systems and their internal components are
connected using a system AXI interconnect.

B. ARM Advanced Microcontroller Bus Architecture

There are industrial and academic interconnects designed in com-
pliance with AMBA AXI, e.g., [8] and [9]. However, the design
details of these interconnects are not usually publicly disclosed. In
Fig. 2, we summarize a generalized framework of AXI interconnect
based on the official protocol [6] and existing IP documentation. We
now introduce the essential components of the AXI interconnect and
the AXI transactions.
AXI bus. The AMBA AXI protocol defines a master-slave inter-
face, which allows simultaneous, bi-directional data exchange. An
AXI interface introduces five independent communication channels:
Address Read (AR), Address Write (AW), Read Data (R), Write Data
(W), and Write Response (B). Each of these channels has a group of
standard-defined signals [6].

AXI port. The AMBA AXI protocol introduces two types of port:
master port and slave port. A master/slave port physically connects
the slave/master via the AXI bus. Corresponding to the AXI bus, an
AXI port also contains the five communication channels.
AXI interconnect. An AXI interconnect has two responsibilities:
(i) receiving transactions sent from a master/slave and then routing
them to the corresponding destinations. (ii) organizing the order of
transactions when a master/slave receives multiple transactions.

To this end, an AXI interconnect introduces a group of FIFO
queues and multiplexers for each slave port in the request path.
During run-time, the FIFO queues respectively buffer the requests
in the AR, AW, and W channels, and the multiplexers select the
destinations of these requests. Simultaneously, a group of FIFO
queues and arbiters are connected to each master port. These arbiters
are entirely independent of each other, and decide the access order
of requests sent to the connected slaves. In most existing work and
commercial products (e.g., [3], [6], [12]), a round-robin scheduling
policy is adopted in the arbiters. In the response path, symmetric
structures of the R and B channels are implemented.
AXI transactions. In AMBA AXI, a transaction is always initialized
by a master. To issue a read/write transaction, a master first sends a
header packet to a slave using the AR/AW channel, containing infor-
mation necessary for the transaction, e.g., length. In read procedures,
response data is transferred back to the master via the R channel. In
write procedures, write data is routed to a slave via the W channel,
and the slave uses the B channel to acknowledge the transmission
from the master. Fig. 3 demonstrates a complete write transaction.

AXI provides two methods for data transfer: single transaction
mode and burst transaction mode. A master can read/write up to
256 addresses in the burst transaction mode; whereas it can only
read/write a single address in the single transaction mode. From a
design perspective, the single transaction mode can be treated as a
burst transaction mode with a single read/write address. Therefore, in
this paper, we assume that all transactions are generated in the burst
mode. Following the AXI protocol [6], we call the data payload of
a transaction a burst, and the packets of a burst beats. In Fig. 3, the
the master issues a write burst with 3 beats in a transaction.

As regulated in [6], a master must generate the header and bursts
in the same order, and the transmission of a burst is non-preemptive.

III. RESEARCH CHALLENGES AND RELATED WORK

A. Research Challenges

In heterogeneous SoCs (e.g., Fig. 1), an AXI port and its associated
FIFO queues are often shared between multiple masters/slaves. The
implementation of FIFO queues prevents prioritization of transac-
tions, and leaves the real-time performance of an AXI interconnect
entirely to the arrival order of the transactions. However, masters
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Fig. 4. Hardware micro-architectures of real-time interconnects. The blue portions highlight the modifications compared to conventional interconnects.

and slaves in heterogeneous SoCs usually execute independently.
This leads to frequent contentions in the interconnect, significantly
damaging its predictability and analyzability.

More seriously, the FIFO-based structure leads to random occur-
rences of physical priority inversion at both slave and master ports.
That is, a low-priority transaction blocks a high-priority transaction
when both transactions are buffered in the same FIFO queue and the
low-priority transaction arrives before the high-priority transaction.
We detail this blocking below.
Slave port blocking. Slave port blocking occurs between masters
using the same slave port, which is observed in FIFOs connected to
slave ports. Taking Fig. 1 as an example, PEs in the DNN HA can
cause frequent slave port blocking, when they keep accessing the
interconnect concurrently.
Master port blocking. Master port blocking occurs when the masters
connected to different slave ports send transactions to the same
destination simultaneously. This blocking is observed at the FIFOs
connected to the master ports. Taking Fig. 1 as an example, processors
in the core subsystem and PEs in the DDN HA can suffer frequent
master port blocking when they keep reading the same memory block
at the same time.

Moreover, to solve these issues in a heterogeneous SoC, both
dependency and scalability must be taken into account:
Dependency. As shown in Fig. 2, an AXI interconnect fully connects
the masters and slaves in the system. Therefore, blocking which
occurs in one transaction path can generate or magnify blocks in
the other paths. More seriously, such interference usually occurs
repetitively and recursively between the transaction paths, which
largely magnifies the unpredictability of the interconnect.
Scalability. With the increase in system complexity, modern het-
erogeneous SoCs usually introduce additional masters and slaves,
which creates more transaction paths in the interconnect. These
additionally introduced transaction paths lead to extra resource con-
tentions/blocking, further magnifying the above problems.

These issues lead to challenges in designing a real-time AXI
interconnect for modern heterogeneous SoCs. In the next section,
we examine the existing work contributing to this research scenario.
B. Related Work

Existing work focusing on the real-time performance of intercon-
nects can be mainly classified as duplicated channels, bandwidth
reservation, and hierarchical connections. Note, we do not restrict
the communication protocols of the reviewed work. Ideally, all these
methods are compatible with AMBA AXI.
Duplicated channels (Fig. 4(a)). A straightforward way to improve
an interconnect’s real-time performance is duplicating its communi-
cation channels. For example, Loh et al. [13] implemented “virtual
channels” for all transaction paths of the interconnect. Burns [14]
adopted a similar method, performing a detailed theoretical analysis
to bound the worst-case behaviors of the interconnect. The same
design concept has also been widely adopted in industry. In industrial
patents, duplicated channels are usually created for specific transac-
tions, e.g., privileged/secure messages [15], video processes [16], and
I/O communications [17].

As evidenced in both experimental and theoretical evaluation [13],
[14], duplicating the communication channels considerably enhances
system-level throughput. However, the additionally introduced chan-
nels bring extra resource contentions, e.g., transactions buffered in
different virtual channels can simultaneously access a master port,
which further magnifies the problems reviewed in Section III-A. At
the same time, this method also significantly increases hardware
consumption, as the implementation of communication channels (i.e.,
register chains) dominates the interconnect’s hardware overhead. For
instance, a dual-channel interconnect usually consumes nearly two
times the hardware compared to a single-channel interconnect.
Bandwidth reservation (Fig. 4(b)). Bandwidth reservation is usually
used to ensure the services of specific transaction paths. To achieve
this, the interconnect first assigns a static priority to each master
(or slave port) and then allocates them a certain bandwidth based
on their associated priorities. For instance, Restuccia et al. [18]
introduced an AXI Burst Equalizer (ABE) to re-organize transactions,
which guarantees that all slave ports can use identical bandwidth;
Pagani et al. [19] proposed a dedicated AXI controller to reserve
bandwidth for high priority masters. In addition, some work on run-
time bandwidth allocation optimizes arbiters’ scheduling strategies.
For instance, Hebbache et al. [20] introduced a dynamic arbitration
scheme for the arbiters.

Bandwidth reservation effectively ensures throughput and pre-
dictability of high priority transactions. However, this method cannot
fundamentally solve contentions and blocking in the interconnect.
At the same time, it also reduces design flexibility and interconnect
utilization, since the interconnect must accurately acquire transaction
information before run-time and always ensure sufficient bandwidth
for the high-priority masters at run-time.
Hierarchical connections (Fig. 4(c)). Different from the above work,
relying on an independent arbiter to schedule transactions sent to
the connected master port, there are also interconnects with multiple
hierarchies. In a hierarchical structure, the slave ports are grouped
into different partitions by the interconnect. Slave ports in the same
group are connected to a local interconnect. At the same time, a
global interconnect connects these local interconnects and master
ports. For example, Restuccia et al. [12] implemented a 2-level AXI
interconnect with the corresponding theoretical analysis. Audsley [21]
introduced a tree-like structure to support multiple-level connections
between local interconnects. Garside et al. [10] further extended this
structure [21] to support 64 masters.

This method brings partial optimizations to the interconnect. How-
ever, like the other methods, it cannot solve contentions and blocking
in an interconnect due to the lack of a global view.

IV. AXI-InterconnectRT DESIGN

In this section, we present the top-level design of a real-time
AXI Interconnect (AXI-InterconnectRT), which could simultaneously
guarantee transaction predictability and throughput.

A. Design Concepts

We present three design concepts (DCs) for AXI-InterconnectRT:
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DC 1: FIFO-free connections. AXI-InterconnectRT replaces the
FIFO queues with new Random Access queues (RA queues), en-
abling random accesses of buffered transactions. The new micro-
architecture effectively avoids the physical priority inversion and
provides the possibility of transaction prioritization.

DC 2: Multiple-Write-Single-Read RA queues. The RA queue
introduces a Multiple-Write-Single-Read (MWSR) structure, al-
lowing different masters to write to it and a single slave to
read from it simultaneously. This structure prevents resource
contentions between different masters.

DC 3: 1-Cycle decoding and grouping. AXI-InterconnectRT de-
codes buffered transactions to extract associated parameters,
and then correspondingly re-groups them.

DC 4: Online scheduling. AXI-InterconnectRT introduces indepen-
dent global scheduling for each slave, which prioritizes transac-
tions based on the associated parameters.

B. Overall Miro-architecture

The top-level micro-architecture of AXI-InterconnectRT is shown
in Fig. 5. We retain the standard slave and master ports at interfaces,
ensuring compatibility with heterogeneous SoCs designed with con-
ventional AXI interconnects.

For each slave port, we remove the connected FIFO queues (in
the conventional interconnect) and introduce a transaction analyzer
connected to both AW and W channels. The analyzer monitors
and decomposes transaction headers in the AW channel, which (i)
determines the destination of each header and its following burst;
and, (ii) extracts the associated parameters of this transaction, e.g.,
length, period, etc. For each master port, we introduce two RA queues
and a Transaction Control Unit (TCU). The RA queues respectively
buffer the header and send bursts to the connected slave, whilst the
TCU organizes the transfer orders.

Moreover, we adopt response path pass-through connections (i.e., B
channel) because transactions always involve a single-packet response
and the masters (e.g., processors) are usually hundreds of times faster
than the slaves (e.g., memory and I/Os). This leads the B channel to
be block-free.

C. Run-time behaviors.

During run-time, analyzers continually monitor the AW channels.
Once an analyzer captures a header transferred via its monitored AW
channel, the analyzer decodes the header and sends the decoded desti-
nation and other associated parameters to the connected multiplexers
and corresponding TCU respectively. The multiplexer then routes
the received header and the following burst to the corresponding
RA queues. Simultaneously, each TCU maintains the parameters

of the transactions sent to its managed slave using a transmission
information table (TIB), and organizes the transfer orders. Since the
transfer of a burst is non-preemptive [6], a TCU only schedules the
next transaction after the completion of each burst transaction.

As shown in Fig. 5, the design of the TCU is modularized, which
allows system designers to customize the scheduling strategy.

V. CONCLUSION

In this paper, we identify and analyze predictability issues around
AXI interconnects in heterogeneous SoCs, and summarize the work
contributing to the research in this area. We also present AXI-
InterconnectRT , a real-time AXI interconnect, which can prioritize
transactions at the hardware level and guarantee transaction pre-
dictability. We specifically introduce the design concepts and top-
level micro-architecture of AXI-InterconnectRT .
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