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1 Introduction

Since the multicore revolution, the focus of real-time scheduling research has
shifted from uniprocessors to multiprocessors. In work on this topic, the global
earliest-deadline-first (G-EDF) and global fixed-priority (G-FP) schedulers
have both been widely studied (e.g., [3, 5–7, 9, 19]). Although neither is op-
timal for scheduling hard real-time (HRT) systems where every deadline must
be met, both preemptive and non-preemptive G-EDF are optimal for schedul-
ing soft real-time (SRT) sporadic task systems that only require bounds on
deadline tardiness [12]. That is, under each of these schedulers, deadlines can
be missed by only a bounded amount of time for any feasible task system. Fea-
sible in this context means that the underlying platform is not over-utilized,
and no task over-utilizes a single processor [11].

Unfortunately, this SRT-optimality result does not extend to G-FP, as
feasible task systems exist for which tardiness under it can increase without
bound; this was shown previously for preemptive G-FP [11] and is shown herein
for non-preemptive G-FP. This non-optimality result is regrettable because,
in comparison to G-EDF, G-FP entails less overhead, is easer to implement,
and enables certain tasks to be favored over others. Given this negative result,
if certain tasks need to be prioritized over others, an obvious alternative would
be to use a partitioning scheme instead. However, such schemes are also not
optimal and can cause system capacity loss due to bin-packing-related issues.

In this paper, we consider a different option: employing a relaxed variant
of the standard sporadic task model in which successive jobs of the same
task may execute in parallel. We are motivated to consider this relaxed model
because of the nature of the counterexamples used to show the non-optimality
of G-FP. In devising such counterexamples, the goal is to ensure that a certain
low-priority task is unable to make use of processors made available to it in
parallel, thereby causing its response times to grow without bound.

This relaxed task model has in fact been considered previously in work
directed at using G-EDF in HRT [4] and SRT systems [14, 29]. The latter
work showed that allowing intra-task parallelism enables much lower tardi-
ness bounds to be derived. Following [29], we call this relaxed model the npc-
sporadic (“no precedence constraints”) task model. Under the npc-sporadic task
model, G-EDF precludes response times from growing unboundedly, even if a
task’s execution time exceeds its period. All that is required is that the en-
tire platform is not over-utilized—this is the only condition needed for SRT
feasibility under this model.

This paper expands upon work directed at the npc-sporadic task model
by considering the behavior of G-FP under this model. We show that, like
G-EDF, G-FP ensures bounded response times for any feasible npc-sporadic
task system. We elaborate on this result below, after first taking a closer look
at the npc-sporadic model.

Applying the npc-sporadic task model. For the npc-sporadic task model to be
applicable, successive jobs of the same task must be able to execute indepen-
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dently. Additionally, it must be acceptable for such jobs to produce output out
of order; this tends to be a lesser concern that can be dealt with via buffering
(recall that our focus here is applications that can tolerate some tardiness).

Prior papers directed at G-EDF under the npc-sporadic task model men-
tion several example applications that meet these requirements [14, 29]. A
particularly compelling use case is computer-vision (or radar) object detec-
tion [29]. In contrast to object tracking, object detection may be performed
on each frame of video independently. In recent work pertaining to real-time
computer vision [31], this use case was considered in detail. In that work, it
was shown that allowing intra-task parallelism enables dramatically improved
response-time bounds for object detection.

Contributions. We consider the scheduling of npc-sporadic task systems on
an identical multiprocessor platform under preemptive G-FP. We derive a
response-time bound that shows that preemptive G-FP guarantees bounded
response times (and hence tardiness) for any feasible npc-sporadic task sys-
tem; that is, preemptive G-FP is SRT-optimal. We also show that our derived
response-time bound is asymptotically tight.

This bound tends to grow as the core count and the number of higher-
priority tasks increase. Thus, lower tardiness can be guaranteed by partitioning
tasks among clusters of cores and scheduling globally only within a cluster.
Using a clustered approach lessens tardiness at the expense of impinging on
schedulability due to bin-packing-related issues. To elucidate this tradeoff, we
conducted an experimental schedulability study in which different cluster sizes
were considered on a 16-core platform. We found that using clusters of size
four typically enabled relative tardiness bounds that were 60% of those under
global scheduling with hardly any impact on schedulability. (A task’s relative
tardiness is given by its tardiness divided by its period.) In our experiments,
we also compared relative tardiness bounds obtained from our analysis vs.
observed average relative tardiness. We found that bounds for task sets with
high total utilization tended to be four to ten times larger than observed
relative tardiness.

Per-task tardiness bounds depend on the prioritization of the task system;
a lower tardiness bound can be achieved with an appropriate choice of prioriti-
zation function. We evaluated several strategies for the priority ordering with
respect to tardiness. We found that three of these strategies significantly out-
perform the others, and considered these in more detail. In our evaluation, the
correct choice of prioritization function ensured up to five times lower average
tardiness

We present our tardiness analysis by initially focusing on the preemptive
G-FP scheduler. However, as discussed later, this analysis can be adjusted to
apply to non-preemptive G-FP, as well as to a further generalization of G-
FP that employs preemption thresholds, and, in fact, to any work-conserving
global scheduler. Thus, non-preemptive G-FP is SRT-optimal as well with
respect to npc-sporadic task systems.
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The results of this paper establish a rare context under which fixed-priority
real-time scheduling is optimal in some sense. To our knowledge, the only other
context where such a result has been shown is the uniprocessor scheduling of
synchronous implicit-deadline periodic tasks with harmonic periods.

This work extends a paper [27] previously published in the Proceedings
of the 26th International Conference on Real-Time Networks and Systems
(RTNS 2018). In addition to the slightly modified original material, the ex-
tended version considers non-preemptive fixed-priority scheduling, generalized
fixed-priority scheduling (G-FP with preemption thresholds), and task system
prioritizations. It also includes an expanded experimental evaluation.

Paper organization. In the rest of the paper, we provide needed background
(Sec. 2), prove some preliminary lemmas (Sec. 3), derive the response-time
bound that is our main contribution (Sec. 4), establish its tightness (Sec. 5),
consider task system prioritizations (Sec. 6), extend our results for the non-
preemptive case (Sec. 7), as well as G-FP with preemption thresholds (Sec. 8)
and any work-conserving scheduler (Sec. 9), present our experimental results
(Sec. 10), and conclude (Sec. 11).

2 System Model

Task model. We consider the SRT scheduling of a system τ of n implicit-
deadline npc-sporadic tasks, τ1, . . . , τn, on platform π with m identical unit-
speed processors, π1, . . . , πm. The npc-sporadic task model considered in this
paper differs from the standard sporadic task model by relaxing intra-task
precedence constraints: any two jobs, ready for execution, may be scheduled
at the same time, even if they are produced by the same task. We use the
following notation (we assume familiarity with terms commonly used in work
on real-time scheduling): Ci > 0 denotes the worst-case execution time of
task τi, Ti denotes its period, and ui = Ci/Ti denotes its utilization; Ji,j
denotes the jth job released by τi, where j ≥ 1, and Ci,j denotes Ji,j ’s actual
execution time, which may be less than Ci. If a job is released at time tr, has
a deadline a time td, and completes at time tc, then its response time is tc− tr
and its tardiness is max(0, tc − td). We also assume that time is continuous.

We denote the overall system utilization by U =
n∑
i=1

ui, the total utilization of

tasks τ1, ..., τ` by U` =
∑̀
i=1

ui, and the total utilization of all tasks in a specified

set α by Uα =
∑
τi∈α

ui.

Task constraints. Our objective is to derive a response-time bound for a task
τk by focusing on a job of interest Jk,d. Note that if τk’s response times are
bounded, then its tardiness is bounded as well. If U exceeds the platform
capacity of m, then at least one task will clearly have unbounded response



Tardiness Bounds for G-FP Scheduling without Intra-Task Prec. Constraints 5

times if all tasks release jobs as soon as possible and every job executes for its
worst-case execution time. Therefore, we assume U ≤ m. However, unlike the
traditional sporadic task model, we do not require ui ≤ 1, which is necessary
for bounded response times under that model but not under the npc-sporadic
task model. Under the latter model, a scheduler that can ensure bounded
tardiness for any task system for which U ≤ m holds is SRT-optimal.

Scheduler. The main focus of this paper is preemptive G-FP (Secs. 4–6), but
we will also consider its non-preemptive variant (Sec. 7) as well as a family of
variants defined by preemption thresholds (Sec. 8). Furthermore, we will show
that our results can be extended to any work-conserving scheduler (Sec. 9). To
reduce redundancy, we begin by providing definitions (this section) and base
lemmas (Sec. 3) for a broad class of schedulers. Scheduler-specific lemmas
and theorems are presented in later sections. In this paper, we consider only
schedulers that satisfy the following three assumptions:

SH1: The scheduler is global and work-conserving.
SH2: Ready jobs of the same npc-sporadic task are prioritized against each other

on a FIFO basis.
SH3: A job can be scheduled only a finite number of times within any finite time

interval.

Assumption SH1 means that every job can be scheduled on every processor,
and no processor can be idle, if there is a non-completed job. Assumption SH2
is implicit in the conventional sporadic task model (which precludes a job from
starting until the previous job of the same task completes). Assumption SH3
reflects the practical reality that an “implementable” scheduler cannot preempt
a job infinitely often. Informally speaking, Assumptions SH1 and SH2 ensure
that every job will eventually be completed because the system is not over-
utilized.

Sporadic vs. npc-sporadic task models. Although the potential for conven-
tional sporadic tasks to have unbounded response times under preemptive
G-FP has been shown previously [11], we provide examples illustrating this
behavior below for both preemptive and non-preemptive G-FP to highlight
various differences between the npc-sporadic and sporadic task models.

Example 1 (preemptive G-FP) Consider a task system with m + 1 periodic
tasks, each with a worst-case execution time of 1 + ε and a period of 2 time
units. Under the conventional sporadic model, the response time of the lowest-
priority task is unbounded because an allocation of only 1−ε time units is avail-
able every 2 time units, while the task requires 1+ ε time units, as illustrated
in Fig. 1a for m = 3. The total utilization of this system is (1 + ε)(m+ 1)/2,
which approaches (m + 1)/2 (roughly half-utilizing the platform) as ε → 0.
In contrast, under the npc-sporadic model, applying Theorem 1 in Sec. 4 to
the task system in Fig. 1a yields a response-time bound for the lowest-priority
task of 3.5 for small ε (its exact response time is 3 + 3ε). A schedule for this
case is shown in Fig. 1b. ut
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(a) Ex. 1, sporadic tasks, and preemptive G-FP.
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time

(b) Ex. 1, npc-sporadic tasks, and preemptive G-FP.

0 1 2 3 4 5 6 7 8 9 10

π1

π2

τ3

time

(c) Ex. 2, sporadic tasks, and non-preemptive G-FP.
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×2 ×2

(d) Ex. 2, npc-sporadic tasks, and non-preemptive G-FP.

Fig. 1 Schedules for the task systems in Exs. 1 and 2.
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Example 2 (non-preemptive G-FP) Consider a task system with three periodic
tasks, to be scheduled on two processors, with (C1, T1) = (2, 3), (C2, T2) =
(2, 3), and (C3, T3) = (1, 2). Despite the non-preemptivity of the scheduler,
each job of τ3 (the lowest-priority task) completes in one time unit, as illus-
trated in Fig. 1c, and thus never non-preemptively blocks any jobs from τ1
and τ2. The time available to τ3 on each processor coincides, so under the con-
ventional sporadic model, its response time must increase without bound, as
illustrated. In contrast, under the npc-sporadic model, where intra-task par-
allelism is allowed, its response time is bounded, as implied by Fig. 1d. ut

Definitions. In considering the problem of deriving response-time bounds, we
make use of some additional terms and notation, which we introduce next.
Definition 1 We let ri,j and Ri,j denote the release and response times, re-
spectively, of job Ji,j . For conciseness, we sometimes use r and R in reference
to the job of interest instead of rk,d and Rk,d when there is no ambiguity.
Definition 2 At time t, job Ji,j is ready if t ≥ ri,j and it has not completed
yet. If t < ri,j , then Ji,j is unreleased.

As in [13], we use the concept of lag, which we define by considering an
“ideal” platform π′ consisting of n processors, π′1, . . . , π′n, with speeds u1, . . . , un,
respectively. A processor’s speed corresponds to the job execution rate on it.
Note that such a speed might differ from 1.0. In the ideal schedule, each task τi
only executes jobs on processor π′i with speed ui. Under the npc-sporadic task
model with implicit deadlines, every job executes in the ideal schedule from
its release until its completion without interference from other jobs or tasks
(different tasks run on different processors). Note that if Ci,j < Ci holds, then
Ji,j completes in the ideal schedule before its deadline, whereas, if Ci,j = Ci
holds, then it completes exactly at its deadline. Thus, at most one job from
every task is scheduled at any time in the ideal schedule.
Definition 3 We denote as I the ideal schedule of the task set τ on π′ as
described above. Note that I is a hypothetical schedule that is used only for
proofs (it does not exist in reality because it may require processors that differ
from those in the given platform, but I is well defined). Also, we denote as
S the canonical schedule produced by the considered scheduler on the actual
platform π with m unit-speed processors; a canonical schedule is a schedule
that satisfies several scheduler-specific assumptions and is defined for every
scheduler later. These assumptions can be specified later because we do not
use any of them within Secs. 2 and 3.
Definition 4 For a given schedule H (either I or S) at a given time instant
t, we define function sched(H, t, Ji,j) such that sched(H, t, Ji,j) = s if Ji,j is
scheduled on some processor of speed s, and sched(H, t, Ji,j) = 0 if Ji,j is not
scheduled on any processor.

We also define A(H, t1, t2, Ji,j), the overall processor capacity allocated to
job Ji,j in H within the interval [t1, t2), as follows,

A(H, t1, t2, Ji,j) =
∫ t2

t1

sched(H, t, Ji,j)dt.
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Because sched(H, ·, Ji,j) is a piecewise constant function, A(H, 0, ·, Ji,j) is con-
tinuous (by Assumption SH3, the value of sched(H, ·, Ji,j) changes its values
a finite number of times within [0, t]). To aid in expressing other needed for-
mulas, we also define

A(H, t1, t2, τi) =
∑
j

A(H, t1, t2, Ji,j), and

A(H, t1, t2, τ) =
∑
τi∈τ
A(H, t1, t2, τi).

Definition 5 The lag for job Ji,j is defined as lag(Ji,j , t) = A(I, 0, t, Ji,j) −
A(S, 0, t, Ji,j).
Example 3 (functions sched,A, lag) Consider a job J1,1 in a schedule S with
other jobs, where C1,1 = 3, T1 = D1 = 4, and u1 = 0.75. Inset (a) of Fig. 2
shows how this job is scheduled in some actual schedule. Inset (b) shows the
corresponding values of sched(I, t, J1,1) and sched(S, t, J1,1). Inset (c) depicts
lag(t, J1,1) as a function of time. ut

Definition 6 The lag for task τi is defined as Lag(τi, t) =
∑
j lag(Ji,j , t),

which is equivalent to A(I, 0, t, τi)−A(S, 0, t, τi).
As in Def. 4, the Lag of τi can be equivalently defined as

Lag(τi, t) =

∫ t

0

∑
j

sched(I, t, Ji,j)−
∑
j

sched(S, t, Ji,j)

 dt.
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Definition 7 We define the total lag of the entire task system
as LAG(t) =

∑
i Lag(τi, t) =

∑
i

∑
j lag(Ji,j , t), which is equivalent to

A(I, 0, t, τ) − A(S, 0, t, τ). We also define LAG(α, t) =
∑
τi∈α Lag(τi, t)

(the total lag of the tasks in α). Thus, LAG(t) is an abbreviation of LAG(τ, t).
Note that we use function names lag for the lag of a job, Lag for the lag of

a task, and LAG for the total lag of a set of tasks.

3 Preliminary Bounds on lag, Lag, and LAG Functions

In this section, we present a number of lemmas pertaining to the lag-based
functions at the job, task, and system level. In Sec. 3.1, we derive a few prop-
erties of the job lag function and a lower bound on the task Lag function. In
Sec. 3.2, we derive an upper bound on the total system LAG function. Note
that these lemmas are proven assuming only Assumptions SH1-SH3. There-
fore, we are free to use them later in the context of any scheduler that satisfies
Assumptions SH1-SH3.

Proof overview. To emphasize the importance of the lemmas proved in this
section, we present here an overview of the response-time bound computation
for preemptive G-FP. Fortunately, the same approach can be used for all
considered G-FP variants with minor modifications.

The main idea behind the npc-sporadic task model is that a task can occupy
multiple available processors if it has multiple ready jobs. If Jk,d’s response
time is high enough, then there are at least m non-completed jobs (the job
of interest and the following jobs of τk). Thus, until the completion of Jk,d,
no processors are idle. Although this approach works for preemptive G-FP
(Sec. 4), we modify it later to handle more complicated schedulers (Sec. 7
and 8).

We exploit this proof idea in three major steps. Firstly, we estimate the
total system LAG at times r and r + R in Lemmas 7 and 8 assuming α = τ .
Because the job of interest is uncompleted within the interval [r, r+R), either
R is small or m cores are busy within most of the interval. In both cases,
the LAG increase over the interval is relatively small, which implies an upper
bound for LAG(r + R). Secondly, we compute a lower bound on Jk,d’s Lag at
time r + R in Lemma 9; this Lag value depends on R. Finally, we obtain an
upper bound on R in Theorem 1 with LAG(r + R) =

∑
i Lag(τi, r + R) using

Lemma 4 to bound the Lag of all tasks other than τk.

3.1 Task Lag Lower Bound

The general property of Lag for a single task that we establish in this subsection
is formulated in Lemma 4. To prove this lemma, we first prove several lemmas
concerning job lag.
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Lemma 1 For any time t before the release of job Ji,j or after its completion
in both schedules I and S, lag(Ji,j , t) = 0.

Proof If Ji,j is unreleased, then by Def. 4, A(I, 0, t, Ji,j) and A(S, 0, t, Ji,j)
are both 0. If Ji,j has completed in both schedules I and S, then by Def. 4,
A(I, 0, t, Ji,j) = A(S, 0, t, Ji,j) = Ci,j . In both cases, by Def. 5, lag(Ji,j , t) = 0.

ut

Lemma 2 If t ≥ ri,j + Ti, then lag(Ji,j , t) ≥ 0.

Proof If t ≥ ri,j + Ti, then A(I, 0, t, Ji,j) = Ci,j , because Ji,j completes in I
by the end of its period. Also, A(S, 0, t, Ji,j) ≤ Ci,j for every time instant. By
Def. 5, the lemma follows. ut

The next lemma provides bounds on a single job’s lag.

Lemma 3 min(0, (ui − 1)Ci) ≤ lag(Ji,j , t) ≤ Ci.

Proof According to Def. 5,

lag(Ji,j , t) = A(I, 0, t, Ji,j)−A(S, 0, t, Ji,j)
≤ A(I, 0, t, Ji,j)
≤ {by Def. 4}
Ci,j

≤ Ci,

proving the stated upper bound. In the rest of the proof, we focus on proving
the stated lower bound. Let f = Ci,j/Ci. Note that f · Ti = (Ci,jTi)/Ci =
Ci,j/ui, which is the exact amount of time that is needed for Ji,j ’s comple-
tion in the ideal schedule I. To simplify the proof, we split the time line
into three intervals: “before Ji,j ’s release” : [0, ri,j); “Ji,j is scheduled in I”
: [ri,j , ri,j + f · Ti); and “Ji,j has completed in I” : [ri,j + f · Ti,∞). We con-
sider each interval separately.

Case 1 t ∈ [0, ri,j). By Lemma 1, lag(Ji,j , t) = 0.

Case 2 t ∈ [ri,j , ri,j + f · Ti). For any such t, we define t′ = t− ri,j . By def-
inition, t′ ∈ [0, f · Ti). Since Ji,j is released at time ri,j and is continuously
scheduled in I (by Def. 3) during [ri,j , ri,j + f · Ti) on a processor with speed
ui, A(I, 0, t, Ji,j) = uit

′.
In completing the reasoning for this case, we first dispense with the possi-

bility that ui ≥ 1 holds. Because job Ji,j is not scheduled in S before ri,j ,

A(S, 0, t, Ji,j) = A(S, ri,j , t, Ji,j) ≤ t− ri,j = t′.

Thus, if ui ≥ 1 holds, we have

A(I, 0, t, Ji,j) = uit
′ ≥ t′ ≥ A(S, 0, t, Ji,j),
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which implies that lag(Ji,j) ≥ 0 holds. In the rest of the proof for Case 2, we
consider the remaining possibility: ui < 1.

Let ρ denote the allocation time for Ji,j in S during the subinterval
[ri,j , t) = [ri,j , ri,j + t′). Then ρ ≤ t′ and ρ ≤ Ci (the maximum execution time
for any job of τi). Thus, we have

lag(Ji,j , t) = lag(Ji,j , ri,j + t′)

= A(I, 0, ri,j + t′, Ji,j)−A(S, 0, ri,j + t′, Ji,j)

= uit
′ − ρ

= (ui − 1)ρ+ (t′ − ρ)ui
≥ {t′ ≥ ρ}

(ui − 1)ρ

≥ {ui − 1 < 0 and ρ ≤ Ci}
(ui − 1)Ci.

Case 3 t ∈ [ri+f ·Ti,∞). By Def. 3 and the definition of f , Ji,j is completed at
time instant ri+f ·Ti in I, andA(I, 0, t, Ji,j) = Ci,j . WithA(S, 0, t, Ji,j) ≤ Ci,j
(the maximal allocation for Ji,j in S), we have lag(Ji,j , t) = A(I, 0, t, Ji,j) −
A(S, 0, t, Ji,j) ≥ Ci,j − Ci,j = 0.

By Cases 1-3, lag(Ji,j , t) ≥ min(0, (ui − 1)Ci). ut

Corollary 1 lag(Ji,j , t) < 0 implies t ∈ [ri,j , ri,j + Ti).

Proof In Cases 1 and 3 in the proof of Lemma 3 above, we proved that
lag(Ji,j , t) ≥ 0 holds. Thus, if lag(Ji,j , t) < 0 holds, then t∈ [ri,j , ri,j + f · Ti)
(the interval considered in Case 2) with f = Ci,j/Ci. Because f ≤ 1,
[ri,j , ri,j + f · Ti) ⊆ [ri,j , ri,j + Ti). ut

Our lower bound on job lag can be extended to task Lag.

Lemma 4 min(0, (ui − 1)Ci) ≤ Lag(τi, t).

Proof By Corollary 1, lag(Ji,j , t) < 0 may hold only if Ji,j is scheduled for
execution in I at time instant t ∈ [ri,j , ri,j + Ti). By Def. 3, at most one job per
task may be scheduled in I at any time instant. Therefore, in

∑
j lag(Ji,j , t), at

most one summand might be less than 0, because the intervals [ri,j , ri,j + Ti)
do not overlap for different choices of j due to the definition of an npc-sporadic
task. That is, if lag(τi,h, t) < 0 holds, then for any j 6= h, lag(Ji,j , t) ≥ 0. Thus,
by Lemma 3

Lag(τi, t) =
∑
j

lag(Ji,j , t) ≥ lag(τi,h, t) ≥ min(0, (ui − 1)Ci).

ut
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3.2 System LAG Upper Bounds

In Sec. 3.1, we established results about job and task lags. We are now ready
to bound the overall system LAG. To do so, we need to analyze precisely how
processors schedule different tasks.

We begin by proving that all functions considered in ours proofs are con-
tinuous. This property is used in establishing LAG upper bounds.

Lemma 5 lag(Ji,j , t) and Lag(τi, t) are continuous functions of t. Also, ∀α ⊆
τ , LAG(α, t) is a continuous function of t.

Proof Both A(I, 0, t, Ji,j) and A(S, 0, t, Ji,j) are continuous by definition.
Thus, by Def. 5, lag(Ji,j , t) is continuous because

lag(Ji,j , t) = A(I, 0, t, Ji,j)−A(S, 0, t, Ji,j).

Let h be the number of jobs, released by τi at or before t. Then ri,h ≤ t <
ri,h+1. By Lemma 1, lag(Ji,j , t) = 0 for all j > h. Thus,

Lag(τi, t) =
∑
j

lag(Ji,j , t) =
∑
j≤h

lag(Ji,j , t).

Lag(τi, t) is continuous because it is a sum of a finite number of continuous
functions. Similarly, LAG(α, t) is continuous because

LAG(α, t) =
∑
τi∈α

Lag(τi, t).

ut

The following lemma is used to bound the execution rate of a given task
set in the ideal schedule I.

Lemma 6 For any time interval [t1, t2) and any task set α,

A(I, t1, t2, τi) ≤ ui(t2 − t1), and

A(I, t1, t2, α) ≤ Uα(t2 − t1).

Proof At every time instant in the ideal schedule I, there is at most one job
from task τi scheduled (see Def. 3). The speed of the processor that schedules
τi is ui, while the length of the considered interval is (t2 − t1). Thus,

A(I, t1, t2, τi) =
∑
j

A(I, t1, t2, Ji,j) ≤ ui(t2 − t1), and (1)
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A (I, t1, t2, α) =
∑
τi∈α

(A(I, t1, t2, τi))

≤ {by (1)}∑
τi∈α

ui(t2 − t1)

=

(∑
τi∈α

ui

)
(t2 − t1)

= Uα(t2 − t1).

ut

Definition 8 We call a processor busy at time instant t if there exists a job
scheduled for execution on this processor at time t. Otherwise, the processor
is idle.

Our upper bound on the LAG of the set of tasks is given by the following
lemma.

Lemma 7 Consider a set of tasks α such that at any time instant in [0, t′),
for some time instant t′, only jobs from tasks in α are scheduled. Then for any
t ∈ [0, t′], LAG(α, t) ≤ (dUαe − 1)Cmax, where Cmax = max

τi∈α
Ci.

Proof To prove this lemma, we split the interval [0, t′) into a set of maximal
continuous intervals such that the number of busy processors in S during each
interval does not change. More formally, these intervals satisfy the following
assumptions (for an interval I):

I1: The number of busy processors in S during I does not change.
I2: I cannot be extended without violating I1.

Since any finite time interval I contains a finite number of scheduling events
by Assumption SH3, I contains a finite number of the intervals from the set
just defined.

We now prove the lemma by contradiction: let Ib be the first time interval
from the set defined above such that

∃t2 ∈ Ib : LAG(α, t2) > (dUαe − 1)Cmax. (2)

Let t1 be the beginning of Ib, which implies t1 ≤ t2. To set up deriving a
contradiction later, we next show that (3) below holds.

LAG(α, t1) ≤ (dUαe − 1)Cmax. (3)

If t1 = 0, then LAG(α, 0) = 0, so (3) holds since Uα > 0. On the other
hand, if t1 6= 0, then there exists a preceding interval Ia such that the end of
Ia is t1, and, by the definition of Ib,

∀t ∈ Ia : LAG(α, t) ≤ (dUαe − 1)Cmax.
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By Lemma 5, LAG(α, t) is a continuous function, so

LAG(α, t1) = lim
t→t−1

LAG(α, t) = lim
t∈Ia,t→t−1

LAG(α, t) ≤ (dUαe − 1)Cmax,

i.e., (3) holds. Thus, we have

LAG(α, t1) ≤ (dUαe − 1)Cmax < LAG(α, t2), (4)

and the number of busy processors during [t1, t2) in the actual schedule S does
not change. Let bp denote this number. The overall allocation given to τ in S
with exactly bp busy processors during the interval [t1, t2) is

A(S, t1, t2, τ) = bp · (t2 − t1). (5)

Combining Lemma 6 and (5), we can bound the change of LAG over [t1, t2):

LAG(α, t2)− LAG(α, t1)

= A(I, 0, t2, τ)−A(S, 0, t2, τ)− (A(I, 0, t1, τ)−A(S, 0, t1, τ))
= A(I, t1, t2, τ)−A(S, t1, t2, τ)
≤ {by Lemma 6 and (5)}
Uα(t2 − t1)− bp · (t2 − t1)

= (Uα − bp)(t2 − t1).

Thus, by (4), (Uα−bp)(t2− t1) > 0. By the definition of t1 and t2, t1 ≤ t2,
so Uα − bp > 0. Thus,

bp ≤ dUαe − 1. (6)

Since Uα ≤ m, we therefore have bp < m. Thus, there is at least one non-busy
processor. By Assumption SH1, the scheduler is work-conserving, so all ready
jobs are scheduled, and bp is the number of uncompleted jobs of tasks in α at
time t−2 . We can now derive a bound for LAG(α, t−2 ):

LAG(α, t−2 ) =
∑
i

Lag(τi, t
−
2 )

≤ {by Def. 7 and Lemma 1}∑
Ji,j is uncompleted in I or S at t−2

lag(Ji,j , t
−
2 )

≤
∑

Ji,j is uncompleted in S at t−2

lag(Ji,j , t
−
2 ) +

∑
Ji,j is uncompleted in I but not in S at t−2

lag(Ji,j , t
−
2 )

≤ {if Ji,j is uncompleted in I but not in S then lag(Ji,j , t
−
2 ) ≤ 0}∑

Ji,j is uncompleted in S at t−2

lag(Ji,j , t
−
2 )
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≤ {by Lemma 3}∑
Ji,j is uncompleted in S at t−2

Ci

≤ {bp is the number of uncompleted jobs in S and Cmax ≥ Ci}
bp · Cmax

≤ {by (6)}
(dUαe − 1) · Cmax. (7)

By Lemma 5, LAG(α, t2) = LAG(α, t−2 ), so (7) contradicts (2). This contradic-
tion finishes the proof. ut

Note that the previous lemma bounds the total system LAG at any time
instant. However, if Jk,d has a large response time, we know that other jobs
exclusively occupied all processors. Thus, we can use this information to pro-
vide a tighter bound for LAG at the specific time instant. We use the following
definitions to encapsulate information relevant to the scheduling of Jk,d.

Definition 9 Let J = {Jk,d, Jk,d+1, Jk,d+2, ...}. J contains the job of interest
Jk,d and all jobs from τk following the job of interest.

Definition 10 Let W denote the overall processor allocation to jobs from J
in S in the interval [r, r +R). More formally,

W = A(S, r, r +R,J ).

To establish our new bound on LAG, we exploit the following property
of a work-conserving scheduler (Assumption SH1): if Jk,d is ready and not
scheduled at time t, then all processors are busy from t until Jk,d is scheduled
in S after t.

Lemma 8 Consider a set of tasks α such that at any time instant in [r, r+R)
either Jk,d is scheduled or m jobs from tasks in α are scheduled, and τk ∈ α.
Then,

LAG(α, r +R) ≤ LAG(α, r) +mCk + (Uα −m)R−W.

Proof To prove this lemma, we split the interval [r, r+R) into a set of maximal
continuous intervals such that the number of jobs from J scheduled in S
during each interval does not change. More formally, these intervals satisfy
the following assumptions (for an interval I):

I1: The number of scheduled jobs from J in S during I does not change.
I2: I cannot be extended without violating I1.

By Assumption SH3, we have a finite number of such intervals (since they
are defined by a finite number of scheduling events within [r, r + R)). Let
us define the set of interval starting points as {t0 = r, t1, ..., th−1}, with an
additional th = r+R. Also, let Ie denote the interval [te, te+1) for 0 ≤ e ≤ h−1.
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Allocation intervals
for jobs from J

Allocation intervals
for all other jobs

r r +R

π1

π2

π3

π4

time

Z M Z M Z M

Fig. 3 Example partitioning of [r, r +R) into intervals (Lemma 8 reference).

Let Z be the set of all intervals for which no jobs from J are scheduled
in S. Let M be the set of all intervals for which at least one job from J is
scheduled in S. It is clear that any interval from Z is disjoint from all intervals
inM, while the union of all intervals from Z∪M is [r, r+R) by the definition
of α. An example of such intervals is given in Fig. 3.

By the definition of Z, no jobs from J are scheduled for any Ie ∈ Z.
Because there is a ready job Jk,d that is not scheduled, there are m scheduled
jobs for any time instant of Ie. By the definition of α, all m jobs are from tasks
in α. Thus,

∀Ie ∈ Z : A(S, te, te+1, α) = m(te+1 − te). (8)

Let ||Z|| (resp., ||M||) denote the overall length of all intervals from set Z
(resp.,M).

For any Ie ∈M and any t ∈ Ie, at least one job from J is scheduled. Since,
by Assumption SH2, jobs from the same task τk are prioritized against each
other on a FIFO basis, and Jk,d is the first one in J , Jk,d should be scheduled
at t (and, possibly, some other jobs from J ; note that earlier jobs of τk are
not included in J , which is used to defineM). Thus,

||M|| ≤ Ck, and
||Z|| = |[r, r +R)| − ||M|| ≥ R− Ck. (9)

Moreover, if any job from J is scheduled at time instant t, then t ∈ Ie for
some Ie ∈M. Thus, all processor allocations accounted for in W may happen
only during intervals fromM. Therefore,∑

Ie∈M
A(S, te, te+1,J ) =W. (10)

We now can estimate the change in LAG over [t0, th):
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LAG(th)− LAG(t0)

=

h−1∑
e=0

(LAG(te+1)− LAG(te))

= {by the definitions of Z andM}∑
Ie∈Z

(LAG(te+1)− LAG(te)) +
∑
Ie∈M

(LAG(te+1)− LAG(te))

= {by Def. 5}∑
Ie∈Z

(A(I, te, te+1, α)−A(S, te, te+1, α))

+
∑
Ie∈M

(A(I, te, te+1, α)−A(S, te, te+1, α))

= {by rearranging and (8)}∑
Ie∈Z∪M

A(I, te, te+1, α)−
∑
Ie∈Z

m(te+1 − te)−
∑
Ie∈M
A(S, te, te+1, α)

≤ {by (10) and the definitions of Z andM}∑
Ie∈Z∪M

A(I, te, te+1, α)−m||Z|| −W

≤ {by Lemma 6}
||Z ∪M||Uα −m||Z|| −W

≤ {by (9) and ||Z ∪M|| = |[r, r +R)|}
RUα −m(R− Ck)−W

= mCk + (Uα −m)R−W. (11)

By rearranging (11) with th = r + R, and t0 = r, we obtain a bound for
LAG(α, r +R):

LAG(α, r +R) ≤ LAG(α, r) +mCk + (Uα −m)R−W.

ut
Using Def. 10, we can compute the exact value of Lag(τk, r + R) by an

alternative approach compared to that used to prove Lemma 4. Note that no
job from J is ready during [0, r). Thus, A(S, 0, r,J ) = 0, and

W = A(S, r, r +R,J )
= A(S, 0, r,J ) +A(S, r, r +R,J )
= A(S, 0, r +R,J ). (12)

Lemma 9 If Jk,d has an execution time of Ck, then

Lag(τk, r +R) ≥ min(Ck, ukR)−W. (13)
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Moreover, if all jobs in J have execution time equal to Ck and are released
periodically with period Tk, then

Lag(τk, r +R) = ukR−W. (14)

Proof The task τk has a worst-case execution time of Ck, so all jobs
Jk,d−1, Jk,d−2, ..., Jk,1 have execution times not higher than Ck. By Assump-
tion SH2, these jobs are prioritized over Jk,d and completed in S at or before
r + R. By Def. 3, these jobs are completed in I at or before r. Thus, by
Lemma 1, ∀j < d : lag(Jk,j , r +R) = 0.

Lag(τk, r +R) =

∞∑
j=1

lag(Jk,j , r +R)

=

d−1∑
j=1

lag(Jk,j , r +R) +

∞∑
j=d

lag(Jk,j , r +R)

= {∀j < d : lag(Jk,j , r +R) = 0}
∞∑
j=d

lag(Jk,j , r +R)

=

∞∑
j=d

(A(I, 0, r +R, Jk,j)−A(S, 0, r +R, Jk,j))

=

 ∞∑
j=d

A(I, 0, r +R, Jk,j)

−A(S, 0, r +R,J )

= {by (12)}
∞∑
j=d

A(I, 0, r +R, Jk,j)−W (15)

Note that A(I, 0, r + R, Jk,j) ≥ 0 for any Jk,j because we cannot allocate
a negative amount of execution time to a job. Thus, by (15),

Lag(τk, r +R) ≥ A(I, 0, r +R, Jk,d). (16)

We can compute A(I, 0, r + R, Jk,d) by considering two cases: R < Tk and
R ≥ Tk. If R < Tk, then Jk,d is executed for R time units in I within [r, r+R).
Otherwise Jk,d is executed in I for Tk time units. Thus,

A(I, r, r +R, Jk,d) =A(I, 0, r +R, Jk,d)−A(I, 0, r, Jk,d)
={Jk,d is released at r}
A(I, 0, r +R, Jk,d)

= min(ukTk, ukR)

= min(Ck, ukR).
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r r + Tk r + 2Tk r + 3Tk r +R

J

time
Jk,d release Jk,d completion in S

τk becomes npc-periodic
npc-sporadic part of τk

TkTk≥ Tk

Fig. 4 The release pattern of jobs of τk needed for the second part of Lemma 9 (eq. (14)).

Using (16), we get Lag(τk, r+R) ≥ min(Ck, ukR), which finishes the proof
of the first part of the lemma.

We now move to the second part of the lemma. Fig. 4 shows the release
pattern of jobs from τk (which covers jobs from J ). By the lemma statement,
task τk becomes periodic with execution time Ck starting with Jk,d. Thus,
exactly one job from τk is scheduled for execution in I at any time instant in
[r, r +R). Thus,

∞∑
j=d

A(I, r, r +R, Jk,j) = ukR. (17)

By (15) and (17), we have

Lag(τk, r +R) = ukR−W.

ut

4 Preemptive G-FP

In this section, we focus on establishing the SRT-optimality of the preemptive
G-FP scheduler. Thus, all references to G-FP without qualification within
this section should be taken to mean preemptive G-FP. Note that the G-FP
scheduler satisfies Assumptions SH1-SH3. Thus, all lemmas from Sec. 3 hold
for this scheduler.

In this section, we assume that tasks are indexed by priority, with higher-
priority tasks having lower indices. For simplicity, we assume unique task prior-
ities. Recall that we focus our attention on the job of interest Jk,d with release
time r and response time R. Note that the obtained bound (Theorem 1) does
not depend on the job’s number d, so the same bound applies for any job of τk,
and therefore the bound can be used as a response-time bound of the task τk.

Proof setup. Our proof focuses on schedules that have certain properties (prop-
erties A1-A3), which are defied by leveraging the following definition.
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Definition 11 For a task system τ , an instantiation ρτ defines an actual
release and execution time for every job. A single sporadic task system has
infinitely many instantiations. Note that for any instantiation ρτ , G-FP pro-
duces a single schedule.

Consider any instantiation ρτ of a task system τ . Consider a task system
Γ (τ, k) = {τ1, ..., τk} such that all tasks in Γ (τ, k) have the same parameters
as in τ . Consider a instantiation ρΓ (τ,k) such that

– All jobs from tasks τ1, ..., τk−1 in ρΓ (τ,k) have the same release and execu-
tion times as in ρτ .

– Jobs Jk,1, Jk,1, ..., Jk,d−1 in ρΓ (τ,k) have the same release and execution
times as in ρτ .

– Jobs in J = {Jk,d, Jk,d+1, ...} are released periodically in ρΓ (τ,k), starting
from time r, with period Tk, and the execution time of each of these jobs
in ρΓ (τ,k) is Ck.

Lemma 10 The response time of Jk,d in a schedule produced by preemptive
G-FP from ρΓ (τ,k) for the task system Γ (τ, k) is not less than the response
time of Jk,d in a schedule produced by the same scheduler from ρτ for the task
system τ .

Proof Note that under preemptive G-FP, jobs from tasks with priorities lower
than τk’s priority do not affect Jk,d’s schedule. Thus, discarding all tasks with
a priority lower than τk does not affect Jk,d. Jobs from J \{Jk,d} have a prior-
ity lower than Jk,d due to Assumption SH2. Thus, any change in their release
pattern and execution times does not affect the schedule of Jk,d (in any instan-
tiation). Therefore, if Jk,d is scheduled in the schedule produced from ρτ by
preemptive G-FP at time instant t, then Jk,d is also scheduled in the schedule
produced from ρΓ (τ,k) by preemptive G-FP at time instant t (because Jk,d’s
execution time in ρΓ (τ,k) is not less than its execution time in ρτ ). ut

Define a schedule produced from ρΓ (τ,k) under preemptive G-FP as the
canonical schedule S. Let I denote the ideal schedule for task system Γ (τ, k)
and its instantiation ρτ . Then, S has the following properties.

A1: Task τk has the lowest priority among all tasks.
A2: Following Jk,d−1, every new job (including Jk,d) from task τk has execution

time equal to Ck.
A3: Following Jk,d, every new job from task τk is released exactly Tk time units

later than the previous job of τk (i.e., τk “becomes periodic” after Jk,d).

Fig. 4 shows the release pattern of jobs of τk. Note that none of our reasoning
requires modifying the initial schedule, and we work only with schedules ob-
tained from ρΓ (τ,k). Lemma 10 shows that any response-time bound derived
with respect to the canonical schedule S for the task system Γ (τ, k) is valid
for ρτ . We now can formalize our problem: find a bound for Jk,d’s response
time in S under A1-A3.
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We start the first part of the proof by computing Lag(τk, r+R). Note that
Property A3 ensures that task τk becomes npc-periodic starting with Jk,d as
in Fig. 4, while Property A2 ensures that all jobs in J have an execution time
of Ck. Thus, by (14),

Lag(τk, r +R) = ukR−W. (18)

Now we move to the second part of the proof: the estimation of LAG(r+R).

Lemma 11 LAG(r +R) ≤ (dUke − 1)Cmax +mCk + (Uk −m)R−W.

Proof By Property A1, there are only k tasks in S. Their total utilization is
Uk, so, by Lemma 7, LAG(r) ≤ (dUke − 1)Cmax. Also note that if Jk,d is not
scheduled at some t ∈ [r, r + R), then there are m other ready jobs in the
system. Thus, applying Lemma 8 with α = {τ1, ..., τk} we get LAG(r + R) ≤
(dUke − 1)Cmax +mCk + (Uk −m)R−W. ut

Finally, we use (18) and Lemma 11 to bound the response time of Jk,d.

Theorem 1 For any job of the npc-sporadic task τk, its response time under
preemptive G-FP is bounded by

R ≤ 1

m− Uk−1

(
(dUke − 1)Cmax +mCk +

k−1∑
i=1

max(0, (1− ui)Ci)

)
,

where Cmax = max
i≤k

Ci.

Proof Consider the following:

ukR−W
= {by (18)}

Lag(τk, r +R)

= LAG(r +R)−
k−1∑
i=1

Lag(τi, r +R)

≤ {by Lemma 4}

LAG(r +R) +

k−1∑
i=1

max(0, (1− ui)Ci)

≤ {by Lemma 11}

(dUke − 1)Cmax +mCk + (Uk −m)R−W +

k−1∑
i=1

max(0, (1− ui)Ci). (19)

Canceling W from the both sides of (19), we get

R(uk +m− Uk) ≤ (dUke − 1)Cmax +mCk +

k−1∑
i=1

max(0, (1− ui)Ci).
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Rearranging the last expression and rewriting uk−Uk as −Uk−1 completes
the proof. ut

Corollary 2 For the npc-sporadic task τk, its tardiness under preemptive
G-FP is bounded by

max


(dUke − 1)Cmax +mCk +

k−1∑
i=1

max(0, (1− ui)Ci)

m− Uk−1
− Tk, 0

 .

Proof If Jk,j has the response time Rk,j , then its tardiness is max(0, Rk,j−Tk).
Notice that the response-time bound from Theorem 1 does not depend on j,
i.e., it applies to any job of τk. ut

5 Asymptotic Tightness

In this section we show that bound from Theorem 1 is asymptotically tight.

Theorem 2 For every m ≥ 2 there exists an npc-sporadic task system such
that the response time of the first job of the lowest-priority task is arbitrarily
close to the bound from Theorem 1.

Proof For fixed T and m, consider the npc-sporadic task system consisting
of m high-priority tasks with execution time mT and period 4emT , plus one
low-priority task with execution time (1−m/2e)T and period T , where e > m
is an arbitrary number. Let k = m+1, assume all jobs from every task τi have
the same execution time Ci, and assume that all tasks release jobs periodically
starting at time 0.

The response time for Jm+1,1 (the first job of the lowest priority task) is
mT + T −mT/2e, because for any t ∈ [0,mT ) all processors are occupied by
higher-priority tasks. Subsequent jobs of τm+1 have the same response time
because the schedule repeats every 4emT time units. This is illustrated for the
first two jobs per task in Fig. 5.

The overall utilization of this task set is

U = Um+1 = m · 1
4e

+ 1− m

2e
= 1− m

4e
< 1.

By construction, we have

dUm+1e = 1, (20)

m− Um = m

(
1− 1

4e

)
, (21)

Cmax = mT, (22)
m∑
i=1

max(0, (1− ui)Ci) =
(
1− 1

4e

)
m2T. (23)
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Allocation intervals
for the task τm+1

Allocation intervals
for tasks τ1, ..., τm

0 mT 4emT (4e+ 1)mT

π1

π2
...

πm

(
mT + T −

mT

2e

) time

Fig. 5 Schedule of the first two jobs for each task.

With all these computed values, the bound from Theorem 1 is:

1

m− Um

(dUm+1e − 1)Cmax +mCm+1 +

m∑
i=1

max(0, (1− ui)Ci)


{by (20), (21), (22), and (23)}

=
1

m

(
1− 1

4e

) (0 +m
(
1− m

2e

)
T +

(
1− 1

4e

)
m2T

)

=
T(

1− 1

4e

) (1− m

2e
+m− m

4e

)

=
4e(m+ 1)− 3m

4e− 1
T

=
(4e− 1)(m+ 1)− 2m+ 1

4e− 1
T

= (m+ 1)T +
1− 2m

4e− 1
T.

The difference between this bound and the real response time for τm+1 is(
1− 2m

4e− 1
T +

m

2e
T

)
→ 0 as e→∞, with fixed m and T .

Thus, the bound from Theorem 1 is asymptotically tight. ut

6 Prioritizing Tasks

In the above sections, we considered npc-sporadic task sets with predefined
priorities. In this section, we consider the problem of choosing task priorities
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for such task sets. Note that, by Theorem 1, the prioritization of tasks does not
affect SRT schedulability because any task set that does not over-utilize the
system is schedulable; in contrast, schedulability is the main evaluation metric
in the HRT case. However, the prioritization of tasks can affect the guaranteed
tardiness bounds. In this section, we propose a polynomial priority-assignment
algorithm.

The existing literature pertaining to task prioritizations under preemptive
G-FP scheduling considers only ordinary sporadic task sets. Audsley [2] pro-
posed an optimal prioritization algorithm for a uniprocessor (in an HRT sense:
every deadline must be met). Audsley’s algorithm relies on a given schedula-
bility test and can be adapted for the multiprocessor case. Note that Audsley’s
algorithm calls the schedulability test, which has non-polynomial time com-
plexity. Moreover, the problem of obtaining an optimal priority assignment for
an HRT multiprocessor system is known to be NP-hard. Davis and Burns [10]
developed schedulability-test properties that ensure that Audsley’s algorithm
is optimal with respect to a given test (i.e., it requires an optimal schedulability
test to produce an optimal prioritization; there are no known optimal poly-
nomial tests). Given these results pertaining to HRT tasks, we expect that
any optimal prioritization algorithm in the SRT casee would likely be non-
polynomial. Thus, we provide a non-optimal polynomial priority-assignment
algorithm.

We no longer keep the assumption made in Sec. 4 that tasks are indexed
with decreasing priority. Instead, we define priorities via a function. We assume
that task priorities are represented by unique integers in [1, n], where 1 and n
represent the highest and lowest priorities, respectively.

Definition 12 For a given task τi, we denote its priority as p(i) and the set
of tasks with higher priority as hp(i). Note that hp(i) contains p(i)− 1 tasks,
so p(i) = |hp(i)|+ 1. Function p(·) is called the prioritization function.

In addition to the previous definition, we also need to alter the definition
of Uk, because it assumes tasks are indexed by priority.

Definition 13 We let Uk denote the total utilization of the k tasks with
highest priorities.

Uk =
∑
p(i)≤k

ui.

By construction, U0 = 0.

With Defs. 12 and 13 we can rewrite the tardiness bound of Corollary 2
(assuming the upper bound to be positive) using the prioritization function
p(·):

1

m− Up(k)−1

(
dUp(k)e − 1)

(
max

τi∈hp(k)
Ci

)
+mCk∑

τi∈hp(k)

max(0, (1− ui)Ci)
)
− Tk. (24)
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task

priority change
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priorities order did not change

lower priority lower priority

Fig. 6 An example of single task priority change.

Lemma 12 Under preemptive G-FP scheduling, if a task τl swaps its priority
with the task τh that has the next higher priority than τl (i.e., p(h) = p(l)−1),
then the tardiness of τl is still bounded by (24).

Proof Under preemptive G-FP scheduling, only higher-priority tasks may have
impacts on τl’s execution. Therefore, the scheduling of τl after the priority swap
is identical to a special case of the scheduling of τl before the priority swap
where every job of τh happens to have zero actual execution time. Since the
tardiness of τl is bounded by (24) in any case before the priority swap, the
lemma follows. ut

Lemma 13 If the priority of a single task τk increases while the relative order
of the priorities of all other tasks remains unchanged, then the tardiness bound
for τk after the priority change is at most the bound for τk before the change.

Proof Fig. 6 illustrates the priority change. Increasing the priority of τk with-
out changing the relative order of priorities of all other tasks can be done by
repeatedly swapping the priority of τk and the task that has the next higher
priority than τk. By applying Lemma 12, the lemma follows. ut

Consider the well-known priority-assignment algorithm by Audsley [2]. In-
formally speaking, Audsley’s algorithm establishes priorities from lowest to
highest by assigning the lowest unassigned priority to the task with the lowest
tardiness bound (which is always zero for a schedulable HRT task set). We
propose using to use the same assignment scheme for the SRT case, as shown
in Alg. 1. Lemma 13 gives us the intuition that non-assigned tasks’ bounds
do not increase after several other tasks are assigned the lowest priorities.
Lemma 14 shows that Alg. 1’s time complexity is relatively small.

Lemma 14 Alg. 1 can be implemented with O(n2) time complexity.

Proof Firstly, we consider the function Tardiness. Lines 2, 3, and 5 require
only constant time. Assume that tasks of τ ′ are stored in a sorted array by
WCET. Hence, max

τs∈τ ′\τi
Cs is stored in the last element of τ ′ if it is not τi and in

the last but one otherwise. The last statement ensures that line 4 is completed
in constant time. Thus, the Tardiness function has O(1) time complexity.

Secondly, consider the function ComputePrioritization. Consider a single
iteration of the for loop. Line 12 calls the O(1) function Tardiness j ≤ n times,
ensuring O(n) time complexity. Lines 13-15 are completed in O(1) time. At
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/* computes τi’s tardiness assuming the lowest priority in the given τ */
1 Function Tardiness(m, τi, τ ′, Uτ ′ , Gτ ′)
2 Gτ ′\τi ← Gτ ′ −max(0, (1− ui)Ci);
3 Uτ ′\τi ← Uτ ′ − ui;
4 Cmax ← max

τs∈τ ′\τi
Cs;

5 return
(dUτ ′e − 1)Cmax +mCi +Gτ ′\τi

m− Uτ ′\τi
;

6 end
7 Function ComputePrioritization(τ)

// for complexity reasons rem_tasks stored as an array sorted by WCET
8 rem_tasks← τ ;
9 U ←

∑
i ui;

10 G←
∑
imax(0, (1− ui)Ci);

11 for j = n...1 do
12 τk ← argmin

τi

Tardiness(m, τi, rem_tasks, U,G);

13 p(k) = j;
14 U ← U − uk;
15 G← G−max(0, (1− uk)Ck;
16 rem_tasks← rem_tasks \ τk;
17 end
18 end

Algorithm 1: minimization of maximal tardiness.

line 16 Alg. 1 removes a single task from the sorted array. Because we want to
keep rem_tasks sorted (to ensureO(1) complexity for the Tardiness function),
this takes O(n) time in the worst case. Thus, a single iteration of the for loop
requires O(n) time. Because the total number of iterations is O(n), the total
time complexity of Alg. 1 is O(n2). ut

In Sec. 10.2, we evaluate the efficacy of Alg. 1 in comparison with various
prioritization heuristics.

7 Non-Preemptive G-FP

In this section, we adapt the proof strategy we described in the beginning of
Sec. 3 and used to prove Theorem 1 for preemptive G-FP. This strategy has
three major steps: provide a lower bound for a single task’s Lag (Lemma 4),
establish an upper bound on LAGk(r+R) (Lemmas 17 and 18), and compute
Lag(τk, r + R) (Lemma 9). To complete the proof, we use the definition of
LAGk to provide a bound for the response time R of the job of interest Jk,d.
Recall that LAGk(t) = LAG({τ1, ..., τk}, t) =

∑k
i=1 Lag(τk, t).

Note that the non-preemptive G-FP scheduler satisfies Assumptions SH1-
SH3. Thus, all lemmas from Sec. 3 hold for this scheduler.

Consider any instantiation ρτ of a task system τ . Consider an instantiation
ρ′τ such that

– All jobs from tasks τ\{τk} in ρ′τ have the same release and execution times
as in ρτ .
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– Jobs Jk,1, Jk,1, ..., Jk,d−1 in ρ′τ have the same release and execution times
as in ρτ .

– Jobs in J = {Jk,d, Jk,d+1, ...} are released periodically in ρ′τ , starting from
time r, with period Tk, and the execution time of each of these jobs in ρ′τ
is Ck.

Lemma 15 The response time of Jk,d in a schedule produced by non-
preemptive G-FP from ρ′τ is not less than the response time of Jk,d in a sched-
ule produced by the same scheduler from ρτ .

Proof Jobs from J \{Jk,d} have a priority lower that Jk,d due to Assump-
tion SH2. Thus, any change in their release pattern and execution times does
not affect the schedule of Jk,d (in any instantiation) because once Jk,d is sched-
uled, it cannot be preempted. Therefore, if Jk,d is scheduled in the schedule
produced from ρτ by non-preemptive G-FP at time instant t, Jk,d is also
scheduled in the schedule produced from ρ′τ by non-preemptive G-FP at time
instant t (because Jk,d’s execution time in ρ′τ is not less than its execution
time in ρτ ). ut

Define a schedule produced from ρ′τ under non-preemptive G-FP as the
canonical schedule S. Define the ideal schedule I for the task system τ and
its instantiation ρτ . Then, S has the following properties (Properties A2 and
A3 are defined identically as in Sec. 4)

A2: Following Jk,d−1, every new job (including Jk,d) from task τk has execution
time equal to Ck.

A3: Following Jk,d, every new job from task τk is released exactly Tk time units
later than the previous job of τk (i.e., τk “becomes periodic” after Jk,d).

Fig. 4 shows the release pattern of jobs of τk. Note that none of our reason-
ing requires modifying the initial schedule, and we work only with schedules
obtained from ρ′τ . Lemma 15 shows that any response-time bound derived in
the canonical schedule S from ρ′τ is valid for the schedule obtained from ρτ .
We now can formalize our problem: find a bound for Jk,d’s response time in S
under A2-A3.

Note that if a job starts executing on some processor, then no higher-
priority job can occupy this processor. Thus, the schedule of lower-priority
jobs directly affects higher-priority ones. This implies that we are not able to
discard the tasks with priority lower than the task of interest τk in the general
case (and obtain Property A1 for S in addition to A2 and A3).

To simplify the following reasoning, we denote HP = {τ1, ..., τk} and LP =
{τk+1, τk+2, ..., τn}. We say that a job is LP (resp., HP) if it was generated by
a task in LP (resp., HP).

Definition 14 Let us denote Cmax = max
i≤k

Ci and B = max
i>k

Ci. Cmax provides

an execution time bound for any job of a task in HP , while B is a bound on
the maximal blocking time for such a job (an execution time bound for any
job of a task in LP).
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Note that the first step of the proof overview given in the beginning of
this section is already completed with Lemma 4. Thus, we move to the second
step, bounding LAGk(r + R). We begin by establishing two upper bounds in
LAGk(t) in Lemmas 16 and 17.

Lemma 16 LAGk(t) ≤ qCmax, where q is the number of non-completed HP
jobs in S at time t.

Proof

LAGk(t) =
∑
τi∈HP

Lag(Ji,j , t)

≤ {jobs completed in S have non-positive Lag}∑
Ji,j is a ready HP job in S

Lag(Ji,j , t)

≤ {by Lemma 3}∑
Ji,j is a ready HP job in S

Ci

≤ {by the defintion of Cmax and q}
qCmax

ut

Lemma 17 [modified Lemma 7] LAGk(t) ≤ (Uk + 1)max(B,Cmax).

Proof Let F = (Uk+1)max(B,Cmax). For any time instant t1, define t−1 (resp.,
t+1 ) to be t1 − ε (resp., t1 + ε) for some arbitrarily small ε > 0 such that the
set of scheduled jobs does not change within [t−1 , t1) (resp., [t1, t

+
1 )). t

−
1 and t+1

exist for any time instant for any scheduler satisfying Assumption H3. Fig. 7
illustrates these and other important time instants referenced in this proof.

We prove the lemma by contradiction by assuming that LAGk(t) > F
holds for some t. Let t1 be the first time instant such that LAGk(t1) = F and
LAGk(t

+
1 ) > F . Such an instant t1 exists because LAGk(0) = 0, F > 0, and

LAGk(t) is a continuous function by Lemma 5.

Claim 1 There is at least one LP job scheduled at t−1 .

Proof Denote the number of scheduled HP jobs at t1 as q (by the
definition of t+1 these jobs are scheduled within [t1, t

+
1 )). If there are no

scheduled LP jobs at t1, then either all ready HP jobs are scheduled
at t1 or q = m. In the first case, F = LAGk(t1) ≤ qCmax by Lemma 16.
Then, F = (Uk + 1)max(B,Cmax) ≤ qCmax, so Uk + 1 ≤ q. In the
second case, q = m, so Uk ≤ q because Uk ≤ U ≤ m.
Thus, LAGk(t

+
1 ) = LAGk(t1) + (Uk − q)(t+1 − t1), and, because Uk ≤ q,

LAGk(t
+
1 ) ≤ LAGk(t1) = F (which contradicts the definition of t1).

So at least one LP job Ji,j is scheduled at t1. If the first time instant
Ji,j is scheduled is t1, then all ready HP jobs are scheduled at t1, and,
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≤ B

Fig. 7 Lemma 17 proof reference.

by the same reasoning as above, Uk ≤ q and LAGk(t
+
1 ) ≤ F (which

contradicts the definition of t1). Thus, Ji,j is scheduled within [t−1 , t1].
ut

We say that a job becomes scheduled at t if t is the first time instant
it is executed. Consider all time instants within [0, t1) such that either an
LP job becomes scheduled or a processor becomes idle. Denote the last such
time instant as t0. If no such t0 exists then only HP jobs are scheduled
within [0, t1). In this case, by Lemma 7 with task set α = HP = {τ1, ..., τk},
LAGk(t1) ≤ (dUke−1)Cmax. Because (dUke−1)Cmax < (Uk+1)max(B,Cmax),
this contradicts the definition of t1. We therefore conclude that t0 does exist.

Note that all ready HP jobs are scheduled at t0.

Claim 2 t1 − t0 ≤ B.

Proof By Claim 1, there is at least one LP job scheduled at t−1 . It
becomes scheduled at or before t0 by the definition of t0. Its execution
time is bounded by B. ut

Let p denote the number of incomplete HP jobs at t0 (all of them are
scheduled at t0 by its definition). Due to the definition of t0, we can determine
the number of processors that are used by HP jobs within [t0, t1).

Claim 3 There are at least p processors that are busy executing HP
jobs for any t ∈ [t0, t1).

Proof At t0 there are p such processors by the definition of p. If there is
a t′ > t0 that contradicts the claim, then either an LP job is scheduled
at t′, or some processor becomes idle. This contradicts the definition of
t0. ut
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By Claim 3, A(S, t0, t1,HP) ≥ p(t1 − t0). By Lemma 6, A(I, t0, t1,HP) ≤
Uk(t1 − t0). Thus,

LAGk(t1)− LAGk(t0) = A(I, t0, t1,HP)−A(S, t0, t1,HP) ≤ (Uk − p)(t1 − t0).

Rearranging the last expression we get

LAGk(t1) ≤ LAGk(t0) + (Uk − p)(t1 − t0). (25)

Claim 4 p ≤ Uk.

Proof By the definition of t1, LAGk(t0) ≤ F = LAGk(t1). Then, by (25),
(Uk − p)(t1 − t0) ≥ 0. Because t1 − t0 > 0, p ≤ Uk. ut

By the definition of t0, all ready HP jobs are scheduled at t0. Thus, by
Lemma 16, LAGk(t0) ≤ pCmax. By (25), this implies

F = LAGk(t1) ≤ LAGk(t0) + (Uk − p)(t1 − t0) ≤ pCmax + (Uk − p)(t1 − t0),

which by the definition of F implies

(Uk + 1)max(B,Cmax) ≤ pCmax + (Uk − p)(t1 − t0). (26)

Using Claim 2 from (26) we get

(Uk + 1)max(B,Cmax) ≤ pCmax + (Uk − p)B
≤ {0 ≤ p, Cmax ≤ max(B,Cmax)}
pmax(B,Cmax) + (Uk − p)B

≤ {p ≤ Uk by Claim 4, B ≤ max(B,Cmax))}
pmax(B,Cmax) + (Uk − p)max(B,Cmax)

= Ukmax(B,Cmax),

which leads to contradiction. ut

Now we are able to adapt Lemma 8 for non-preemptive G-FP. Recall
from Def. 10 that W is the overall processor allocation to jobs from J =
{Jk,d, Jk,d+1, Jk,d+2, ...} in S in the interval [r, r +R).

Lemma 18 [modified Lemma 8] If R ≥ Ck +B then

LAGk(r +R) ≤ LAGk(r) +m(Ck +B) + (Uk −m)R−W.

Proof Let t0 be the last completion time of an LP job scheduled at r (t0 = r
if no LP jobs are scheduled at r). Then t0 ≤ r + B by the definition of B.
Let t1 = r +R− Ck. Then t0 ≤ r +B ≤ t1 because R ≥ Ck +B. Recall that
HP = {τ1, ..., τk}, and, by Def. 7, LAGk(t) = A(I, 0, t,HP) − A(S, 0, t,HP).
An example schedule over time interval [r, r+R) under non-preemptive G-FP
can be found in Fig. 8.
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Fig. 8 Example partitioning of [r, r +R) into intervals (Lemma 18 reference).

Note that if Jk,d is scheduled, then it cannot be preempted. Thus, Jk,d
is scheduled within [t1, r + R) because the execution time of Jk,d is Ck by
Property A2. Also note that no jobs from J can be scheduled before t1 by
Assumption SH2.

In fact, the proof we provide here is a simplified version of the proof of
Lemma 8 that utilizes alternate definitions of Z and M. Due to the non-
preemptivity of the scheduler, some LP jobs are scheduled within [r, t0). Thus,
we define Z to be the set of all intervals for which only HP jobs are scheduled
in S, andM to be the set of all time intervals for which at least one non-HP job
is scheduled in S. Note that these definitions imply thatM = {[r, t0), [t1, r +
R)} and Z = {[t0, t1)}. Fortunately, since Z and M together contain only
three time intervals, we can simplify our reasoning compared to the proof of
Lemma 8.

LAGk(r +R)− LAGk(r)

= A(I, r, r +R,HP)−A(S, r, r +R,HP)
≤ {by Lemma 6 with α = HP = {τ1, ..., τk}}
UkR−A(S, r, r +R,HP)

= UkR−A(S, r, t0,HP)−A(S, t0, t1,HP)−A(S, t1, r +R,HP)
≤ {A(S, r, t0,HP) ≥ 0}
UkR−A(S, t0, t1,HP)−A(S, t1, r +R,HP)

= {exactly m processors are busy with tasks from HP within [t0, t1)}
UkR−m(t1 − t0)−A(S, t1, r +R,HP)
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≤ {all allocation to tasks in J happens within [t1, r +R)}
UkR−m(t1 − t0)−W

= UkR−m(R−B − Ck)−W
= m(Ck +B) + (Uk −m)R−W. (27)

By rearranging (27), we obtain a bound for LAGk(r +R). ut

Thus, if R ≥ Ck +B, using Lemma 17 and Lemma 18, we can write

LAGk(r+R) ≤ (Uk + 1)max(B,Cmax) +m(Ck +B) + (Uk −m)R−W. (28)

Theorem 3 Non-preemptive G-FP ensures the following response-time bound
for any npc-sporadic task τk.

max

(
Ck +B,

1

m− Uk−1

(
mB + (Uk + 1)max(B,Cmax)

+(m− 1)Ck +
∑
i<k

max(0, (1− ui)Ci)
))

,

where Cmax = max
i≤k

Ci and B = max
i>k

Ci.

Proof Consider a job Jk,d of task τk. Assume that R ≥ B + Ck. Then (28)
holds. We apply the same reasoning as in Theorem 1 where Lemma 11 is
replaced with Lemma 18.

ukR−W
= {by A2, A3, Lemma 9 and (14)}

Lag(τk, r +R)

= LAG(r +R)−
∑
i 6=k

Lag(τi, r +R)

≤ {by Lemma 4}

LAG(r +R) +
∑
i 6=k

max(0, (1− ui)Ci)

≤ {by (28)}
(Uk + 1)max(B,Cmax) +m(Ck +B) + (Uk −m)R−W

+
∑
i6=k

max(0, (1− ui)Ci). (29)

Canceling W from the both sides of (29), we get

R(uk+m−Uk) ≤ mB+(Uk+1)max(B,Cmax)+(m−1)Ck+
∑
i 6=k

max(0, (1−ui)Ci).

Rearranging the last expression (and using Uk−uk = Uk−1) completes the
proof. ut
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8 G-FP with Preemption Thresholds

Fixed-priority scheduling is widely used in real-time operating systems
(RTOSs). However, G-FP may induce a high number of preemptions (the pre-
emptive variant) or large blocking times (the non-preemptive variant). One
way to mitigate these issues is to use two priorities per task instead of one.
The first priority is applied at task release; once a task is selected for execu-
tion, the second priority is applied. This approach is known as G-FP with pre-
emption thresholds (G-FP-PT), and was introduced in the commercial RTOS
ThreadX [15] and academically studied in [28] (corrected in [24]). Other studies
include [8, 16–18,25].

To specify the scheduler, we define a preemption priority Pi for every task
τi. Recall that our tasks are sorted by priority, so τi has regular priority i
(lower values represent higher priority). We assume that Pi ≤ i, so the pre-
emption priority of task is not lower than its regular priority. These priorities
are assigned offline. Thus, a scheduled task τi can be preempted by τj only if
τj ’s regular priority is higher than Pi.

Note that preemptive G-FP is a special case of G-FP-PT (∀i : Pi = i),
and non-preemptive G-FP is also a special case of G-FP-PT (∀i : Pi = 0). For
both of these schedulers, in Secs. 4 and 7, we constructed canonical schedules
that have properties A2 and A3. Unfortunately, these properties are relatively
strong, so we may not be able to construct a canonical schedule S with a non-
decreased response time for Jk,d. Thus, we introduce a less strict Property A4.

A4: Jk,d has execution time equal to Ck.

This property ensures that all jobs of τk preceding Jk,d are completed at or
before Jk,d’s completion by Assumption SH2.

Consider any instantiation ρτ of a task system τ . Consider an instantiation
ρ′τ of the same task system such that

– All jobs from tasks in τ\{τk} in ρ′τ have the same release and execution
times as in ρτ .

– Jobs Jk,1, Jk,1, ..., Jk,d−1, Jk,d+1, Jk,d+2, ... in ρ′τ have the same release and
execution times as in ρτ .

– The execution time of Jk,d is Ck in ρ′τ , and its release time is r (identical
to the one in ρτ ).

Lemma 19 The response time of Jk,d in a schedule produced by G-FP-PT
from ρ′τ is not less than the response time of Jk,d in a schedule produced by
the same scheduler from ρτ .

Proof Note that ρτ and ρ′τ differ only in the execution time of Jk,d. Denote
the completion of Jk,d in a schedule Sinit obtained from ρτ under G-FP-PT as
t0. Then, the schedule obtained from ρ′τ under G-FP-PT (Smod) is identical
to Sinit within [0, t0) because all releases of all jobs are identical. Then, Jk,d is
completed in Sinit, but has Ck − Ck,d time units of uncompleted execution in
Smod. ut
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We call a schedule Smod produced from ρ′τ under G-FP-PT a canonical
schedule, which we henceforth denote more simply as S. Define the ideal sched-
ule I for the task system τ and its instantiation ρ′τ .

In this section, we prove two different response-time bounds. Both of them
require specially defined task sets in order to use Lemma 8.

Definition 15 Let β be the set of tasks in τ such that Pi ≤ k (i.e., have
preemption priority not lower than the regular priority of τk). Note that, by
the definition of Pi, Pi ≤ i, so all tasks that have higher regular priority than
τk are in β. Thus, if Jk,d is not scheduled then all m processors are busy with
tasks in β.

Lemma 20 [relaxed Lemma 7]

LAG(β, t) ≤ (dUe − 1)Cmax +
∑

τi∈τ\β

max(0, (1− ui)Ci),

where Cmax = max
i
Ci.

Proof

LAG(β, t) = LAG(τ, t)− LAG(τ\β, t)
≤ {by Lemma 7 with α = τ}

(dUe − 1)Cmax − LAG(τ\β, t)
= {by Def. 7}

(dUe − 1)Cmax −
∑

τi∈τ\β

Lag(τi, t)

≤ {by Lemma 4}

(dUe − 1)Cmax −
∑

τi∈τ\β

min(0, (ui − 1)Ci)

= (dUe − 1)Cmax +
∑

τi∈τ\β

max(0, (1− ui)Ci)

ut

Using Lemmas 4, 18, and 20 we provide a response-time bound.

Theorem 4 G-FP-PT ensures the following response-time bound for any npc-
sporadic task τk if Uβ < m:

min

Tk, 1

m− Uβ

(dUe − 1)Cmax + (m− 1)Ck +
∑
i 6=k

max(0, (1− ui)Ci)

 ,

where Cmax = max
i
Ci and β is as defined in Def. 15.
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Proof We consider the job of interest Jk,d. Assume that R ≥ Tk, so Ck =
ukTk ≤ ukR.

Ck −W
= {by Lemma 9, (13), and Ck ≤ ukR}

Lag(τk, r +R)

= LAG(β, r +R)−
∑

τi∈β\τk

Lag(τi, r +R)

≤ {by Lemma 4}

LAG(β, r +R) +
∑

τi∈β\{τk}

max(0, (1− ui)Ci)

≤ {by Lemma 8 with α = β}

LAG(β, r) +mCk + (Uβ −m)R−W +
∑

τi∈β\{τk}

max(0, (1− ui)Ci)

≤ {by Lemma 20, and Cmax = max
i
Ci}

(dUe − 1)Cmax +
∑

τi∈τ\β

max(0, (1− ui)Ci) +mCk + (Uβ −m)R−W

+
∑

τi∈β\{τk}

max(0, (1− ui)Ci)

= (dUe − 1)Cmax +mCk + (Uβ −m)R−W +
∑

τi∈τ\{τk}

max(0, (1− ui)Ci)

= (dUe − 1)Cmax +mCk + (Uβ −m)R−W +
∑
i 6=k

max(0, (1− ui)Ci) (30)

Canceling W from the both sides of (30), we get

R(m− Uβ) ≤ (dUe − 1)Cmax + (m− 1)Ck +
∑
i6=k

max(0, (1− ui)Ci.

Rearranging the last expression completes the proof. ut

Now we repeat the same strategy with a slightly different task set γ to
provide a response-time bound that can be lower than Theorem 4 in some
cases.

Definition 16 We call a set of tasks λ closed if and only if ∀τi ∈ λ, τj ∈ τ\λ :
i < Pj (tasks from the closed set preempt any jobs of tasks not in the set). Let
γ denote the smallest closed set that contains τk. Note that γ is well-defined
because τ is a closed set.

Now we can prove our second response-time bound for τk using γ. Notice
the key difference with Theorem 4: by the definition of a closed set, we can use
Lemma 7 with α = γ, while for β we have to use its relaxed version, Lemma 20.
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Theorem 5 G-FP-PT ensures the following response-time bound for any npc-
sporadic task τk if Uγ < m:

min

Tk, 1

m− Uγ

(dUγe − 1)Cmax + (m− 1)Ck +
∑

τi∈γ\{τk}

max(0, (1− ui)Ci)

 ,

where Cmax = max
τi∈γ

Ci and γ as is defined in Def. 16.

Proof We consider the job of interest Jk,d. Assume that R ≥ Tk, so Ck =
ukTk ≤ ukR.

Ck −W
= {by Lemma 9, (13), and Ck ≤ ukR}

Lag(τk, r +R)

= LAG(γ, r +R)−
∑

τi∈γ\{τk}

Lag(τi, r +R)

≤ {by Lemma 4}

LAG(γ, r +R) +
∑

τi∈γ\{τk}

max(0, (1− ui)Ci)

≤ {by Lemma 8 with α = γ}

LAG(γ, r) +mCk + (Uγ −m)R−W +
∑

τi∈γ\{τk}

max(0, (1− ui)Ci)

≤ {by Lemma 7 with α = γ, and Cmax = max
τi∈γ

Ci}

(dUγe − 1)Cmax +mCk + (Uγ −m)R−W +
∑

τi∈γ\{τk}

max(0, (1− ui)Ci)

Rearranging the last expression completes the proof.

9 Any Work-Conserving Scheduler

In this section, we extend our attention from the G-FP scheduler and its
variants to the broader range of any global work-conserving schedulers that
satisfy Assumptions SH1-SH3. A scheduler is global work-conserving (Assump-
tion SH1) if it always generates a schedule such that

– At any time instant where at most m jobs are ready, all ready jobs are
scheduled.

– At any time instant where more than m jobs are ready, all processors are
busy.

The following theorem shows that, for a feasible npc-sporadic task system,
any work-conserving scheduler that prioritizes jobs of the same task in FIFO
order will guarantee bounded response times for all tasks.
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Theorem 6 Under any work-conserving scheduler that prioritizes jobs of the
same task in FIFO order, the response time of a task τk is at most

Lk =
(dUe − 1)Cmax + 2Csum + (m− 2)Ck

m− U + uk
, (31)

where Cmax = max
i
Ci and Csum =

∑
i

Ci.

Proof We prove this theorem by contradiction. Suppose the theorem does not
hold and let Jk,d denote the first job of task τk that has a response time greater
than Lk. Recall that the release time of Jk,d is r, i.e., Jk,d has not completed
its execution by time r + Lk.

Because jobs of the same task are prioritized in FIFO order, jobs of τk
released after r cannot prevent Jk,d from being executed. We divide all other
jobs into the following three disjoint sets.

Ψ1: the set of jobs that are released before r and have a deadline at or before
r;

Ψ2: the set of jobs that are released before r and have a deadline after r;
Ψ3: the set of jobs of any task other than τk that are released at or after r.

Thus, at any time instant at or after time r, either Jk,d is being executed or all
m processors are busy executing jobs from Ψ1 ∪Ψ2 ∪Ψ3, because the scheduler
is work-conserving. As a result, letting ` denote the accumulated length of
time where all m processors are busy executing jobs from Ψ1 ∪ Ψ2 ∪ Ψ3 at or
after time r, the following must hold:

Lk < `+ Ck; (32)

otherwise, Jk,d must have been executed for at least Ck time units during the
time interval [r, r+Lk) but, by the definition of Jk,d, it has not completed yet.
This does not comply with Ck being defined as the worst-case execution time
of τk.

Additionally, lettingWtot denote the total work completed during the time
interval [r, r + Lk) for jobs in Ψ1 ∪ Ψ2 ∪ Ψ3 (“tot” stands for total), we have

Wtot ≥ m · `. (33)

We further consider jobs contributing to Wtot separately by whether they are
(a) released before time r, or (b) released at or after time r. LettingWco denote
the unfinished work of jobs in Ψ1 ∪ Ψ2 at time r (“co” stands for carry over)
and lettingWnr denote the work of jobs in Ψ3 released at or before time r+Lk
(“nr” stands for new releases), it is clear that

Wtot =Wco +Wnr. (34)

Recall that I is the ideal schedule we defined in Sec. 2 where all jobs are
completed at or before their deadlines. Therefore, the total work of jobs in Ψ1

is at most A(I, 0, r, τ). Also, each task can have at most one job in Ψ2 because
its period equals its relative deadline, and task τk does not have a job in Ψ2
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because its job Jk,d is released precisely at time r. Therefore, the total work
of jobs in Ψ2 is at most

∑
i 6=k Ci.

Now, let S denote the schedule generated by the scheduler that, by Assump-
tion SH2, prioritizes jobs of the same task in FIFO order. Because S cannot
schedule any job released at or after r during the time interval [0, r), the total
amount of work completed in S during time interval [0, r), i.e., A(S, 0, r, τ),
contributes to jobs in Ψ1 ∪ Ψ2.

Thus, we have

Wco ≤A(I, 0, r, τ) +
∑
i6=k

Ci −A(S, 0, r, τ)

= {by Def. 7}

LAG(r) +
∑
i6=k

Ci

= {by the definition of Csum}
LAG(r) + (Csum − Ck)

≤ {by Lemma 7}
(dUe − 1)Cmax + Csum − Ck. (35)

In terms of Wnr, because any task τi releases jobs with a minimum sepa-
ration Ti, it is clear that

Wnr ≤
∑
i 6=k

(⌈
Lk
Ti

⌉
Ci

)
< {because dxe < (x+ 1)}∑

i 6=k

((
Lk
Ti

+ 1

)
Ci

)
= {because ui = Ci/Ti}∑

i6=k

ui

Lk +
∑
i6=k

Ci

= {by the definition of U and Csum}
(U − uk)Lk + Csum − Ck. (36)

By (32), (33), (34), (35), and (36) and noting that m > 0 holds, we have

Lk <
(dUe − 1)Cmax + Csum − Ck + (U − uk)Lk + Csum − Ck

m
+ Ck.

That is,

(m− U + uk)Lk < (dUe − 1)Cmax + 2Csum + (m− 2)Ck.
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Because m ≥ U must hold for any feasible system and uk > 0 holds (as Ck > 0
holds by definition and uk = Ck/Tk), we have m− U + uk > 0. Thus,

Lk <
(dUe − 1)Cmax + 2Csum + (m− 2)Ck

m− U + uk
,

which contradicts the definition of Lk in (31). Thus, the supposition at the
beginning of this proof cannot be true, and the theorem follows. ut

Corollary 3 Any work-conserving scheduler is soft real-time optimal under
the npc-sporadic task model.

10 Experiments

In this section, we evaluate the obtained analytical tardiness bound for the
preemptive G-FP scheduler, which is probably the most practically relevant
scheduler among those considered in the paper. Two evaluation metrics natu-
rally arise with respect to tardiness analysis. The first one is average tardiness
over all tasks in the system, and the second one is maximum tardiness over
all tasks. In order to evaluate our analytical results, we use both metrics in
several experiments.

Firstly, we consider the difference between analytical and observed tardi-
ness. Because the analytical bound can be significantly higher than the ob-
served one (up to an order of magnitude), we propose a bound reduction
method based on clustering. Unfortunately, clustering is an NP-hard problem
(it can be reduced to the bin-packing problem). However, we conducted exper-
iments showing that for tasks systems in which no task has high utilization,
clustering can effectively reduce the analytical bound for almost all task sets.

Secondly, we consider the task prioritization problem. Our experiments
pertaining to this problem focus on heuristics, because, unfortunately, the
problem of finding the optimal (with respect to tardiness minimization) prior-
itization seems to have no polynomial solution unless P=NP. We do not have
a proof for this statement but provide intuition that it is so. This intuition
comes from examining prior work on two well-studied real-time scheduling
models that are related to the npc-sporadic model: ordinary sporadic tasks
and a collection of independent jobs.

From the point of view of ordinary tasks, Leung and Merril [21, Theorem 2,
for a single processor] and Leung [20, Theorem 4, for multiprocessor] showed
that the problem of deciding if a periodic task system is schedulable under
any fixed-priority algorithm is co-NP-hard in the strong sense. Note that a
periodic task system is a special case of a sporadic tasks system.

From the point of view of independent jobs, the problem of minimizing
either of our two evaluation metrics has a similar existing problem known to
be NP-hard. Minimizing the average response time of an npc-sporadic task
system has the same nature as the problem of minimizing the makespan of a
collection of jobs, which was studied by Uzsoy [26, Corollary 1]. The concept
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of minimizing the maximum response time of an npc-sporadic task system has
the same nature as minimizing the number of tardy jobs; this problem was
studied was studied by Li and Lee [23, Theorem 1].

Thirdly, we consider an exponential algorithm for the optimal prioritization
and use it to evaluate the quality of the considered heuristics for small task
sets.

To generate the task systems used in this section, we selected task peri-
ods from the range [10ms, 100ms] (uniformly distributed). We also considered
various task utilization ranges: light tasks with ui ∈ (0.0, 0.3), medium tasks
with ui ∈ [0.3, 0.7), and heavy tasks with ui ∈ [0.7, 1.0).

The source code we developed for this experimental evaluation can be found
online [1].

10.1 Analytical Tardiness Bound vs Observed Tardiness

Notice that the numerator in the response-time bound given in Theorem 1
depends on the core count m and priority k, which determines the number of
higher-priority tasks that exist. Therefore, a reduced bound can be ensured
if these values can be lowered. One way to do this is by partitioning the
hardware platform into clusters of cores, assigning each task to one cluster,
and applying global scheduling only within clusters. To evaluate the efficacy
of such a strategy, we conducted experiments in which clusters of size two,
four, eight, and 16 were considered on a 16-core platform. (A cluster size of
16 is simply pure global scheduling.) For these cluster sizes, we randomly
generated npc-sporadic task systems and assessed both schedulability (i.e.,
the fraction of generated systems deemed schedulable) and tardiness bounds
for the generated systems as a function of total system utilization. To assign
tasks to clusters, we tried four well-known bin-packing heuristics, worst-fit
decreasing, best-fit decreasing, next-fit decreasing, and first-fit decreasing, and
declared a task system to be schedulable if any of these heuristics could produce
an assignment of tasks to clusters that was schedulable. We assigned higher
priorities to lower-indexed tasks (i.e., those generated earlier).

In order to account for variations in task periods, we used average relative
tardiness as our primary evaluation metric; a task’s relative tardiness is given
by its tardiness divided by its period. We computed both bounds on relative
tardiness, using Corollary 2, and observed relative tardiness, by examining
schedules in which jobs were released periodically for 10000 time units. The
results we obtained for light tasks are plotted in Fig. 9, those for medium tasks
in Fig. 10, and those for heavy tasks in Fig. 11. Each plot in these figures
pertains to one cluster size and shows schedulability, the average observed
relative tardiness, and the average relative tardiness bound (each as a function
of total utilization) for that cluster size.

As these plots show, clustering had virtually no negative impact on schedu-
lability for light task systems. For medium and heavy task systems, there was
some non-negligible impact for clusters of size two and four, as seen by the
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PA period ascending PD period descending
UA utilization ascending UD utilization descending
EA execution time ascending ED execution time descending
A1 Algorithm 1

Table 1 List of tested heuristics.

decline in schedulability as total utilization nears 16.0. As expected, the likeli-
hood of obtaining a schedulable clustering seems to be lower for the task sets
with higher average utilization. However, task systems with a large number of
tasks, which gain the largest analytical bound decrease from clustering, have
to have low average utilization.

For both light and medium task systems, using clusters of size eight de-
creased the average relative tardiness bound compared to global scheduling
(i.e., using one cluster of size 16) by about 30% with almost no impact on
schedulability. Using clusters of size four decreased the bound by around 40%,
and using clusters of size two reduced it by around 55%, though for these
cluster sizes some schedulability impacts existed for medium task systems, as
already noted. Heavy task systems have almost zero relative tardiness, so the
tasks number in cluster is smaller, though the analytical bound decreased up
to six times for the clusters of size two.

Across all of our experiments, average relative tardiness bounds for light
and medium task systems with high total utilization were four to ten times
larger than average observed relative tardiness. The difference in the observed
results follows from two main reasons. First, the provided bound depends on
Cmax, which tends to be larger for tasks with higher utilization. Second, in
general, observed tardiness tended to be smaller for task sets with a smaller
number of tasks (which arises from the larger average utilization).

10.2 Task Prioritization

In this subsection, we consider seven task prioritization heuristics (see Tbl. 1).
We compared them to an initial random ordering.

As discussed above we have two evaluation metrics: relative average tardi-
ness and relative maximum tardiness.

Note that we consider implicit-deadline tasks, so PA in Tbl. 1 is equivalent
to the Deadline Monotonic Priority Ordering (DMPO), which is known to be
optimal for constrained-deadline sporadic tasks on uniprocessors [22].

Example 4 Note that all heuristics from the Tbl. 1 may produce sub-optimal
prioritizations. For example, consider the following task system (denoted as
(execution time, period)): {(1, 5); (1, 3); (4, 5); (5, 6); (5, 6)}. Tbl. 2 shows rela-
tive tardiness for both the average and the maximum case for this task system
under each heuristic and also under prioritizations that minimize maximum
(optimal_max) and average (optimal_avg) tardiness. As this table shows,
none of the heuristics is optimal.
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Fig. 9 Experimental results for light tasks.
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Fig. 10 Experimental results for medium tasks.
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Fig. 11 Experimental results for heavy tasks.
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function order tardiness max avg
optimal_max [5, 3, 1, 2, 4] 0.00 0.38 0.00 1.53 2.01 2.01 0.78
optimal_avg [3, 2, 1, 5, 4] 0.00 0.00 0.00 0.89 2.01 2.01 0.58

UA [1, 2, 3, 4, 5] 0.00 0.00 0.07 0.89 2.46 2.46 0.68
EA [1, 2, 3, 4, 5] 0.00 0.00 0.07 0.89 2.46 2.46 0.68
PA [2, 1, 3, 4, 5] 0.00 0.00 0.07 0.89 2.46 2.46 0.68
A1 [3, 2, 5, 1, 4] 0.00 0.00 0.48 0.60 2.46 2.46 0.71
UD [5, 4, 3, 2, 1] 0.00 0.36 1.37 2.58 2.69 2.69 1.40
ED [5, 4, 3, 1, 2] 0.00 0.36 1.37 1.15 4.57 4.57 1.49
PD [5, 4, 1, 3, 2] 0.00 0.36 0.00 1.67 4.57 4.57 1.32

Table 2 Relative tardiness from Corollary 2 for the task set {(1, 5); (1, 3); (4, 5); (5, 6);
(5, 6)}.

10.2.1 Heuristics Comparison

In this experiment, we compared the seven heuristics described above with the
initial random ordering. We generated task systems of all three types described
above: light, medium and heavy for a platform with 16 cores. A comparison
of all heuristics can be found in Fig. 12.

As these plots show, three heuristics greatly outperformed the others oth-
ers: PA, EA, and A1. The difference among their absolute values is not signifi-
cant, so no one heuristic is best. To provide a more thorough comparison as to
which heuristic is best, we limited the scope of the remaining experiments to
the three best-performing heuristics. Note that the three best heuristics were
able to find prioritizations that ensure almost zero tardiness for nearly all task
systems with total utilization in [0, 10]. Thus, we focus on the utilization range
[10, 16].

To more precisely compare PA, EA and A1 we computed the share of the
generated task systems where each heuristic yields higher schedulability than
the other two. A comparison of all three types of task sets on the basis of the
two evaluation metrics can be found in Fig. 13.

For all types of task systems with utilization less than the system capacity,
the EA heuristic dominates when maximum tardiness is used as the evaluation
metric. For task systems with utilization close to the system capacity, the PA
heuristic dominates.

However, when the average relative tardiness is used as the evaluating
metric, A1 dominates for almost all task systems with utilizations in the range
[10, 15].

10.2.2 Heuristics vs. Optimal

In the subsection above, we considered heuristics for task prioritization. Unfor-
tunately, none of them are optimal. To compute the quality of each heuristic,
we need to understand how close to optimal it is. To determine the optimal
priority assignment, we computed all priority-assignment permutations and se-
lected the one that yielded the lowest tardiness according to the chosen metric.
Such an algorithm is exponential, so we can only test small task systems.
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(a) Light tasks and average tardiness (b) Light tasks and maxumum tardiness

(c) Medium tasks and average tardiness (d) Medium tasks and maxumum tardiness

(e) Heavy tasks and average tardiness (f) Heavy tasks and maxumum tardiness

Fig. 12 Comparison of all seven heuristics and default random ordering.

As we see from the previous experiment, three heuristics (EA, PA, A1) per-
formed the best. They outperformed all others for the almost all task systems,
so we focused on them only.

Based on the comparison of the relative analytical and observed tardiness,
we considered task systems with high per-task utilizations relative to the to-
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(a) Light tasks and average tardiness (b) Light tasks and maxumum tardiness

(c) Medium tasks and average tardiness (d) Medium tasks and maxumum tardiness

(e) Heavy tasks and average tardiness (f) Heavy tasks and maxumum tardiness

Fig. 13 Comparison of three best heuristics. The y-axis of each plot shows the percentage
of tasks sets where each heuristic performed better than two others.

tal system utilization. Such task systems tend to have higher observed and
analytical tardiness, so the difference between the optimal algorithm and the
other algorithms for the prioritization should be larger. Thus, we focused on
medium and heavy tasks (light task systems have lower total utilization). For
medium tasks, we considered a 4-core system; for heavy tasks, we considered
an 8-core system.
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(a) Medium tasks and average tardiness (b) Medium tasks and maxumum tardiness

(c) Heavy tasks and average tardiness (d) Heavy tasks and maxumum tardiness

Fig. 14 Comparison of three best heuristics.

As we can see in Fig. 14, an optimal prioritization does not produce sig-
nificantly better results for task systems with small numbers of tasks.

11 Conclusion

In this paper, we considered the scheduling of npc-sporadic task systems under
G-FP and its variants on a multiprocessor platform. We showed that G-FP
(preemptive or non-preemptive) may generate unbounded task response times
under the standard sporadic task model, even when the underlying platform
is significantly under-utilized. In contrast, under the npc-sporadic task model,
we showed that preemptive G-FP ensures bounded task response times (and
hence tardiness) for any task system whose utilization does not exceed the plat-
form’s capacity—that is, G-FP is SRT-optimal under the npc-sporadic task
model. We further showed that our derived response-time bound is asymp-
totically tight and that it can be reduced in practice through the use of clus-
tered scheduling. We considered the problem of task system prioritization, and
how different heuristics affect the bound. We extended our approach to non-
preemptive G-FP and its generalization, G-FP with preemption thresholds.
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We showed that any (preemptive or non-preemptive) work-conserving
scheduler is SRT-optimal under the npc-sporadic task model. However, this
approach may yield conservative bounds for certain schedulers because it does
not take into account scheduler-specific information that may be important
for obtaining reduced bounds. In the future, we hope to refine this proof strat-
egy so that it can be applied to obtain an asymptotically tight response-time
bound for any such scheduler.

This paper was motivated by an industry problem (pertaining to the pro-
cessing done within 5G cellular base stations) in which tasks exist as nodes
within a directed acyclic graph (DAG), the edges of which denote precedence
constraints between different tasks, and intra-task parallelism is allowed. In
prior work, response-time bounds for such DAG-based systems were presented
assuming a dynamic-priority scheduler is used [30]. In this industry problem,
a static-priority scheduler would be desirable to use because it would entail
lower runtime overheads than a dynamic-priority one. In the future work, we
intend to consider in detail the applicability of G-FP scheduling under the
npc-sporadic task model in this DAG-based setting.
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