
Uniprocessor Mixed-Criticality Scheduling with
Graceful Degradation by Completion Rate

Zhishan Guo1 Kecheng Yang2 Sudharsan Vaidhun1 Samsil Arefin3 Sajal K. Das3 Haoyi Xiong4
1Department of Electric and Computer Engineering, University of Central Florida

2Department of Computer Science, Texas State University
3Department of Computer Science, Missouri University of Science and Technology

4Baidu Inc., Beijing, China

Abstract—The scheduling of mixed-criticality (MC) systems
with graceful degradation is considered, where LO-criticality
tasks are guaranteed some service in HI mode in the form of
minimum cumulative completion rates. First, we present an easy-
to-implement admission-control procedure to determine which
LO-criticality jobs to complete in HI mode. Then, we propose a
demand-bound-function-based MC schedulability test that runs
in pseudo-polynomial time for such systems under EDF-VD
scheduling, wherein two virtual deadline setting heuristics are
considered. Furthermore, we discuss a mechanism for the system
to switch back from HI to LO mode and quantify the maximum
time duration such recovery process would take. Finally, we
show the effectiveness of our proposed method by experimental
evaluation in comparison to state-of-the-art MC schedulers.

Index Terms—graceful degradation, mixed criticality, unipro-
cessor, EDF-GVD

I. INTRODUCTION AND MOTIVATION

There is an emerging trend in real-time system’s design and
implementation towards mixed-criticality (MC), where func-
tionalities of different degrees of importance (or criticalities)
are implemented upon a shared platform. Under such design,
the less important tasks are expected to utilize the computing
resources only when important tasks complete earlier than
their desired worst cases, such that processor capacities are
well utilized. In the meanwhile, when tasks of higher impor-
tance execute beyond their estimated common case running
time (occasionally), the less important tasks may be dropped.
This is what has been broadly called Mixed-Criticality (MC)
scheduling in the real-time systems community.

Prior research on MC scheduling mostly focused upon the
Vestal model [32], which defines the correctness as follows:
all deadlines will be met under normal circumstances, while if
some more important tasks overrun, a mode switch is triggered
and only HI-critical deadline will be met. Specifically, under
the two-criticality-level case, each task is designated as being
of either higher (HI) or lower (LO) criticality. Two worst-
case execution time (WCET) estimations are specified for
each HI-criticality task: a LO-WCET and a HI-WCET. The
HI-WCET is larger than the LO-WCET (potentially by several
orders of magnitude). For each LO-criticality task, only one
WCET is specified. Whenever there is one HI-criticality task
that does not signal its completion after exhausting its LO-

Contact information: zhishan.guo@ucf.edu, yangk@txstate.edu.

WCET, a system-wide mode switch will be triggered; all HI-
criticality tasks may simultaneously exceed their LO-WCETs
requiring executions up to their HI-WCETs under the new
mode. A LO-criticality task exceeding its WCET is considered
an erroneous condition and the task instance is terminated
on such occurrence. Please refer to [13] for an up-to-date
thorough review and refer to Section II for formal definitions.

This system-mode based MC model has been proved very
successful in identifying some of the core challenges that
arise in resource-efficient scheduling of real-time systems,
and spawning a large body of research to tackle some of
these challenges. However, this model has met with some
criticism from systems engineers and researchers [12] that it
does not match their expectations in an important aspect: LO-
criticality functionalities are not non-critical — they should
be guaranteed with some degree of service, regardless of HI-
criticality tasks’ behaviors.

Graceful Degradation. The term graceful degradation of any
system refers to the ability to maintain limited functionality
even when a large portion of it is destroyed or rendered
inoperative. With graceful degradation, LO-criticality tasks are
designed to receive certain amount of service (instead of fully
being abandoned) upon a mode switch of an MC system. A
wide range of applications can benefit from the system design
incorporating graceful degradation. For example, a networked
control system can run stably while skipping a limited number
of computation tasks (for control signal processing) within a
certain period [11]. Moreover, it is possible to guarantee the
stability of a continuous closed-loop system with an optimal
disturbance rejection performance via completing a minimal
fraction of some computations (tasks) on time [26].

In the real-time systems community, some existing work in
MC scheduling considers the concept of graceful degradation
and proposes effective scheduling techniques, such as fluid-
based scheduling [5], utilization-based earliest deadline first
with virtual deadlines (EDF-VD) [25], probabilistic model-
based scheduling [20], putting restriction on the asymptotic
rate-based correctness notation [28] [1], and involving mixed-
criticality weakly hard constraints [17].

However, most of the existing works have at least one of
the following two issues:

1



Fig. 1: (a) Desired control updates in LO mode; (b) A possible
schedule during LO mode; (c) Desired control updates in
HI mode; (d) A possible schedule in HI mode using utilization
based schedulers; (e) A possible schedule in HI mode using
schedulers with asymptotic bound on the degraded rate; (f) A
possible schedule in HI mode using our proposed scheduler
with guaranteed lower bound on degradation.

1) Utilization based schedulers reduce LO-criticality utilization
upon a mode switch. On one hand, a shortened execution
time for each task may lead to unfinished execution (mal-
function), since LO-criticality tasks’ execution time is already
optimistically estimated (with tight margin). On the other
hand, a longer period may results in the loss of timeliness.
For instance, delayed responses or calculations will not only
result in degraded control performance, but may also lead to
data corruption and system malfunction due to unsynchronized
communication in a sensor-based distributed control system.
2) Asymptotic bounds on admission rates do not guarantee the
service rate in any fine granularity: both 1-out-of-4 and 10k-
out-of-40k are considered as 0.25 service rate in the long term.
However, a feasible schedule under the latter condition may
drop thousands of consecutive jobs of the same task, which
could lead to severe malfunction of certain parts of a system.

To further drive the point, let us consider a control task
in a cyber-physical system that provides control updates at
the rate of 100 Hz for a smooth and stable control of the
system as shown in Figure 1(a). Even with a periodic task
model, depending on the scheduler, there is a jitter introduced
in the control update rate. A possible control update sequence
with jitter is shown in Figure 1(b). If the control task is of
LO-criticality, then to maintain a stable control when there
occurs a mode switch, let the required minimum control update
rate be 25 Hz and the expected update sequence is shown in
Figure 1(c). With the utilization based schedulers, increasing
the period will worsen the jitter as well as the update rate. In
other words, instead of the LO-mode requirement of a control
update every 40 ms, the schedule can result in an update
sequence with ≈ 80 ms between two consecutive updates
in the worst case as seen in Figure 1(d) between jobs 2
and 3. Similarly, with the asymptotic bounds on the update
rate guaranteed, there could be a pattern with consecutive
updates every 10 ms for 50 updates and then no update
for the next 50 instances. We address these issues in the
existing methodologies by guaranteeing a lower bound on the

degradation of the LO-criticality tasks. Figure 1(f) shows the
resulting task window where the control updates can occur for
a scheduler with a guaranteed upper bound on the cumulative
dropped task instances. Although the rate is not exactly the
expected rate, the jitter has a tighter bound and there is a
pattern in the job sequence.

Another prominent application which requires guaranteed
bounds on degradation is communication networks. In a con-
strained shared bandwidth communication where real-time and
nonreal-time messages require bandwidth access, nonreal-time
messages can be degraded to maintain a lower but non-zero
bandwidth access to handle more end users. Such a degrada-
tion may lead to loss of quality in communication for the end
users, which when unbounded causes disconnection [22]. In
such applications, a rate control mechanism [24] provides the
minimum rate that has to be guaranteed for an accepted task.
As seen in the above mentioned applications, the quality of
control in a cyber-physical system or the quality of experience
in a communication network is affected by degradation. There
are techniques in those application that have a bound on the
maximum degradation that can be tolerated and our proposed
algorithm guarantees those bounds while scheduling.

In this paper, we target the scheduling of dual-criticality sys-
tems with graceful degradation upon a uniprocessor. Specifi-
cally, we make the following key contributions in this paper:

We propose a new MC system model by re-defining the HI-
criticality mode, where LO-criticality tasks can be guaranteed
with a graceful degradation of service specified by the system
designers.

We introduce a completion rate ri to Vestal’s MC task
model to better fit the need from system designers in the
network and control communities: upon a system-wide mode
switch, for any N ∈ Z+, at least dri · Ne out of N new
consecutive job releases (by task τi) will receive full execution
within their original scheduling window. This model provides
a much stronger guarantee than several existing works (that
shrink execution time or only guarantee asymtotic rates) and
is applicable to many senarios (as mentioned in Sec II).

We propose an easy-to-implement admission-control proce-
dure for LO-criticality tasks upon mode switch to guarantee the
rate ri for any task τi. Moreover, if a rate ri can be expressed
in the fraction form ri = mi/ki, then our procedure further
guarantees that after mode switch occurs, at least mi jobs
will receive full execution out of any ki consecutive jobs of
a LO-criticality task τi.

We adapt the earliest-deadline-first (EDF) with virtual
deadlines scheduler, and proposed a pseudo-polynomial time
schedulability test for the MC system under new model, based
on MC demand-bound function (DBF) analysis.

We include a backward mode switch mechanism (from
HI mode back to LO mode), then prove the maximum length
of period (upper bound) to bring the system back to LO mode
safely, under different scenarios of execution patterns via the
proposed scheduler. To our knowledge, this is the first work
that provided the theoretical analysis for upper bound of mode
switch waiting time. We conduct simulation experiments to

2



verify the theoretical results and demonstrate the effectiveness
of our algorithm comparing to existing MC schedulers.

The rest of this paper is organized as follows. Section II
presents the system model and formally defines our problem.
Section III proposes a new admission-control protocol for
LO-criticality tasks under HI mode. Section IV presents our
proposed algorithm earliest deadline first with graceful virtual
deadline (EDF-GVD) and derives its associated schedulability
test, while Section V further proves the upper bound for the
period EDF-GVD would take to trigger a mode switch back to
LO mode. Section VI implements EDF-GVD and compares the
proposed method with other state-of-the-art MC schedulers.
Section VII discusses related work and Section VIII concludes
the paper.

II. SYSTEM MODEL

In this paper, we consider a workload model consisting
of independent mixed-criticality (MC) constrained-deadline
sporadic tasks. We assume that each task generates an infinite
number of MC jobs.

Traditional dual-criticality MC task model considers two
different WCET estimations, CLO and CHI, for each HI-
criticality task. Under LO mode, all the tasks finish execution
upon receiving a cumulative execution of length CLO. When
a HI-criticality task takes longer time than CLO, the system is
switched to HI mode and all LO-criticality tasks are dropped.
HI-criticality tasks are guaranteed to receive an execution
length up to their HI-WCETs under HI mode.

In this paper, in addition to the existing MC task model, we
introduce a minimum cumulative admission rate ri for each
LO-criticality task τi. The value of ri for a specific task τi
denotes that, at HI mode, the completion rate of that task must
be at least ri. That is, for the first N jobs released by τi after
the mode switch (to the HI mode), at least dri · Ne number
of jobs should be completed.

Note that we separately model a task τi according to its
criticality level χi ∈ {LO, HI}, such that the whole task set τ
can be separated into the LO-criticality task set τLO = {τi|χi =
LO} and the HI-criticality task set τHI = {τi|χi = HI}. Each
LO-criticality task τi can be characterized as:

τi = {Ci, Ti, Di, ri, χi} , ∀τi ∈ τLO,

while each HI-criticality task τi can be characterized as:

τi = {CLO
i , C

HI
i , Ti, Di, χi} , ∀τi ∈ τHI.

That is, each LO-criticality task τi has only a single WCET
estimation Ci plus a required completion rate ri in HI mode. In
contrast, each HI-criticality task τi has two WCET estimations
– a less pessimistic estimation CLO

i and a more pessimistic
estimation CHI

i – and every HI-criticality job must complete by
its deadline in both LO and HI modes.

The ri value may vary for each LO-criticality task – when
they are all zero, our problem is identical to the traditional
sporadic MC task scheduling one; while if they take value 1,
the system becomes non-mixed-criticality as no jobs can be
dropped (HImode schedulability will dominate). As a result,

the system model described in this paper is not only a gen-
eralization of many existing models, but also bridges mixed-
criticality and non-mixed-criticality scheduling. We provide
the system designer the full flexibility to require different
levels of guarantees for LO-criticality tasks under HI mode.
Correctness Criteria. An MC scheduling is correct if both
the following properties are satisfied:
• Under LO mode, each task τi signals its completion upon

receiving an execution length no more than CLO
i , and all

jobs complete on or before their deadlines.
• Under HI mode, each HI-criticality task τi may receive

an execution up to CHI
i , while LO-criticality jobs will

nevertheless be executed at a minimum cumulative ad-
mission rate ri. In other words, starting from the last
HI mode switch point, out of any N ∈ Z+ consecutive
jobs released by any LO-criticality task τi, dri ·Ne jobs
are guaranteed to receive full execution (between their
release time and the deadlines).

The schedulability analysis of such task sets faces two key
challenges: (1) the correctness definition requires the comple-
tion rate of a LO-criticality task never drops below ri upon a
mode switch. In Section III, we identify a proper admission-
control mechanism such that the condition is satisfied. (2) The
m-out-of-k scheduling problem arising in our research is a
strong guarantee, which cannot be ensured by existing work
on graceful degradation [5] [25] with shrinking WCETs.

III. ADMISSION CONTROL UNDER HI MODE
In the proposed model, every LO-criticality task τi has a

minimum cumulative admission rate ri upon mode switch.
Due to HI-criticality tasks’ overruns, not all jobs of LO-
criticality tasks can be executed. The dropping of LO-criticality
jobs need to respect the minimum cumulative admission rate
ri; i.e., for any task τi, if dri ·Ne out of the first N consecutive
jobs after the mode switch are executed (∀N ∈ Z+), then ri
is satisfied. To accomplish this goal we need to design an
admission control protocol, where in HI mode, the execution
of LO-criticality jobs is controlled dynamically.

Algorithm 1: Admission Control Procedure
Data: (ri) values for all LO-criticality tasks
foreach τi ∈ τLO do

ai = 0; // Number of executed jobs
end
while true do

if jb ∈ τi released then
// jb is bth job of τi
if (ai < b× ri) then

// schedule jb using EDF
ai = ai + 1;

end
else

// The job jb is dropped
end

end
end

Admission Control Algorithm. The admission control pro-
cedure for LO-criticality tasks under HI mode is presented in

3



Algorithm 1. As per our correctness criteria, to satisfy ri for
any task τi, dri · Ne out of the first N consecutive jobs
after the mode switch are required to be executed. To ensure
this, the algorithm controls the LO-criticality job admissions
in a way, such that the admission rate (the proportion of
admitted jobs over all released jobs) never drops below the
cumulative admission rate ri. The algorithm keeps track of the
total number of executed jobs (ai) while a newly released job
jb is scheduled for execution only if the condition ai < b× ri
satisfies; otherwise, the job is dropped.

We now show how the admission control scheme works
with an example of several tasks.

Example III.1. Consider a task set τ with the requirements
of minimum cumulative admission rates as given in Table I,
where S(ri) denotes the maximum number of consecutive
drops to a certain task (which is a function of ri).

TABLE I: Sample completion rates with associated admission
patterns and maximum job acceptance separation.

Task ID ri Job Admission S(ri)
τ1 0.4 {10100}∞ 2
τ2 0.625 {11011010}∞ 1
τ3 1/

√
2 11101101110 · · · 1

In Table I, the job admission pattern is shown by a series
of 1’s and 0’s where 1’s represent the admitted jobs while 0’s
represent the dropped ones. When running task τ1, its cumu-
lative admission rate (the proportion of admitted jobs over all
released jobs) pattern is 1, 12 ,

2
3 ,

1
2 ,

2
5 ,

1
2 ,

3
7 ,

1
2 ,

4
9 ,

2
5 , · · · , which

never drops below ri = 0.4. The same claims can be made for
τ2 and τ3. The admission control is dynamically determined
by checking the condition a < b · r3 for all tasks.

Note that, when ri is a rational number (e.g., r1 and r2),
the admission control follows a repeated pattern, however,
for irrational ri values (e.g., r3), there will not be any
repetition. Also, the maximum number of consecutive drops
can be calculated from ri which might be critical for many
applications.

Remark 1. One important aspect of our admission-control
protocol is that we minimize the maximum number of consec-
utive drops S(ri) while maintaining the minimum cumulative
admission rate ri. The following equation reveals the relation-
ship between S(ri) and ri:

S(ri) =

⌈
1

ri

⌉
− 1. (1)

Remark 2. When ri is a rational number for task τi, it can
be represented in a fractional form (mi/ki), where mi and ki
are co-prime integer values. In this case, it is guaranteed that
for any consecutive ki jobs released by task τi, at least mi of
them will be admitted.

Remark 3. Upon a mode switch (to HI mode), for first of any
N ∈ Z+ consecutive job releases of any LO-criticality task τi,
the admitted number of jobs equals to dri ·Ne. Note that the

guarantee is based on N, the number of released jobs 1 so far
after mode switch2. The model fits both periodic and sporadic
release patterns.

IV. SCHEDULER AND SCHEDULABILITY ANALYSIS

With the admission control procedure described in Section
III, the minimum cumulative admission rate requirements are
transformed into a certain execution pattern, which can be
described with constrained-deadline sporadic MC task model,
for each LO-criticality task upon a mode switch. In this section,
we proposed a novel algorithm named EDF-GVD (Graceful-
Virtual-Deadline). Compared to existing similar approaches
like EDF-VD [3], our algorithm provides graceful degradation
to LO-criticality tasks under HI mode. To guarantee a graceful
degradation, new virtual deadline setting mechanisms and as-
sociated schedulability test needs to be derived. As pointed out
in Sections I and II, our graceful degradation definition follows
the needs for many applications in network communication
and control systems, and provides stronger guarantees than
existing works on graceful degradation (with shrunk WCET
or extended period), and thus dominates them. As a result, the
standard MC sporadic task schedulability analysis (that are
utilization based) does not apply here.

In this section, we first describe our EDF-GVD algorithm
and propose two virtual deadline setting mechanisms, then
present the schedulability test with time complexity analysis
and correctness guarantees.

A. Algorithm EDF-GVD
Let τ = {τ1, τ2, ..., τn} denote the targeted MC constrained-

deadline sporadic task set, to be scheduled on a uniprocessor
platform.
Virtual Deadline Settings. Setting the virtual deadlines is
usually a search problem in the EDF-VD family. We first pro-
vided a simple linear-time setting heuristic as a starting point.
Next, we provided a refined binary search that approximates
to the optimal uniformed setting to any degree.

To calculate the virtual deadlines Dv
i for HI-criticality tasks

we first use a simple yet efficient heuristic such that the per-
mode utilizations are the same for each task, i.e.,

Dv
i =

CLO
i

CHI
i

Di. (2)

Since such heuristic may not lead to an optimal virtual
deadline setting, we propose a second scheme for setting
virtual deadlines:

Dv
i = q ·Di, s.t. ∀i χi = HI. (3)

where q ∈ (0, 1] is the common virtual deadline scaling factor
for the whole set, to be determined using Algorithm 2.

1Note that the guarantee is based on the first N jobs instead of any N jobs,
or else by taking N = 1, we are not allowed to drop any job.

2The LO-criticality job during mode switch is always dropped for min-
imizing schedulability interferences between two modes. Such single drop
typically do not affect system performance hugely, and the proposed appraoch
guarantees that its seccessor is always admitted and executed correctly; i.e.,
all patterns begins with 1.

4



Algorithm 2: Virtual Deadline Setting
Data: Task set τ , Accuracy ε
∆ = 0.5 //step size;
q = 0.5 //virtual deadline shrinking parameter;
while ∆ ≥ ε do

∆ = ∆/2;
foreach τi ∈ τHI do

Dv
i = q ·Di;

end
CA = Check(Condition (A) in Sec IV-B);
CB = Check(Condition (B) in Sec IV-B);
if CA = true && CB = true then

Return q;
end
else if CA = true && CB = false then

q = q −∆;
end
else if CA = false && CB = true then

q = q + ∆;
end
else

Return failure; //no q can be found
end
Return -1; //still possible with a smaller ε

end

In short, Algorithm 2 performs a binary search for q over
the range (0, 1], to any desired degree of accuracy ε > 0,
to determine a proper value such that both LO and HI mode
correctness can be satisfied. In each round, the algorithm first
decreases the step size by half and checks the schedulability
conditions (based on DBF, introduced in Section IV-B) for
each mode. If both conditions are satisfied, we declare a
victory; if neither is satisfied, we claim a failure; if the
schedulability under HI (LO) mode is violated, we reduce
(increase) q by the current step size and move to the next
round. With the proper q value that Algorithm 2 returns, we set
virtual deadlines of HI-criticality tasks according to Equation
(3).
Time complexity. As the schedulability test for any q (men-
tioned in Sec IV-B) takes pseudo-polynomial time, the whole
process mentioned above will take pseudo-polynomial time (to
a desired degree of accuracy, say 2−10).
Run-time behavior. After computing the feasible virtual
deadlines Dv

i , run-time scheduling for all tasks is done in an
EDF manner. Specifically, under the LO mode, jobs of each
HI-criticality task τi are assigned a virtual deadline of Dv

i

after their releases, while relative deadline of a LO-criticality
job remains Di. If some HI-criticality job does not signal
its completion upon receiving a cumulative execution time
of its LO-criticality WCET, the system mode is switched
to HI and current unfinished LO-critcality jobs are dropped.
Future releases of LO-criticality jobs are handled based on the
admission control protocol described in Section III, while all
HI-criticality jobs will be admitted. All jobs will be scheduled
with EDF within their actual deadline Di in HI mode.

Example IV.1. Consider the MC system consisting of three
tasks shown in Table II.

TABLE II: An MC set with minimum degradation execution rates.
Task ID Ci (CLO

i ) CHI
i Ti Di χi ri

τ1 1 3 6 6 HI -
τ2 1 - 3 3 LO 0.5
τ3 2 - 6 4 LO 0.4

The task set is EDF-schedulable under LO mode as the
system density (i.e.,

∑
i Ci/Di = 1/6 + 1/3 + 2/4) is 1.

However, it is not EDF schedulable under HI mode without
dropping any job since the overall system utilization (i.e.,∑
i Ci/Ti = 3/6+1/3+2/6 = 7/6) becomes greater than 1.

Fig. 2 shows that the task set is EDF-GVD schedulable with
a virtual deadline setting for τ1 as Dv

1 = 4. Under HI mode,
selected jobs of both LO-criticality tasks (τ2 and τ3) receive
full amount of execution, with minimum cumulative admission
rates at 0.5 and 0.4 respectively.

Under LO mode, the HI-criticality task τ1 is scheduled
using virtual deadline Dv

1 = 4. At time t = 10, the second
job of τ1 has executed for a length of CLO

1 = 1 and did
not signal its completion, hence the system is switched to
HI mode. At the same time, the pending (4th) LO-criticality
job of τ2 is dropped. After the mode switch, the HI-crticality
task τ1 is scheduled using EDF with CHI

1 = 3 and deadline
D1 = 6, while the LO-criticality jobs are scheduled based
on the admission control procedure described in Section III
(where un-admitted jobs are marked ‘dropped’ in the figure).
The system is ready for a potential switch back to LO mode
when the processor is idle and the last jobs of all HI-criticality
tasks are completed within its CLO amount of time (denoted
by dashed green lines). However, if the last job of any HI-
criticality task executes more than its CLO, there cannot be
any backward mode switch even if the system is idle (denoted
by dashed blue lines)

B. DBF Based Schedulability Analysis
Given a virtual deadline setting from Sec. IV-A, we perform

a schedulability test in this section to check whether both
LO and HI mode correctness can be guaranteed. We begin
with the demand bound function (DBF), which has been
demonstrated to be a successful approach to analyze the
schedulability of both ordinary [9] and mixed-criticality [15]
real-time systems.

The function dbf(τi, `) denotes the maximum execution
demand of task τi during any time interval of length `,
where the demand is calculated by the cumulative execution
requirement of all jobs of τi that have both release times and
deadlines in that interval. Lemma 1 (from [9]) presents the
classical necessary and sufficient schedulability test for non-
mixed-criticality tasks with EDF.

Lemma 1. A constrained-deadline task set τ can be success-
fully scheduled by EDF on a uniprocessor, if and only if∑

τi∈τ
dbf(τi, `) ≤ `, ∀` ≥ 0.

Ekberg and Yi [15] proposed to analyze the DBF in
HI and LO modes separately, and derived a schedulability
test for mixed-criticality tasks. In our context, we further

5



Mode switch
From LO to HI

τ1

τ2

τ3

6 12 18 24 30 36 420

C1
HI

C2

C3

C1
LO

First idle time (but no
mode switch) 

dropped dropped dropped dropped

droppeddroppeddropped

T1, D1

T2, D2
D1

V

T3 D3

dropped dropped

Potential mode switch
From HI to LO 

Fig. 2: EDF-GVD scheduling of the task set provided in Example IV.1.

breakdown the consideration of the DBF function of a task
τi into the following four cases.
• dbfLO

LO(τi, `) — the demand bound of a LO-criticality task
τi in LO mode for any time interval of length `.

• dbfLO
HI (τi, `) — the demand bound of a HI-criticality task

τi in LO mode for any time interval of length `.
• dbfHI

LO(τi, `) — the demand bound of a LO-criticality task
τi in HI mode for any time interval of length `.

• dbfHI
HI(τi, `) — the demand bound of a HI-criticality task

τi in HI mode for any time interval of length `.
Carry-Over Job. A carry-over job is one that is released be-
fore the mode switch and has a deadline after the mode switch.
It is clear that carry-over jobs do not affect the calculation of
dbfLO

LO(τi, `) and dbfLO
HI (τi, `). Furthermore, according to EDF-

GVD, carry-over jobs of LO-criticality tasks will be dropped,
so they are not considered in the computation of dbfHI

LO(τi, `)
either. In the calculation of dbfHI

HI(τi, `), the demand of a carry-
over job can be considered as a special job that releases at the
time of mode switch and has an execution time equal to the
remaining execution requirement that has not been completed
before the mode switch.

As a result, Lemma 1 can be extended to the following
schedulability test in a straightforward way:

Theorem 1. A mixed-criticality system τ can be successfully
scheduled by EDF-GVD on a uniprocessor if both of the
following conditions hold.

(A):
∑
τi∈τLO

dbfLO
LO(τi, `) +

∑
τi∈τHI

dbfLO
HI (τi, `) ≤ `, ∀` ≥ 0.

(B):
∑
τi∈τLO

dbfHI
LO(τi, `) +

∑
τi∈τHI

dbfHI
HI(τi, `) ≤ `, ∀` ≥ 0.

To apply the above schedulability test, we only need to
compute the DBF with respect to each task.
Compute dbfLO

LO(τi, `) and dbfLO
HI (τi, `). In LO mode, the DBF

for both LO- and HI-criticality tasks is calculated as that for
traditional non-mixed-criticality tasks in [9]. That is,

∀τi ∈ τLO, dbfLO
LO(τi, `) =

(⌊
`−Di

Ti

⌋
+ 1

)
Ci,

∀τi ∈ τHI, dbfLO
HI (τi, `) =

(⌊
`−Dv

i

Ti

⌋
+ 1

)
CLO
i .

Compute dbfHI
LO(τi, `). Because the carry-over job of a LO-

criticaliy task will be dropped upon the mode switch to
HI mode, we only need to consider subsequent jobs that
are released after the mode switch. Let Numi(x) denote the
maximum number of jobs that are selected to execute, among
any x consecutive jobs of a LO-criticality task τi in HI mode.
The DBF of a LO-criticality task in HI mode can be computed
as:

∀τi ∈ τLO, dbfHI
LO(τi, `) = Ci · Numi

(⌊
`−Di

Ti

⌋
+ 1

)
. (4)

The following lemma shows how to derive Numi(x).

Lemma 2. ∀x ≥ 0,Numi(x) = dri · xe under the admission
control procedure described in Sec. III.

Proof. Let num(p, q) denote the number of jobs that are
admitted to execute among the pth to the qth jobs of τi after the
system switched to HI mode. By the admission control policy,
the number of jobs of τi that are admitted to execute among
the first x jobs is dri · xe. That is, num(1, x) = dri · xe. Next,
we only need to show that ∀y ≥ 1, num(y+1, y+x) ≤ dri ·xe.

In order to show that, we suppose the contrary that ∃y ≥ 1,
(y+1, y+x) ≥ dri ·xe+1, and derive a contradiction. Let the
(y + z)th job (2 ≤ z ≤ x) be the (dri · xe+ 1)th admitted job
among these x jobs, i.e., num(y+1, y+ z) = dri ·xe+1 and
num(y+1, y+ z− 1) = dri · xe. Moreover, by the admission
control policy, num(1, y) = dri · ye. Therefore,

num(1, y + z − 1) = num(1, y) + num(y + 1, y + z − 1)

= dri · ye+ dri · xe
≥ ri · (y + x)

≥ ri · (y + z).

Thus, by the admission control policy, the (y + z)th job
would not have been selected to execute, which contradicts the
definition of z that the (y+z)th job is admitted to execute.

Compute dbfHI
HI(τi, `). The DBF of a HI-criticality task in

HI mode can be computed in the similar way as in [15]. Let

6



full(τi, `) denote the demand of τi during any time interval
of length ` in HI mode, when counting CHI

i for all jobs of τi
including one potential carry-over job. Let done(τi, `) denote
the minimum amount of work of the carry-over job of τi that
must have finished in LO mode. Then, the DBF of a HI-
criticality task in HI mode can be computed by:

∀τi ∈ τHI, dbfHI
HI(τi, `) = full(τi, `)− done(τi, `). (5)

According to [15], full(τi, `) and done(τi, `) can be computed
as follows.

full(τi, `) =
(⌊

`− (Di −Dv
i )

Ti

⌋
+ 1

)
CHI
i , (6)

done(τi, `) =


max{0, CLO

i − ρ+Di −Dv
i }

if Di > ρ ≥ Di −Dv
i ,

0, otherwise;
(7)

where ρ = ` mod Ti.
Time Complexity of Schedulability Test. In Conditions (A)
and (B), it is stated that “∀`” needs to be assessed, which
implies an unbounded number of dbf computations of different
values of `. We next show that, in general, only a limited
number of ` values need to be considered, which yields a
schedulability test with pseudo-polynomial time complexity.

Lemma 3. Let c be a constant such that c < 1 and∑
τi∈τLO

(Ci/Ti) +
∑
τi∈τHI

(CLO
i /Ti) ≤ c. Then, Condition

(A) is true for ∀` ≥ 0, if it is true for all ` such that

` <
c

1− c
·max{ max

τi∈τLO
{Ti −Di}, max

τi∈τHI
{Ti −Dv

i }}.

Proof. Because in LO mode, both HI- and LO-criticality tasks
behave as conventional sporadic tasks, this lemma directly
follows from [9].

Lemma 4. Let c1 and c2 be two constants such that∑
τi∈τLO

(ri · Ci/Ti) ≤ c1,
∑
τi∈τHI

(CHI
i /Ti) ≤ c2, and

c1 + c2 < 1. Then, Condition (B) is true for ∀` ≥ 0, if it
is true for all ` such that

` <
c1 · max

τi∈τLO∧ri>0
{Ti−Di+

Ti

ri
}+ c2 · max

τi∈τHI
{Ti−Di+D

v
i }

1− c1 − c2
.

Proof. Let `0 denote the length of a time interval where
Condition (B) is not true. That is,∑

τi∈τLO

dbfHI
LO(τi, `0) +

∑
τi∈τHI

dbfHI
HI(τi, `0) > `0. (8)

By applying Eq. (4) and Lemma 2,∑
τi∈τLO

dbfHI
LO(τi, `0) =

∑
τi∈τLO∧ri>0

dbfHI
LO(τi, `0)

=
∑

τi∈τLO∧ri>0

(
Ci ·

⌈
ri ·
(⌊

`0 −Di

Ti

⌋
+ 1

)⌉)
<

∑
τi∈τLO∧ri>0

(
Ci ·

(
ri ·
(
`0 −Di

Ti
+ 1

)
+ 1

))
=

∑
τi∈τLO∧ri>0

(
ri ·

Ci
Ti
·
(
`0 + Ti −Di +

Ti
ri

))
≤

∑
τi∈τLO∧ri>0

(
ri ·

Ci
Ti

)
· (`0 + max

τi∈τLO∧ri>0
{Ti−Di+

Ti
ri
})

≤ c1 · (`0 + max
τi∈τLO∧ri>0

{Ti−Di+
Ti
ri
}). (9)

By applying Eqs. (5), (6), and (7),∑
τi∈τHI

dbfHI
LO(τi, `0) =

∑
τi∈τHI

(full(τi, `0)− done(τi, `0))

≤
∑
τi∈τHI

full(τi, `0)

=
∑
τi∈τHI

(⌊
`0 − (Di −Dv

i )

Ti

⌋
+ 1

)
CHI
i

≤
∑
τi∈τHI

(
`0 − (Di −Dv

i )

Ti
+ 1

)
CHI
i

=
∑
τi∈τHI

(
CHI
i

Ti
(`0 + Ti −Di +Dv

i )

)
≤
∑
τi∈τHI

(
CHI
i

Ti

)
· (`0 + max

τi∈τHI
{Ti−Di+D

v
i })

≤ c2 · (`0 + max
τi∈τHI

{Ti−Di+D
v
i }). (10)

By applying Eqs. (8), (9), and (10),

`0 <
c1 · max

τi∈τLO∧ri>0
{Ti−Di+

Ti

ri
}+c2 · max

τi∈τHI
{Ti−Di+D

v
i }

1− c1 − c2
.

Thus, the stated lemma follows.

V. MODE SWITCH IN BOTH DIRECTIONS

A key difference between traditional Vestal model and the
proposed MC model is the graceful degradation. Vestal model
drops all LO-criticality tasks under HI mode since it originally
stands from satisfy certification and system verification view
(or, at least is interpreted as so). It is extremely unlikely that
there will be a mode switch during run-time [2]. For this
reason, the mode switch part from HI mode to LO mode is
often skipped. However, in our model, the LO-WCET estima-
tions are no longer real WCET. Instead, they are optimistic
estimations and are designed to be violated from time to
time. Thus, certain level of service to LO-criticality tasks
are guaranteed, even when certain violations of estimations
occur. As a result, we believe that an MC scheduler with

7



graceful degradation should take HI-to-LO mode switch into
consideration.

As for the mode switch mechanism, we extend the existing
work on MC scheduling and propose a more realistic backward
mode switch behavior: Whenever some HI-criticality task
overruns, the system will switch to HI mode immediately. The
system is again switched back to LO-criticality mode when:
(i) the processor idles in HI-criticality mode, and (ii) the last
instance of each HI-criticality task is finished within its LO-
WCET, where all further LO-criticality releases are accepted
and all deadlines are met.

Remark 4. The proposed scheme guarantees that mode switch
will not occur very frequently under the assumption that
consecutive jobs of any task should very likely experience
either all LO-criticality or all HI-criticality behavior; i.e.,
either they all finish within CLO, or all require more than
that. When the assumption does not hold, we consider the
system unsuitable for our model and recommend the system
designers to re-evaluate the choice of CLO values. Neverthe-
less, under such extreme scenarios where the disadvantage of
our model is maximized, we still guarantee full correctness to
all HI-criticality tasks under all modes; i.e., our model (and
algorithm) extends the Vestal model (and EDF-VD for non-
graceful degradation) with no loss.

The idle time instant for a backward mode switch can be
mathematically bounded, however, we cannot predict whether
the last jobs of all HI-criticality tasks will be finished within
their LO-WCET. In this section, we show that an idle time
instant must appear after a bounded time duration in HI mode,
which probably can trigger the system to switch back to
LO mode if the last HI-criticality jobs are finished within
their LO-WCET. In particular, we provide two bounds on
time durations between: (1) the absolute deadline of the
latest HI-criticality job that overruns its LO-WCET in this
HI mode and the first idle time instant after that (L1); (2)
the latest instant that the system mode switched to HI and
the first idle time instant after that (L2). The first bound (L1)
applies to the scenarios where, after some HI-criticality jobs
overrun, remaining jobs execute for at most their LO-WCETs.
In contrast, the second bound (L2) applies to any scenario,
in particular when HI-criticality jobs frequently overrun their
LO-WCETs. Overall, the first idle time instant must occur by
the two bounds, whichever comes first. Intuitively, the first
bound is proposed to provide a guaranteed earlier idle time
instant when overrunning LO-WCET is a rare event. However,
as mentioned before, these bounds provide one precondition of
the backward mode switch while the other precondition (HI-
jobs finishing within their LO-WCET) is fully dependent on
the runtime behavior of the system.

In the following theorems, we suppose∑
τi∈τHI

CLO
i

Ti
+
∑
τi∈τLO

ri · Ci
Ti

≤
∑
τi∈τHI

CHI
i

Ti
+
∑
τi∈τLO

ri · Ci
Ti

< 1,

which is, in fact, required for our schedulability test.

Theorem 2. Let td denote the absolute deadline of the latest
HI-criticality job that overruns its LO-WCET in this HI mode.
Then, there must be an idle time instant at or before td+L1,
where

L1 =

∑
τi∈τHI

(2CLO
i ) +

∑
τi∈τLO

(Ci + 2ri · Ci)
1−

∑
τi∈τHI

(CLO
i /Ti)−

∑
τi∈τLO

(ri · Ci/Ti)
.

Proof. Suppose that the theorem is not true, i.e., [td, td+L1)
is a busy time interval. Then the total work done within
[td, td + L1) is L1. Note that the term work is different from
the term demand earlier in this paper by that work includes
all executions in this time interval regardless of the releases
and deadlines of the jobs of these executions.

Letting WHI and WLO denote the total work by HI- and LO-
criticality tasks in the time interval [td, td + L1), we have

WHI +WLO = L1. (11)

Because the tasks we are considering have constrained dead-
lines, the execution of each job must be within its own
period. Therefore, for each task τi, at most (bL1/Tic + 2)
jobs can potentially contribute to the work in the time interval
[ts, ts+L1), where at most bL1/Tic integral periods are in the
middle and at most one partial period on each side. The HI-
criticality jobs executed during the time interval [td, td + L1)
do not execute for their HI-WCET. So,

WHI ≤
∑
τi∈τHI

(⌊
L1

Ti

⌋
+ 2

)
CLO
i

≤
∑
τi∈τHI

(
L1

Ti
+ 2

)
CLO
i

= L1 ·
∑
τi∈τHI

CLO
i

Ti
+
∑
τi∈τHI

(2CLO
i ). (12)

For each LO-criticality tasks τi, by Lemma 2, at most
dri · (bL2/Tic+ 2)e jobs of (bL2/Tic+ 2) potential con-
tributing jobs can be selected to execute. Therefore,

WLO ≤
∑
τi∈τLO

⌈
ri ·
(⌊

L1

Ti

⌋
+ 2

)⌉
Ci

<
∑
τi∈τLO

(
ri ·
(⌊

L1

Ti

⌋
+ 2

)
+ 1

)
Ci

≤
∑
τi∈τLO

(
ri ·
(
L1

Ti
+ 2

)
+ 1

)
Ci

= L1 ·
∑
τi∈τLO

(
ri · Ci
Ti

)
+
∑
τi∈τLO

(Ci + 2ri · Ci). (13)

By applying Expressions (11), (12), and (13),

L1 ·
∑
τi∈τHI

CLO
i

Ti
+
∑
τi∈τHI

(2CLO
i ) + L1 ·

∑
τi∈τLO

(
ri · Ci
Ti

)
+∑

τi∈τLO

(Ci + 2ri · Ci) > L1.

8



That is,

L1 <

∑
τi∈τHI

(2CLO
i ) +

∑
τi∈τLO

(Ci + 2ri · Ci)
1−

∑
τi∈τHI

(CLO
i /Ti)−

∑
τi∈τLO

(ri · Ci/Ti)
,

which contradicts the definition of L1 in the theorem state-
ment. Thus, this theorem follows.

VI. EXPERIMENTAL STUDY

In this section, we present the experimental evaluation of
the performance of EDF-GVD compared to the existing state-
of-the-art algorithms. The baseline algorithms include: EDF-
VD [3] (no guarantee to LO tasks), EDF-VD with (m, k)
guarantee (the same guarantee to LO, under pessimistic density
based analysis) [3], and EDF-VD with shrunk CLO [25] (pro-
vides weaker guarantees to LO tasks). We compare with the
EDF-VD family due to its similarity, simplicity, and speedup-
optimality for uniprocessor MC task scheduling.

Workload generation. MC workload is generated with similar
approach to [15], based on the following parameters (here U
stands for uniform distribution):
• PHI = {0.05, 0.25, 0.5, 0, 75, 0.95}: An individual task’s

probability of being HI-criticality. The criticality level χi
is decided based on this parameter.

• CLO
i ∼ U [1, 10]: The values of CLO

i (and Ci) are uni-
formly generated from this range.

• RHI = {1, 2, 4, 8, 16}: It denotes the upper bound of the
ratio of CHI

i to CLO
i ; if χi = HI, then the value of CHI

i is
uniformly generated from the range [CLO

i , RHI · CLO
i ].

• Tmax = 200: The value of period Ti is uniformly
generated from the range [Ci(χi), Tmax].

• minDR ∼ U [0.1, 0.9]: This value sets the lower bound
of the ratio between deadlines and periods. After generat-
ing minDR uniformly from the given range, the deadline
is calculated by Di = α · Ti, where α is uniformly
generated from the range [minDR, 1].

To generate the tasks of each task set τ , we use a predeter-
mined value of target average utilization U∗. After generating
each task we calculate the average utilization UAVG(τ) for that
specific task set by taking the average of ULO and UHI. Our
goal is to get an average utilization near the value of U∗.
For this purpose, we find an average utilization with the value
in the range [U∗MIN, U

∗
MAX], where U∗MIN = U∗ − 0.005 and

U∗MAX = U∗ + 0.005.
We keep on adding the generated tasks to τ as long as

UAVG(τ) < U∗MIN. If at any point we get a UAVG(τ) that is
greater than U∗MAX, then we immediately discard the whole
task set and continue to make attempts. If UAVG(τ) is within
the range, then we have a candidate task set – it can still be
discarded if all the tasks of τ have the same criticality level,
ULO(τ) > 0.99, or UHI(τ) > 0.99.

As all other three algorithms target implicit-deadline MC
task models, hence for those algorithms, we use Ci/Di as the
utilization of task τi instead of Ci/Ti. Also, for EDF-VD with
shrunk CLO

i , as the requirement in HI mode for LO-criticality

(a) Implicit deadline.

Average utilization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc
ep
ta
n
ce

R
a
ti
o
%

0

20

40

60

80

100

(b) Constrained deadline with minDR = 0.5.
Fig. 3: Task set acceptance ratio under varying average uti-
lization (UAVG) settings (PHI = 0.5, RHI = 4).

TABLE III: Breakdown of virtual deadline selections, mode switch
upper bounds, and task set sizes (AR refers to Acceptance Ratio).

Utilization 0.4 0.5 0.6 0.7 0.8 0.9
AR (simple Dv) % 91.6 65.7 19.3 2.7 0.3 0.1

AR (full) % 99.3 86.2 44.9 7.1 0.7 0.3
Avg. L1/Tmax 0.45 0.61 0.78 0.77 0.69 0.39

Avg. size of task set 6.00 6.99 7.93 9.12 10.74 12.01

task is CLO
i ≥ CHI

i , we set CHI
i = ri · CLO

i . The results of our
experiments are presented in Fig. 3.

With increasing Average Utilization from 0.05 to 0.95 at a
step size of 0.05, we generate 1000 tasks for each case. The
acceptance ratios (i.e., fraction of schedulable task sets) of
each algorithm, for each case are reported in Fig. 3, where
Fig. 3(a) is for implicit-deadline task sets and Fig. 3(b) is for
constrained deadlines task sets.

Observation. For constrained-deadline tasks, Algorithm EDF-
GVD clearly outperforms the other algorithms, as they are
designed for implicit-deadline task scheduling. As overall
utilization is above 0.5, the proposed algorithm EDF-GVD
delivers better acceptance ratio than existing algorithms. Note
that another reason for existing method to perform poorly is
that they are not designed for graceful degradation: in order
existing unitization based schedulability test to be correct for
the new model, we have to replace periods with deadlines in
order to adapt, which involves additional pessimism.

For implicit-deadline task sets, EDF-GVD still performs
better than EDF-VD with the same guarantees. Note that the

9



outperforming two lines (black and green) make weaker/no
guarantee to LO tasks upon mode switch and thus their
acceptance ratio can be higher than EDF-GVD. The plots are a
measurement of how much schedulability is needed to sacrifice
in order to achieve higher guarantees for LO tasks.

We present the virtual deadline setting mechanism in Sec-
tion III. The first two rows of Table III report the percentage
of accepted task sets under each utilization setting – the first
row using the easy virtual deadline setting following Equation
(2) and the second row following the time-consuming binary
search given in Algorithm 2. It is clear that the simple heuristic
can only identify a small portion of all EDF-GVD schedulable
tasks, especially when utilization is high.

Section IV-C presents the bound for system to switch back
to LO mode (when idle occurs), which is reported in the middle
row of Table III. The last row of Table III demonstrates the
average size of (number of tasks in) a task set.

VII. RELATED WORKS

Since Vestal’s first proposal [32] of mixed-criticality task
scheduling problem, much work has been conduced to sched-
ule MC tasks efficiently in both uniprocessor and multipro-
cessor environments [13] [3] [30] [7] [8] [19] [6]. While
these algorithms provide guarantees for the completion of
HI-criticality tasks quite efficiently, they provide no service
guarantee to LO-criticality tasks upon a mode switch.

To overcome the above shortcomings and to provide a
minimum level of service to LO-criticality tasks several dif-
ferent approaches have been proposed over time. Baruah et
al. [27] demonstrated alternative models which allow LO tasks
to continue to execute even after a criticality mode change.
They consider assigning a lower priority level to the LO-
criticality tasks. However, this model does not provide a
minimum level of guarantee (i.e., all LO-criticality tasks can
still miss the deadlines). Santy et al. [29] proposed a different
approach where LO-criticality jobs get some service until the
HI-criticality jobs are guaranteed to have enough execution
time. Static analysis does not apply since the available slack
time cannot be calculated beforehand. Elastic task model
(also known as task stretching) has been used in several
works [31] [23], where LO-criticality jobs receive degraded
service with dynamically enlarging periods and deadlines.

In [16], Fleming and Burns introduced the notion of ‘im-
portance’, where they focused on maintaining the operation of
LO-criticality tasks under the HI-criticality mode by deciding
which tasks are suspended first.

While the aforementioned works focus on best-effort algo-
rithms, efforts are also conducted to provide some guarantee
for LO-criticality tasks under HI mode. Baruah, Burns, and
Guo [5] proposed a speedup-optimal scheduling algorithm
using the fluid-based technique where they provided a gen-
eralization to Vestal model. A degraded (but non-zero) level
of service is guaranteed under all non-erroneous behavior
of the system. Liu et al. [25] proposed an utilization-based
schedulability test under EDF-VD scheduling to guarantee
some service to LO-criticality tasks in HI-critical mode. In [20],

Guo et al. proposed a different approach where they incorpo-
rate failure probability information into the mixed criticality
task model and derived the corresponding EDF schedulability
analysis.

The concept of graceful degradation can be traced back to
the 1990’s. Hamdaoui and Ramanathan [21] propose (m, k)-
firm model for streams where at least m deadlines out of
consecutive k must be met. However, no scheduling guarantee
is provided. Later, Bernat et al. [10] introduced weakly-hard
real-time systems model which can tolerate a pre-defined
degree of missed deadlines with four constraints. Similarly,
Saha et al. [28] considered the scheduling of control systems
task with an expected asymptotic success rate. Getting et
al. [17] proposed an MC scheduling technique with grace-
ful degradation by incorporating weakly-hard constraints into
Adaptive Mixed Criticality (AMC) [4], where they considered
skipping s amount of jobs to ensure (m − s) out of m
deadlines. In [14], Chwa et al. explored the trade-off between
enlarging periods and consecutive task drops to guarantee
schedulability while maintaining stability in a cyber-physical
system. A new cyber-physical system task model is proposed,
but the mixed-critical tasks are not considered.

A dynamic approach is proposed by Gu and Easwaran [18]
for calculating a minimum guaranteed budget allocation for
LO-criticality tasks under HI-critical mode, by delaying the
mode-switch. In this model, LO-criticality budgets for individ-
ual HI-criticality applications are determined at runtime instead
of the one with static analysis.

Note that part of our proposed system model (under
HI mode) follows from the weakly-hard degradation model in
[10] (for non-MC systems), which dominates other graceful
degradation definitions such as the upper-bound-rate-based
and the m-out-of-any-k one.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of providing
service guarantee to LO-criticality tasks under HI mode for
uniprocessor MC scheduling (with two levels). Different from
prior work where such guarantee is interpreted as partially
executing every LO-criticality job, our work aims at fully
executing a subset of LO-criticality jobs. In this context,
we developed an admission control procedure, a virtual-
deadline based scheduling algorithm along with a DBF-based
schedulability test, and an analysis about switching back to
LO mode (from HI mode). Experimental results demonstrated
that our proposed techniques are able to effectively address
the problem.

This work proposed two approaches in the homothetic
computation of virtual deadlines. A better schedulability ratio
may be possible if such constraint is removed, at the cost
of significantly increasing the complexity and search space,
which is left as future work. The extension to include more
than two criticality levels may not be trivial: virtual deadline
settings for multiple criticality levels can be more challeng-
ing, while the carry-over workload calculation can be quite
complicated under back-and-forth mode switching.

10



ACKNOWLEDGEMENT

The authors are grateful to the input from Prof. Sanjoy
Baruah at Washington University at St Louis.

This work is partially supported by NSF grants (CNS-
1837472, CNS-1850851, CNS-1545050, and CCF-1725755).

REFERENCES

[1] S. Baruah. A scheduling model inspired by control theory. In Pro-
ceedings of the 6th International Real-Time Scheduling Open Problems
Seminar, 2015.

[2] S. Baruah. Mixed-criticality scheduling theory: Scope, promise, and
limitations. IEEE Design and Test, 35(2):31–37, 2018.

[3] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie. The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems. In Proceed-
ings of the 24th Euromicro Conference on Real-Time Systems, 2012.

[4] S. Baruah, A. Burns, and R. Davis. Response-time analysis for mixed
criticality systems. In Proceedings of the 32nd IEEE Real-Time Systems
Symposium, 2011.

[5] S. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems
to guarantee some service under all non-erroneous behaviors. In
Proceedings of the 28th Euromicro Conference on Real-Time Systems,
2016.

[6] S. Baruah, A. Easwaran, and Z. Guo. MC-Fluid: simplified and
optimally quantified. In Proceedings of the 36th IEEE Real-Time Systems
Symposium, 2015.

[7] S. Baruah and Z. Guo. Mixed-criticality scheduling upon varying-
speed processors. In Proceedings of the 34th IEEE Real-Time Systems
Symposium (RTSS’13), 2013.

[8] S. Baruah and Z. Guo. Scheduling mixed-criticality implicit-deadline
sporadic task systems upon a varying-speed processor. In Proceedings
of the 35th IEEE Real-Time Systems Symposium (RTSS’14), 2014.

[9] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Proceedings of the 11th IEEE
Real-Time Systems Symposium, 1990.

[10] G. Bernat, A. Burns, and A. Liamosi. Weakly hard real-time systems.
IEEE Transactions on Computers, 50(4):308–321, 2001.

[11] M. Branicky, S. Phillips, and W. Zhang. Scheduling and feedback co-
design for networked control systems. In Proceedings of the 41st IEEE
Conference on Decision and Control, 2002.

[12] A. Burns. How to gracefully degrade. Keynote given at Dagstuhl
Seminar 17131, 2017.

[13] A. Burns and R. Davis. Mixed-criticality systems: A review. Avaliable
at http://www-users.cs.york.ac.uk/burns/review.pdf, 2017.

[14] H. S. Chwa, K. G. Shin, and J. Lee. Closing the gap between stability
and schedulability: a new task model for Cyber-Physical Systems. In
Proceedings of the 24th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’18), 2018.

[15] P. Ekberg and W. Yi. Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems. Real-Time Systems, 50:48–86,
2014.

[16] T. Fleming and A. Burns. Incorporating the notion of importance into
mixed criticality systems. In Proceedings of the 2nd Workshop on Mixed
Criticality Systems, 2014.

[17] O. Gettings, S. Quinton, and R. I. Davis. Mixed criticality systems
with weakly-hard constraints. In Proceedings of the 23rd International
Conference on Real Time and Networks Systems, 2015.

[18] X. Gu and A. Easwaran. Dynamic budget management with service
guarantees for mixed-criticality systems. In Proceedings of the 37th
IEEE Real-Time Systems Symposium, 2016.

[19] Z. Guo and S. Baruah. The concurrent consideration of uncertainty
in WCETs and processor speeds in mixed-criticality systems. In
the 23rd International Conference on Real-Time and Network Systems
(RTNS’15), 2015.

[20] Z. Guo, L. Santinalli, and K. Yang. EDF schedulability analysis
on mixed-criticality systems with permitted failure probability. In
Proceedings of the 21st IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, 2015.

[21] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment
technique for streams with (m, k)-firm deadlines. IEEE Transactions
on Computers, 44(12):1443–1451, 1995.

[22] J. A. Hassan, M. Hassan, S. K. Das, and A. Ramer. Managing Quality
of Experience for wireless VOIP using noncooperative games. IEEE
Journal on Selected Areas in Communications, 30(7):1193–1204, 2012.

[23] M. Jan, L. Zaourar, and M. Pitel. Maximizing the execution rate of
low-criticality tasks in mixed criticality systems. In Proceedings of the
34th IEEE Real-Time Systems Symposium, 2013.

[24] H. Lin, M. Chatterjee, S. K. Das, and K. Basu. ARC: An integrated
admission and rate control framework for competitive wireless CDMA
data networks using noncooperative games. IEEE Transactions on
Mobile Computing, 4(3):243–258, 2005.

[25] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi.
EDF-VD scheduling of mixed-criticality systems with degraded quality
guarantees. In Proceedings of the 37th IEEE Real-Time Systems
Symposium, 2016.

[26] R. Majumdar, I. Saha, and M. Zamani. Performance-aware scheduler
synthesis for control systems. In Proceedings of the 9th ACM Interna-
tional Conference on Embedded Software, 2011.

[27] S. Baruah and A. Burns. Towards a more practical model for mixed
criticality systems. In Proceedings of the Workshop on Mixed-Criticality
Systems, 2014.

[28] I. Saha, S. Baruah, and R. Majumdar. Dynamic Scheduling for
Networked Control Systems. In Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, 2015.

[29] F. F. Santy, L. George, P. Thierry, and J. J. Goossens. Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP. In
Proceedings of the 24th Euromicro Conference on Real-Time Systems,
2012.

[30] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical
earliest deadline first. In Proceedings of the 25th Euromicro Conference
on Real-Time Systems, 2013.

[31] H. Su and D. Zhu. An elastic mixed-criticality task model and its
scheduling algorithm. In Proceedings of the Design, Automation & Test
in Europe Conference & Exhibition, 2013.

[32] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proceedings of the
28th IEEE Real-Time Systems Symposium, 2007.

11


