
TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 1

Towards Hard Real-Time and Energy-Efficient
Virtualization for Many-core Embedded Systems

Zhe Jiang, Kecheng Yang, Yunfeng Ma, Nathan Fisher, Neil Audsley, Zheng Dong§

Abstract—In safety-critical computing systems, the I/O virtualization must simultaneously satisfy different requirements, including
time-predictability, performance, and energy-efficiency. However, these requirements are challenging to achieve due to complex I/O
access path and resource management at the system level, lack of support from preemptive scheduling at I/O hardware level, and
missing an effective energy management method. In this paper, we propose a new framework, I/O-GUARD, which reconstructs the
system architecture of I/O virtualization, bringing a dedicated hardware hypervisor to handle resource management throughout the
system. The hypervisor improves system real-time performance by enabling preemptive scheduling in I/O virtualization with both
analytical and experimental real-time guarantees. Furthermore, we also present a dedicated energy management unit to adjust
I/O-GUARD’s dynamic energy using frequency scaling. Associated with that, a frequency identification algorithm is proposed to find the
appropriate executing frequency at run-time. As shown in experiments, I/O-GUARD simultaneously improves the predictability,
performance and energy-efficiency compared to the state-of-the-art I/O virtualization.

Index Terms—Real-time Systems, I/O Virtualization, Energy-Efficiency, Schedulability, Scalability, Hardware/Software Co-design.

✦

1 INTRODUCTION

Safety-critical systems have stringent assurance and ver-
ification requirements that are absolutely essential to
life-critical applications, including medical, automotive,
aerospace and industrial automation [1]–[3]. In safety-
critical systems, virtualization has gained increasing mo-
mentum, driven by the robust isolation between differ-
ent Virtual Machines (VMs) [4]. Such inter-VM isolation
prevents fault propagation between different VMs, which
satisfies the demands of both safety and security required
by safety-critical systems [1].

As a part of safety-critical systems, Input/Output (I/O) is
vital but has not been widely recognized [5], [6]. Specifically,
the I/O often interfaces with physical sensors and actuators
that need to either sense a potential hazard in time or make
a maneuver to avoid a dangerous scenario [7], [8]. Therefore,
it is important to assure that I/O operations behave correctly,
in a timely manner, and most importantly with secured band-
widths [8]. For instance, in an autonomous control system,
real-time decision making module and driving maneuver
control module usually require a series of I/Os to occur
timely and accurately during specified periods with guar-
anteed performance, for the detection of objects [8].

It is very difficult to guarantee predictability and per-
formance of I/O virtualization, especially for multi-/many-

• Zhe Jiang is with Computer Science Department, University of Cam-
bridge, United Kingdom, CB3 0FD.

• Kecheng Yang is with the Department of Computer Science, Texas State
University, San Marcos, TX 78666, United States.

• Yunfeng Ma is with Computer Science Department, University of York,
United Kingdom, YO10 5GH.

• Neil Audsley is with the Department of Computer Science, City, Univer-
sity of London, United Kingdom, EC1V 0HB.

• Zheng Dong and Nathan Fisher are with the Department of Computer
Science, Wayne State University, Detroit, MI, 48202, United States.

This work was supported in part by the U.S. National Science Foundation
under Grants CNS-2103604, CNS-2140346, CNS-2038609, IIS-1724227,
CCF-2118202 and CNS-2104181, in part by a start-up Grant from Wayne
State University, in part by start-up and REP grants from Texas State
University.

§. Corresponding author, dong@wayne.edu.

core architectures, such as Network-on-Chip (NoC). This is
because of the research challenges (C.x) listed below:
C.1: System level. Conventional I/O virtualization in-
volves complicated I/O access paths and resource manage-
ment [4], [8], [9], especially in multi-/many-core architec-
tures. For instance, to access an I/O device in a Network-
on-Chip-based many-core virtualized system, I/O opera-
tions must pass through the guest Operating System (OS),
virtual hardware, Virtual Machine Monitor (VMM), and ar-
biters/routers (shown in Fig. 1). Such complicated paths
introduce significant communication latency and timing
variance to I/O operations, compared to a legacy system
(which does not support any virtualization features). More-
over, along the access paths, potential resource contentions
occur at each system level, which involve additional re-
source management throughout the entire system. The extra
resource management elevates the difficulty of satisfying the
real-time requirements of I/O virtualization [4].
C.2: I/O hardware level. The implementation of traditional
I/O controllers relies on FIFO queues, which forbids context
switches at the hardware level [5]. Effective scheduling
methods, e.g., Preemptive Earliest-Deadline-First (P-EDF)
policy, cannot be applied to ensure system predictability [4]
by prioritizing I/O tasks according to their importance.
C.3: Energy-efficiency. Safety-critical systems are usually
implemented on embedded computing platforms, in which
the energy is usually constrained. A methodology presented
to solve the above challenges must be energy-efficient. Dif-
ferent from the processor and memory virtualization, an
effective energy management method of I/O virtualization
is still missing.
Contributions. We propose I/O-GUARD, a scalable and
energy-efficient system framework, guaranteeing the real-
time performance of multi/many-core NoC-based I/O vir-
tualization. To this end, we introduce a novel system archi-
tecture, including both a new hypervisor micro-architecture
and a two-layer scheduler, which simultaneously optimize
I/O access paths and resource management throughout the
system. Moreover, we present a dedicated energy manage-
ment unit to support run-time frequency scaling of the I/O

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 2

I/O
 M

an
ager

Virtual-to-Physical Translation

Interpose/Transform

I/O Scheduler

Device Driver

Virtual Machines

VMM

: Accessing Path

: Resource Contention & Scheduling

Physical Hardware

R

R R

R R

R

R

R

CC C

CC CC CC

I/O I/O I/O

R

C

R

C

User
Application

User
Application

I/O
 M

an
ager

Buffer Cache

I/O Scheduler

Device Driver

Emulated
I/O

Virtual Hardware

Guest O S

Physical Hardware

R

R R

R R

R

R

R

CC C

CC C CC

R

C

R

C

I/O-GUARD Hypervisor

IOIOIOIO IO

: Accessing Path

: Resource Contention & Scheduling

User
Application

User
Application

Guest O S

Virtual Machines

Guest
VM

Guest VM

Guest VM

User Application

FreeRTOS I/O Manager

OS Kernel I/O Drivers

OS

Processor Core I/O

KM

UM

User Application

High-Level I/O Drivers

Processor
Core

Virtualized I/O

KM

UM

OS Kernel

R
T

O
S_

W
ri

te
()

R
T

O
S_

R
ea

d
()

R
T

O
S_

C
lo

se
()

R
T

O
S_

O
p

en
()

R
T

O
S_

A
P

I(
)

R
T

O
S_

A
P

I(
)

R
T

O
S_

O
p

en
()

R
T

O
S_

C
lo

se
()

R
T

O
S_

R
ea

d
()

R
T

O
S_

W
ri

te
()

I/O-GUARD Hypervisor
Hardware
Software

Hardware
Software

M
C

addr

data

r/w PE

Width = 64 Bits
Admission control algorithm

...

...

...

Unused time period (shadow)
...

...

Communication I/F

Communication I/F

<Register>
Next_job

Global
Timer

Priority Queue (R-channel)

Executor (R-channel)

Time Slot Table (P-channel)

Memory Banks

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

I/O-Guard

Mulit-/Many-core System

Translator
(Virtual-Physical)

addr
data
r/w

Offline Pre-loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator

(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

OS

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

I/O-Guard

Mulit-/Many-core System

Time Slot Table
(Hyper-period)

j

i
j

i 1+
1+j

i

Free Time Slots

…

addr
data
r/w

Executor

ADU

Offline Pre-
loading

M
C

Global
Timer

R-Channel P-Channel

Response
Channel

Multi-/Many-Core System

Virtualization Driver

 I/O operat ion 1

s

 I/O operat ion 2

...

DiPi Ti CiDiPi Ti Ci
Read

I/O Job #1

#1: I/O operation 1

...

I/O Job #2

#2: I/O operation 1

...

I/O Job #1

#1: starting time 1

...

Executor

VM0VM0 VM1VM1

...

VMnVMn
Prior ity Queues

Width = 64 Bits

Memory Banks

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

I/O-Guard

Mulit-/Many-core System

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

I/O-Guard

Mulit-/Many-core System

I/O Job #2

...

Guest VM Guest VM Guest VM

Fig. 1. System architecture of conventional I/O virtualization
(R: router/arbiter; C: processor core).

virtualization, and a frequency identification algorithm to
find the appropriate run-time frequency. Corresponding to
the new system, we present a theoretical model and schedu-
lability analysis to demonstrate the improved schedulability
compared to conventional I/O virtualization. At last, we
examined I/O-GUARD using different metrics.
Paper organization. The rest of the paper is organized as
follows: Sec. 2 gives the overview of I/O-GUARD, followed
by the design details in Sec. 3 and Sec. 4. Sec. 5 presents the
theoretical model and optimization to select I/O-GUARD’s
configurations. Sec. 6 evaluates I/O-GUARD-MCS. Sec. 7
reviews the related work and Sec. 8 concludes.

2 I/O-GUARD: OVERVIEW

To ensure the real-time performance and energy-efficiency
of I/O virtualization, we present a new system framework,
I/O-GUARD, employing a hardware-implemented hypervisor
with a dedicated energy management unit. The hypervisor
realizes the majority of I/O virtualization and manages
resource contentions throughout the system. The energy
management unit adjusts I/O-GUARD’s dynamic energy
using run-time frequency scaling. Associated with the new
system framework, we present a frequency identification
algorithm and the analysis framework to find the optimized
configurations of the I/O-GUARD, further optimizing its
real-time performance and energy-efficiency.

2.1 Context
In this paper, we have the following assumptions: (i) the
proposed design and theoretical analysis only focus on I/O
virtualization; (ii) hardware platform is a predictability-
focused NoC. Although I/O-GUARD has been integrated
and evaluated with a NoC-based many-core system [10], in-
tegrating I/O-GUARD with other complex interconnects still
needs further investigation. (iii) I/O requests and responses
transmitted in the hardware are encapsulated as packets
using the communication protocol introduced in [10], where
the I/O requests and responses are transmitted using full-
duplex channels. Each transaction contains header and pay-
load packets. The header packet is used for handshake, and
the payload packet is used for data exchange.

2.2 Design Concepts.
The I/O-GUARD design has four Design Concepts (DC.x):

Guest VM Guest VM Guest VM

I/O
 M

an
ager

Virtual-to-Physical Translation

Interpose/Transform

I/O Scheduler

Device Driver

Virtual Machines

VMM

: Accessing Path

: Resource Contention & Scheduling

Physical Hardware

R

R R

R R

R

R

R

CC C

CC CC CC

I/O I/O I/O

R

C

R

C

User
Application

User
Application

I/O
 M

an
ager

Buffer Cache

I/O Scheduler

Device Driver

Emulated
I/O

Virtual Hardware

Guest O S

Physical Hardware

R

R R

R R

R

R

R

CC C

CC C CC

R

C

R

C

I/O-GUARD Hypervisor

IOIOIOIO IO

: Accessing Path

: Resource Contention & Scheduling

User
Application

User
Application

Guest O S

Virtual Machines

Guest
VM

Guest VM

Guest VM

User Application

FreeRTOS I/O Manager

OS Kernel I/O Drivers

OS

Processor Core I/O

KM

UM

User Application

High-Level I/O Drivers

Processor
Core

Virtualized I/O

KM

UM

OS Kernel

R
T

O
S_

W
ri

te
()

R
T

O
S_

R
ea

d
()

R
T

O
S_

C
lo

se
()

R
T

O
S_

O
p

en
()

R
T

O
S_

A
P

I(
)

R
T

O
S_

A
P

I(
)

R
T

O
S_

O
p

en
()

R
T

O
S_

C
lo

se
()

R
T

O
S_

R
ea

d
()

R
T

O
S_

W
ri

te
()

I/O-GUARD Hypervisor
Hardware
Software

Hardware
Software

M
C

addr

data

r/w PE

Width = 64 Bits
Admission control algorithm

...

...

...

Unused time period (shadow)
...

...

Communication I/F

Communication I/F

<Register>
Next_job

Global
Timer

Priority Queue (R-channel)

Executor (R-channel)

Time Slot Table (P-channel)

Memory Banks

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

I/O-Guard

Mulit-/Many-core System

Translator
(Virtual-Physical)

addr
data
r/w

Offline Pre-loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator

(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

OS

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

I/O-Guard

Mulit-/Many-core System

Time Slot Table
(Hyper-period)

j

i
j

i 1+
1+j

i

Free Time Slots

…

addr
data
r/w

Executor

ADU

Offline Pre-
loading

M
C

Global
Timer

R-Channel P-Channel

Response
Channel

Multi-/Many-Core System

Virtualization Driver

 I/O operat ion 1

 I/O operat ion 3

 I/O operat ion 2

...

DiPi Ti CiDiPi Ti Ci
Read

I/O Job #1

#1: I/O operation 1

...

I/O Job #2

#2: I/O operation 1

...

I/O Job #1

#1: starting time 1

...

Executor

VM0VM0 VM1VM1

...

VMnVMn
Prior ity Queues

Width = 64 Bits

Memory Banks

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

Hypervisor

Mulit-/Many-core System

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

Hypervisor

Mulit-/Many-core System

I/O Job #2

...

Fig. 2. System architecture of I/O-GUARD.

DC.1: New system architecture. I/O-GUARD presents a
novel system architecture, archiving the majority of I/O
virtualization via a hardware-implemented hypervisor and
allowing the applications (in VMs) to access I/Os directly
via the hypervisor without intervening other system com-
ponents. This new system architecture simplifies I/O access
paths and minimizes resource contentions/management
compared to conventional virtualization.
DC.2: New hypervisor micro-architecture. I/O-GUARD hy-
pervisor presents a new micro-architecture, enabling ran-
dom accesses of I/O operations and task prioritization at
hardware level. Based on the new micro-architecture, pre-
emptive scheduling methods are applied, guaranteeing real-
time performance of I/O virtualization.
DC.3: Run-time energy management. I/O-GUARD contains
a dedicated energy management unit, supporting online
dynamic frequency scaling to the hypervisor and the con-
trolled I/O devices.
DC.4: Energy-aware real-time scheduling. In light of
the new design, an energy-aware system model and the
associated schedulability analysis are presented to en-
sure I/O-GUARD’s predictability, performance, and energy-
efficiency, simultaneously.

2.3 System Architecture

The I/O-GUARD has architecture changes (Fig. 2) in both
hardware and software layers compared to the conventional
I/O virtualization (Fig. 1).
Hardware level. As described in DC.1, the majority of
virtualization in I/O-GUARD is achieved by its hypervisor.
Hence, in the hardware level, we physically connect the
hypervisor to the processors and I/Os. The I/O requests
sent from the processors are directly routed to the I/Os
via the hypervisor, without involving arbiters/routers. The
design details of the hypervisor are detailed in Sec.3.
Software level. With the hypervisor, we remove the VMM
(which manages I/O virtualization in the conventional ar-
chitecture) from the software level and directly execute the
Real-time Operating Systems (RTOSs) on the processors
with full privileges. The RTOSs provide a real-time envi-
ronment for applications that need timing guarantees. This
bare-metal virtualization avoids the frequent operating mode
switches found in the traditional virtualization (also known
as “trap into VMM” [11]), which hence enhances overall
system throughput.

In the RTOSs, we replace I/O manager by new high-
level I/O drivers. Fig. 3 illustrates the modifications, using
FreeRTOS as an example. Different from the legacy system
(Fig. 3(a)), user applications running in the VM access the
virtualized I/Os via the proposed I/O drivers (Fig. 3(b)),
reducing the involvement of OS kernel. The implementation
of I/O drivers is straightforward, as they only forward
the I/O requests to the hypervisor. This para-virtualization

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 3

Physical Hardware

R

R R

R R

R

R

R

CC C

CC CC CC

I/O I/O I/O

R

C

R

C

Physical Hardware

R

R R

R R

R

R

R

C C

C C C

I/O I/O I/O

R

C

Physical Hardware

R

R R

R R

R

R

R

CC C

CC C CC

R

C

R

C

I/O-GUARD Hypervisor

IOIOIOIO IO

: Accessing Path

: Resource Contention & Scheduling

User
Application

User
Application

Guest O S

Virtual Machines

Guest
VM

Guest VM

User Application

FreeRTOS I/O Manager

OS Kernel I/O Drivers

OS

Processor Core I/O

User
Mode

User Application

High-Level I/O Drivers

Processor
Core

Virtualized I/O

OS Kernel

R
T

O
S_

W
ri

te
()

R
T

O
S_

R
ea

d
()

R
T

O
S_

C
lo

se
()

R
T

O
S_

O
p

en
()

R
T

O
S_

A
P

I(
)

R
T

O
S_

A
P

I(
)

R
T

O
S_

O
p

en
()

R
T

O
S_

C
lo

se
()

R
T

O
S_

R
ea

d
()

R
T

O
S_

W
ri

te
()

I/O-GUARD Hypervisor
Hardware
Software

Hardware
Software

M
C

addr

data

r/w PE

Width = 64 Bits
Admission control algorithm

...

...

...

Unused time period (shadow)
...

...

Communication I/F

Communication I/F

<Register>
Next_job

Global
Timer

Priority Queue (R-channel)

Executor (R-channel)

Time Slot Table (P-channel)

Memory Banks

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

I/O-Guard

Mulit-/Many-core System

Translator
(Virtual-Physical)

addr
data
r/w

Offline Pre-loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator

(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

OS

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

I/O-Guard

Mulit-/Many-core System

Time Slot Table
(Hyper-period)

j

i
j

i 1+
1+j

i

Free Time Slots

…

addr
data
r/w

Executor

ADU

Offline Pre-
loading

M
C

Global
Timer

R-Channel P-Channel

Response
Channel

Multi-/Many-Core System

Virtualization Driver

 I/O operat ion 1

s

 I/O operat ion 2

...

DiPi Ti CiDiPi Ti Ci
Read

I/O Job #1

#1: I/O operation 1

...

I/O Job #2

#2: I/O operation 1

...

I/O Job #1

#1: starting time 1

...

Executor

VM0VM0 VM1VM1

...

VMnVMn
Prior ity Queues

Width = 64 Bits

Memory Banks

I/O Job #2

...

addr
data
r/w

Exec

Offline Pre-
loading

M
C

Global
Timer

R-Channel P-Channel

Response
Channel

Multi-/Many-Core System

Virtualization Driver

I/O Task #1 (τ1)

#1: I/O operation 1

...

I/O Task #2 (τ2)

#2: I/O operation 1

...

I/O Task #1 (τ1)

#1: starting time 1(τ1,1)

...

Width = 64 Bits

Memory Banks

I/O Task #2 (τ2)

...

I/O Pool: VM0

Ctrl

Reg_Shd

I/O Pool:
VM1

I/O Pool:
VM1

I/O Pool:
VMn

...

Time Slot Table
(Hyper-period)

Free Time Slots

 I/O operat ion 1

 I/O operat ion 3

 I/O operat ion 2

...

Fetch

Sched

Exec

Priority Queue

Sel

Virtualization
Manager

Virtualization
Driver 1

I/O Controller 1

Virtualization
Manager

I/O Controller 2

Virtualization
Manager

I/O Controller n

I/O-Guard Hypervisor

Mulit-/Many-core System

Virtualization
Driver 2

Virtualization
Driver 3

L-Sched

G-Sched

Reg_Shd Reg_Shd

Translator
(Virtual-Physical)

addr
data
r/w

Offline Pre-loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator
(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Translator
(Virtual-Physical)

addr
data
r/w

Offline Pre-loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator
(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

: Accessing Path

: Resource Contention & Scheduling
User

Application
User

Application

I/O
 M

an
ager

Buffer Cache

I/O Scheduler

Device Driver

Emulated
I/O

Virtual Hardware

Guest O S

Guest VM
User

Application
User

Application

I/O
 M

an
ager

Buffer Cache

I/O Scheduler

Device Driver

Emulated
I/O

Virtual Hardware

Guest O S

Guest VM

Guest VM Guest VM Guest VM

I/O
 M

an
ager

Virtual-to-Physical Translation

Interpose/Transform

I/O Scheduler

Device Driver

Virtual Machines

VMM

Guest VM Guest VM Guest VM

I/O
 M

an
ager

Virtual-to-Physical Translation

Interpose/Transform

I/O Scheduler

Device Driver

Virtual Machines

VMM

Ck DkTk

τx,j τx+1,j τx,j+1

Kernel
Mode

User
Mode
Kernel
Mode

(a) Legacy system

Physical Hardware

R

R R

R R

R

R

R

CC C

CC CC CC

I/O I/O I/O

R

C

R

C

Physical Hardware

R

R R

R R

R

R

R

C C

C C C

I/O I/O I/O

R

C

Physical Hardware

R

R R

R R

R

R

R

CC C

CC C CC

R

C

R

C

I/O-GUARD Hypervisor

IOIOIOIO IO

: Accessing Path

: Resource Contention & Scheduling

User
Application

User
Application

Guest O S

Virtual Machines

Guest
VM

Guest VM

User Application

FreeRTOS I/O Manager

OS Kernel I/O Drivers

OS

Processor Core I/O

User
Mode

User Application

High-Level I/O Drivers

Processor
Core

Virtualized I/O

OS Kernel

R
T

O
S_

W
ri

te
()

R
T

O
S_

R
ea

d
()

R
T

O
S_

C
lo

se
()

R
T

O
S_

O
p

en
()

R
T

O
S_

A
P

I(
)

R
T

O
S_

A
P

I(
)

R
T

O
S_

O
p

en
()

R
T

O
S_

C
lo

se
()

R
T

O
S_

R
ea

d
()

R
T

O
S_

W
ri

te
()

I/O-GUARD Hypervisor
Hardware
Software

Hardware
Software

M
C

addr

data

r/w PE

Width = 64 Bits
Admission control algorithm

...

...

...

Unused time period (shadow)
...

...

Communication I/F

Communication I/F

<Register>
Next_job

Global
Timer

Priority Queue (R-channel)

Executor (R-channel)

Time Slot Table (P-channel)

Memory Banks

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

I/O-Guard

Mulit-/Many-core System

Translator
(Virtual-Physical)

addr
data
r/w

Offline Pre-loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator

(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

OS

Virtualization
Manager

I/O Driver 1

I/O Controller 1

Virtualization
Manager

I/O Driver 2

I/O Controller 2

Virtualization
Manager

I/O Driver n

I/O Controller n

I/O-Guard

Mulit-/Many-core System

Time Slot Table
(Hyper-period)

j

i
j

i 1+
1+j

i

Free Time Slots

…

addr
data
r/w

Executor

ADU

Offline Pre-
loading

M
C

Global
Timer

R-Channel P-Channel

Response
Channel

Multi-/Many-Core System

Virtualization Driver

 I/O operat ion 1

s

 I/O operat ion 2

...

DiPi Ti CiDiPi Ti Ci
Read

I/O Job #1

#1: I/O operation 1

...

I/O Job #2

#2: I/O operation 1

...

I/O Job #1

#1: starting time 1

...

Executor

VM0VM0 VM1VM1

...

VMnVMn
Prior ity Queues

Width = 64 Bits

Memory Banks

I/O Job #2

...

addr
data
r/w

Exec

Offline Pre-
loading

M
C

Global
Timer

R-Channel P-Channel

Response
Channel

Multi-/Many-Core System

Virtualization Driver

I/O Task #1 (τ1)

#1: I/O operation 1

...

I/O Task #2 (τ2)

#2: I/O operation 1

...

I/O Task #1 (τ1)

#1: starting time 1(τ1,1)

...

Width = 64 Bits

Memory Banks

I/O Task #2 (τ2)

...

I/O Pool: VM0

Ctrl

Reg_Shd

I/O Pool:
VM1

I/O Pool:
VM1

I/O Pool:
VMn

...

Time Slot Table
(Hyper-period)

Free Time Slots

 I/O operat ion 1

 I/O operat ion 3

 I/O operat ion 2

...

Fetch

Sched

Exec

Priority Queue

Sel

Virtualization
Manager

Virtualization
Driver 1

I/O Controller 1

Virtualization
Manager

I/O Controller 2

Virtualization
Manager

I/O Controller n

I/O-Guard Hypervisor

Mulit-/Many-core System

Virtualization
Driver 2

Virtualization
Driver 3

L-Sched

G-Sched

Reg_Shd Reg_Shd

Translator
(Virtual-Physical)

addr
data
r/w

Offline Pre-loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator
(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Translator
(Virtual-Physical)

addr
data
r/w

Offline Pre-loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator
(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

: Accessing Path

: Resource Contention & Scheduling
User

Application
User

Application

I/O
 M

an
ager

Buffer Cache

I/O Scheduler

Device Driver

Emulated
I/O

Virtual Hardware

Guest O S

Guest VM
User

Application
User

Application

I/O
 M

an
ager

Buffer Cache

I/O Scheduler

Device Driver

Emulated
I/O

Virtual Hardware

Guest O S

Guest VM

Guest VM Guest VM Guest VM

I/O
 M

an
ager

Virtual-to-Physical Translation

Interpose/Transform

I/O Scheduler

Device Driver

Virtual Machines

VMM

Guest VM Guest VM Guest VM

I/O
 M

an
ager

Virtual-to-Physical Translation

Interpose/Transform

I/O Scheduler

Device Driver

Virtual Machines

VMM

Ck DkTk

τx,j τx+1,j τx,j+1

Kernel
Mode

User
Mode
Kernel
Mode

(b) I/O-GUARD

Fig. 3. RTOSs in legacy system and I/O-GUARD.

simplifies the OS kernel by eliminating the (computational
and software) overhead caused by the I/O management in
the conventional virtualization (evaluated in Sec.6.1).

2.4 Compatibility

Software applications. Although I/O-GUARD introduces
a new software structure and modifies the OS kernels,
the design remains the original OS-application interfaces
presented by the legacy systems, allowing the software
applications to use the same system calls to access the I/Os.
Therefore, user applications designed for legacy systems
or conventional virtualization can be mapped to the I/O-
GUARD directly.
Other virtualization types. As stated in Sec. 2.1, I/O-
GUARD only supports I/O virtualization. To enable other
types of virtualization, e.g., memory virtualization, the cor-
responding (software or hardware) hypervisor is required.
The straightforward solution of integrating I/O-GUARD in
a mature hypervisor is replacing the hypervisors’ I/O man-
agement modules using the high-level drivers presented by
I/O-GUARD (same as the example given by Fig. 3).
2.5 Programming Model and Working procedure

In real-time systems, I/O tasks are released by the soft-
ware tasks, and an I/O task usually contains multiple I/O
operations. Typically, I/O tasks are classified into periodic
and sporadic tasks. The periodic I/O tasks are released
with fixed time intervals by the software tasks, usually
determined before system execution and hence also termed
pre-defined I/O tasks. Differently, the sporadic I/O tasks are
triggered by run-time events, often generated during system
execution and hence also termed run-time I/O tasks.

To ensure the real-time predictability for both categories
of I/O tasks, I/O-GUARD loads the pre-defined tasks into
the hypervisor with their corresponding start times at ini-
tialization,e.g., during firmware boot, using the configura-
tion interfaces. During system execution, the software tasks
are not required to release the pre-defined tasks and the
hypervisor can directly run these tasks at the specified times
(synchronized with the software tasks), guaranteeing the
pre-defined tasks’ predictability and performance. At the
same time, the run-time tasks can be sent to the hypervisor
using the execution interfaces (i.e., the high-level I/O drivers
illustrated in Fig. 3(b), and the hypervisor then schedules
and executes the sporadic tasks when the periodic tasks are
not occupying the I/O.

As introduced, the design of I/O-GUARD relies on its hy-
pervisor. The hypervisor is designed from two dimensions
to ensure the system’s real-time performance and energy-
efficiency, respectively. In the following sections, we de-
scribe the real-time features (in Sec. 3) and energy-efficient
features (in Sec. 4) of I/O-GUARD hypervisor, respectively.

DMA

addr
data
r/w

Exec

Offline Pre-
loading

M
C

Global
Timer

R-Channel P-Channel

Response
Channel

Multi-/Many-Core System

Virtualization Driver

I/O Task #1 (τ1)

#1: I/O operation 1

...

I/O Task #2 (τ2)

#2: I/O operation 1

...

I/O Task #1 (τ1)

#1: starting time 1(τ1,1)

...

Width = 64 Bits

Memory Banks

I/O Task #2 (τ2)

...

I/O Pool: VM0

Ctrl

Reg_Shd

I/O Pool:
VM1

I/O Pool:
VMn

...

Time Slot Table σ*
(Hyper-period)

Free Time Slots

Exec

Sel

L-Sched

G-Sched

Reg_Shd Reg_Shd

addr
data
r/w

Offline Pre-
loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator
(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

τx,j τx+1,j τx,j+1

Translator
(Virtual-Physical)

R-
Channel

P-
Channel

Sel

Multi-/Many-Core Systems

I/O-Guard Hypervisor

clk_
compute

FSU
_#1

FSU
_#2

FSU
_#n

clk_IO

V_MGR

V_DVR

I/O Device
#1

V_MGR

V_DVR

I/O Device
#2

V_MGR

V_DVR

I/O Device
#n

clk_IO
_#1

clk_IO
_#2

clk_IO
_#n

VEMU

Data Path

Clock

Memory Bank: shadow time slot (parameters)

M
C

addr

data

r/w Light-
Weight

PE

C
o

m
m

s I/F

C
o

m
m

s I/F

Offline pre-loading pre-
defined tasks’ parameters

Fractional
Freq_Div

Addr

0x00

0x04

0x08

0x0C

0x10

...

Task ID
(k)

1

2

3

4

5

...

Period
(Tk)

T1

T2

T3

T4

T5

...

Duration at
F (Ck)

C1

C2

C3

C4

C5

...

Deadline
(Dk)

D1

D2

D3

D4

D5

...

clk_IO (FCLK_IO)
clk_IO_#x

(FCLK_IO ÷ ρq)

ρq
Online run-time
tasks’ parameters

Scratch Pad:
Run-time Task

(8 KB)

Virtualization
Manager

Shadow Time
Slot Table ALU

PE-Controller
Complete == ``1’’ or ``0’’

ρq

3/2, 4/2, 5/2, ...

Fractio
n

al Fre
q

_D
iv

Round-Robin

Scratch Pad:
Temporary Data

(8 KB)

Data Path Control Path

Light-weight PE

Register: ρq
Register: Int/Frac

ρq

ρq (Numerator)

Integer
Frequency

Divider

ρq (Numerator)
>>1

#_registers

`0'

Divde_ratio

clk_IO

clk_IO_#x

Data Path Control Path Clock

Clock Delay Module

Complete == ``1’’ or ``0’’

Fig. 4. Micro-architecture of virtualization manager
(MC: memory controller; dash lines: optional modules).

3 I/O-GUARD: REAL-TIME FEATURES

The design of the I/O-GUARD hypervisor mainly contains
the virtualization manager and virtualization driver, man-
aging the resource contentions and realizing the hardware-
level I/O virtualization:

• Virtualization manager – takes charge of the resource
management, which decides the execution order of
I/O tasks. The design of the virtualization manager is
generic to all I/Os.

• Virtualization driver – encapsulates low-level drivers
of I/O virtualization, including the instruction/data
translation and the I/O control. The design of the I/O
driver is specific to the type of connected I/O.

The virtualization manager and driver are associated
with each I/O device. Hence, to support a new I/O device in
I/O-GUARD, the corresponding virtualization manager and
driver are required to be added. We now detail the design
of these two modules below.

3.1 Virtualization manager

The design of the virtualization manager (Fig. 4) contains
two request channels and one response channel. The request
channels are respectively designed for pre-defined and run-
time I/O tasks, named Pre-defined I/O task channel (P-channel)
and Run-time I/O task channel (R-channel); and the response
channel was designed for I/O responses. We now describe
the design of the two channels.

3.1.1 P-channel

The design of the P-channel contains a memory controller,
memory banks and an executor. The memory banks store
the pre-defined I/O tasks and the corresponding timing
information (e.g., the starting time points and the worst-case
computation time, etc.), which are loaded during system
initialization. We further group this timing information in
a look-up table (called Time Slot Table σ∗) to record the
run-time behaviors of the pre-loaded I/O tasks in each
hyper-period. Note that, in the time slot table, I/O tasks’
WCET is accounted for in terms of time slots. During system
execution, the executor synchronizes with a global timer and
then compares the synchronized results with the time slot
table. Once the system executes at a starting time point of
a pre-loaded I/O task, the executor loads this task to the
connected virtualization driver for execution.

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 4

DMA

addr
data
r/w

Exec

Offline Pre-
loading

M
C

Global
Timer

R-Channel P-Channel

Response
Channel

Multi-/Many-Core System

Virtualization Driver

I/O Task #1 (τ1)

#1: I/O operation 1

...

I/O Task #2 (τ2)

#2: I/O operation 1

...

I/O Task #1 (τ1)

#1: starting time 1(τ1,1)

...

Width = 64 Bits

Memory Banks

I/O Task #2 (τ2)

...

I/O Pool: VM0

Ctrl

Reg_Shd

I/O Pool:
VM1

I/O Pool:
VMn

...

Time Slot Table σ*
(Hyper-period)

Free Time Slots

Exec

Sel

L-Sched

G-Sched

Reg_Shd Reg_Shd

addr
data
r/w

Offline Pre-
loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator
(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

τx,j τx+1,j τx,j+1

Translator
(Virtual-Physical)

R-
Channel

P-
Channel

Sel

Multi-/Many-Core Systems

I/O-Guard Hypervisor

clk_
compute

FSU
_#1

FSU
_#2

FSU
_#n

clk_IO

V_MGR

V_DVR

I/O Device
#1

V_MGR

V_DVR

I/O Device
#2

V_MGR

V_DVR

I/O Device
#n

clk_IO
_#1

clk_IO
_#2

clk_IO
_#n

VEMU

Data Path

Clock

Memory Bank: shadow time slot (parameters)

M
C

addr

data

r/w Light-
Weight

PE

C
o

m
m

s I/F

C
o

m
m

s I/F

Offline pre-loading pre-
defined tasks’ parameters

Fractional
Freq_Div

Addr

0x00

0x04

0x08

0x0C

0x10

...

Task ID
(k)

1

2

3

4

5

...

Period
(Tk)

T1

T2

T3

T4

T5

...

Duration at
F (Ck)

C1

C2

C3

C4

C5

...

Deadline
(Dk)

D1

D2

D3

D4

D5

...

clk_IO (FCLK_IO)
clk_IO_#x

(FCLK_IO ÷ ρq)

ρq
Online run-time
tasks’ parameters

Scratch Pad:
Run-time Task

(8 KB)

Virtualization
Manager

Shadow Time
Slot Table ALU

PE-Controller
Complete == ``1’’ or ``0’’

ρq

3/2, 4/2, 5/2, ...

Fractio
n

al Fre
q

_D
iv

Round-Robin

Scratch Pad:
Temporary Data

(8 KB)

Data Path Control Path

Light-weight PE

Register: ρq
Register: Int/Frac

ρq

ρq (Numerator)

Integer
Frequency

Divider

ρq (Numerator)
>>1

#_registers

`0'

Divde_ratio

clk_IO

clk_IO_#x

Data Path Control Path Clock

Clock Delay Module

Complete == ``1’’ or ``0’’

Core

Core

Core

Header

...

W_Ctrl

[R]Header.V

[W]Header

[W]Payload

W_Ctrl

[R]Header.V

[W]Header

[W]Payload

W_Ctrl

[R]Header.V

[W]Header

[W]Payload

Queue_Bank – Configurable Size

[7:0]

ADDR

ADDR

...

0x02

Payload – Configurable Depth

0x01

0xFF

0x03

L-Sched
Task_ID

Bank_Cell

R_Ctrl

[R]Addr

[W]Header.V

V
irtu

alizatio
n

 D
river

[R
]P

aylo
ad

32 31 24

V Deadline (8 bits)

16

Duration (8 bits)

23 15 8

Period (8 bits)

0

ID (8 bits)

732 31 24

V Deadline (8 bits)

16

Duration (8 bits)

23 15 8

Period (8 bits)

0

ID (8 bits)

7

Fig. 5. Micro-architecture of a priority queue (W: write; R: read; W Ctrl:
write controller; R Ctrl: read controller; V: Validness).

3.1.2 R-channel
The design of the R-channel contains a group of I/O pools,
a two-layer scheduler which contains a local scheduler (L-
Sched) for scheduling run-time tasks in each VM and a
global scheduler (G-Sched) for allocating free time slots for
all VMs, and an executor for tasks’ execution. The design
of the schedulers is agnostic to scheduling methods. Specif-
ically, we use the preemptive EDF policy as the scheduling
algorithm for both local and the global schedulers, since it
is optimal for uni-processor scheduling. Theoretical results
from the two-layer scheduler’s real-time performance are
discussed in Sec.5.

An I/O pool is associated with a VM, which buffers
and prioritizes the run-time I/O tasks generated by the VM,
selecting the I/O tasks with the highest priority.1 The design
of an I/O pool contains a priority queue, a control logic, a
shadow register, and an L-Sched. The priority queue buffers
the I/O requests sent from the associated VM. During exe-
cution, the L-Sched keeps checking the status of the tasks,
finding the task with the earliest deadline, and mapping
the first operation of this I/O task to a shadow register. A
G-Sched physically connects to the shadow registers in all
I/O pools and the memory banks in the P-channel. It si-
multaneously compares the deadlines of the I/O operations
buffered in the shadow registers and checks free time slots in
the time slot table, deciding the next task to be executed and
the starting time point. The executor runs the I/O operation
selected by the G-Sched, using the virtualization driver, and
removes it from the priority queue.
Priority queue. Unlike the conventional FIFO queues, the
priority queue has a more complicated structure, enabling
random access. The design of the priority queue comprises
a queue bank and multiple queue controllers (see Fig. 5).

A bank cell is the essential element of a queue bank, with
a unique address starting from 0x01.2 The bank cell design
has two parts: a payload FIFO and a cell header. The payload
FIFO stores the transferred content (e.g., I/O operations),
and the cell header stores the parameters associated to the
I/O tasks, including task ID (bits 0 - 7), period (bits 8 - 15),
duration (bits 16 - 23) and deadline (bits 24 - 31). In addition,
we use the cell header’s highest bit (bit 32) to indicate the
validity of this bank cell. The depth of a payload FIFO is
configurable, providing flexibility for customization.

We also use write/read controllers to store/fetch the
content in the queue bank. A write/read controller contains
two interfaces connected to the cell headers and payload
FIFOs, respectively. In the storing procedure, the write con-
troller first reads the cells’ headers to check the cell validity
(i.e., header.bit[32]). If the controller finds an unused bank

1. Partitioning of I/O pools is required, as it ensures inter-VM isola-
tion at hardware I/O level.

2. We use the address 0x00, which indicates an invalid address.

addr
data
r/w

Exec

Offline Pre-
loading

M
C

Global
Timer

R-Channel P-Channel

Response
Channel

Multi-/Many-Core System

Virtualization Driver

I/O Task #1 (τ1)

#1: I/O operation 1

...

I/O Task #2 (τ2)

#2: I/O operation 1

...

I/O Task #1 (τ1)

#1: starting time 1(τ1,1)

...

Width = 64 Bits

Memory Banks

I/O Task #2 (τ2)

...

I/O Pool: VM0

Ctrl

Reg_Shd

I/O Pool:
VM1

I/O Pool:
VM1

I/O Pool:
VMn

...

Time Slot Table σ*
(Hyper-period)

Free Time Slots

 I/O operat ion 1

 I/O operat ion 3

 I/O operat ion 2

.. .

Ctrl

Sched

Exec

Priority Queue

Sel

L-Sched

G-Sched

Reg_Shd Reg_Shd

addr
data
r/w

Offline Pre-
loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator
(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Ck DkTk

τx,j τx+1,j τx,j+1

Translator
(Virtual-Physical)

R-
Channel

P-
Channel

Sel

Fig. 6. Micro-architecture of virtualization driver.

cell (i.e., header.bit[32] == 0), it sets the cell header.bit[32] to 1
and then starts to push the transfer content to the payload
FIFO. In the fetching procedure, the read controller pulls the
content from a payload FIFO using its address, and then
writes the cell’s header.bit[32] to 0. As introduced above, the
the I/O pool relies on the L-Sched and G-Sched to prioritize
the tasks, scheduling the tasks using their IDs. Hence, we
present a combinational logic circuit connecting the read
controller and the queue bank to convert the IDs into the
address of a specific bank cell in a fixed single clock cycle.

3.1.3 Response channel
In coping with the NoC interconnect [10] used in I/O-
GUARD (Sec. 2.1), the I/O responses can be directly sent
back to the processors’ communication buffers or the shared
memory. We proposed three design options for the response
channel: (i) pass-through design, where the I/O responses
are sent to the processors directly without buffering; (ii)
priority queue based design, where the I/O responses are
buffered in a priority queue and sent to the processor’s
communication buffers based on their priorities; (iii) DMA
based design, where the I/O responses are sent to the shared
memory using a DMA.
Option (i) is designed for low-speed I/Os, e.g., UART and
I2C transmitters. The low-speed I/Os’ are usually hundreds
of times slower than the processors; hence the response
channel is unlikely blocked during normal execution. When
resource contentions occur in the pass-through design, con-
tention management entirely relies on the routers of the
NoC. Option (ii) is designed for high-speed I/Os, e.g.,
FlexRay transmitters, where the priority queues can buffer
and prioritize the blocked I/O responses. Option (iii) is
designed for the I/Os required to transmit a large amount of
data, e.g., Ethernet transmitters, allowing the I/Os to send
the data directly to the shared memory.

3.2 Virtualization Driver
The design of the virtualization driver contains a pair of
open-source real-time translators [9], a standardized I/O
controller, and memory banks (see Fig. 6). The translators
are allocated in the request path and the response path,
taking charge of the translation of I/O requests and the
responding data, respectively. As evidenced in [9], the trans-
lator can bound the worst-case time consumption of each
translation. During system execution, after receiving an I/O
operation from the virtualization manager, the translator
(in the request path) firstly translates the I/O operation to
bottom-level I/O instructions and then executes them on
the I/O controller. Finally, the I/O controller operates the
connected I/O device by using the corresponding commu-
nication protocol (e.g., SPI, I2C). The drivers of the I/O
controller are stored in dedicated memory banks during
system initialization.

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 5

addr
data
r/w

Exec

Offline Pre-
loading

M
C

Global
Timer

R-Channel P-Channel

Response
Channel

Multi-/Many-Core System

Virtualization Driver

I/O Task #1 (τ1)

#1: I/O operation 1

...

I/O Task #2 (τ2)

#2: I/O operation 1

...

I/O Task #1 (τ1)

#1: starting time 1(τ1,1)

...

Width = 64 Bits

Memory Banks

I/O Task #2 (τ2)

...

I/O Pool: VM0

Ctrl

Reg_Shd

I/O Pool:
VM1

I/O Pool:
VMn

...

Time Slot Table σ*
(Hyper-period)

Free Time Slots

 I/O operat ion 1

 I/O operat ion 3

 I/O operat ion 2

...

Ctrl

Sched

Exec

Priority Queue

Sel

L-Sched

G-Sched

Reg_Shd Reg_Shd

addr
data
r/w

Offline Pre-
loading

M
C

Standardized I/O
controller

Virtualization Manager

I/O Device

Translator
(Physical-Virtual)

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Width = 64 Bits

Memory Bank: I/O Drivers

I/O Operation #Open

Offset# Value

I/O Operation #Close

Offset# Value

I/O Operation #Read

Offset# Value

...

Ck DkTk

τx,j τx+1,j τx,j+1

Translator
(Virtual-Physical)

R-
Channel

P-
Channel

Sel

Multi-/Many-Core Systems

I/O-Guard Hypervisor

clk_
compute

FSU
_#1

FSU
_#2

FSU
_#n

clk_IO

V_MGR

V_DVR

I/O Device
#1

V_MGR

V_DVR

I/O Device
#2

V_MGR

V_DVR

I/O Device
#n

clk_IO
_#1

clk_IO
_#2

clk_IO
_#n

VEMU

Data Path

Clock

Memory Bank: shadow time slot (parameters)

M
C

addr

data

r/w

PE

C
om

m
s I/F

C
om

m
s I/F

Offline pre-loading pre-
defined tasks’ parameters

Fractional
Freq_Div

Addr

0x00

0x04

0x08

0x0C

0x10

...

Task ID
(k)

1

2

3

4

5

...

Period
(Tk)

T1

T2

T3

T4

T5

.. .

Duration at
F (Ck)

C1

C2

C3

C4

C5

.. .

Deadline
(Dk)

D1

D2

D3

D4

D5

.. .

clk_IO (FCLK_IO)
clk_IO_#x

(FCLK_IO ÷ ρq)

ρq
Online run-time
tasks’ parameters

Scratch Pad:
Run-time Task

(8 KB)

Virtualization
Manager

Shadow Time
Slot Table

ALU

PE-Controller
Complete == ``1’’ or ``0’’

ρq

3/2, 4/2, 5/2, ...

Fractio
n

a
l Freq

_
D

iv

Round-Robin

Scratch Pad:
Temporary Data

(8 KB)

Data Path Control Path

Light-weight PE

Register: ρq
Register: Int/Frac

ρq

ρq (Numerator)

Integer
Frequency

Divider

ρq (Numerator)
>>1

#_registers

`0'

Divde_ratio

clk_IO

clk_IO_#x

Data Path Control Path Clock

Clock Delay Module

Complete == ``1’’ or ``0’’

Fig. 7. Top-level energy management framework
(V MRG: virtualization manager; V DVR: virtualization driver).

I/O-GUARD hypervisor involves additional hardware
implementation compared to a conventional virtualization,
potentially increasing overall energy consumption. To miti-
gate this issue, we introduce the energy-efficient features of
the I/O-GUARD hypervisor in the next sections.

4 I/O-GUARD: ENERGY-EFFICIENT FEATURES

To ensure the I/O-GUARD’s energy-efficiency, we first
present the dynamic energy model and then introduce the
energy management framework used by I/O-GUARD.

4.1 Dynamic Energy Model
As identified by the best-known power model, a hardware
element simultaneously consumes both static and dynamic
power [12]–[14]. The static power is consumed by leakage
current and the dynamic power is generated by run-time
activities. The dynamic power (P (q)) of an element at time
slot q is calculated using Eq. (1):

P (q) = αq · β · V 2
q · fq (1)

In the equation, fq and Vq are the element’s executing
frequency and supply voltage. β indicates the element’s
load capacitance, which is dependent on its physical imple-
mentation [13], [15]. For the same element, the β is usually
constant at all time slots. αq stands for the element’s switch-
ing activities, determined by the element’s run-time status.
From the system-level perspective, an element’s run-time
statuses can be simplified into two categories: executing sta-
tus (EX, for short) and non-executing status (N-EX, for short).
We denote the element’s run-time status at q as Sq , where
Sq ∈ {EX, N-EX}. While executing at EX, the element usually
involves more switch activities compared to executing at
N-EX, i.e., αEX > αN-EX.3 For an I/O system, αN-EX is linear
increasing with αEX [16], [17]; hence, αN-EX is presented as
γ ·αEX (γ < 1), where γ denotes the percentage of switching
activities when the I/O device stays at N-EX compared to at
EX. The value of γ is varied with the types of I/O devices
and specific use cases [18].

Therefore, the total energy consumption (E(t)) of the
element during the time period t is presented as:

E(t) = EEX(t) + EN-EX(t) (2)

EEX(t) and EN-EX(t) stand for the element’s energy con-
sumption at EX and N-EX, calculated by following equations.

EEX(t) =
∑

∀q∈t∧St=EX

P (q), (3)

3. At N-EX, many internal modules of I/O-GUARD still work, gener-
ating switching activities, e.g., checking transactions from processors.

Computation Circuits

Register: ρq
Register: Int/Frac

ρq

ρq (Numerator)

Integer
Frequency

Divider

ρq (Numerator)
>>1

#_registers

`0'

Divde_ratio

clk_IO

clk_IO_#x

Clock Delay Module

Updated == ``1’’ or ``0’’

ClockData Path Control Path

M
C

addr

data

r/w

Memory Bank: shadow time slot (parameters only)

Addr

0x00

0x04

0x08

0x0C

0x10

...

Task ID
(k)

1

2

3

4

5

...

Period
(Tk)

T1

T2

T3

T4

T5

...

Duration
(Ck)

C1

C2

C3

C4

C5

...

Deadline
(Dk)

D1

D2

D3

D4

D5

...

Freq
u

en
cy Id

en
tificatio

n
 C

o
n

tro
ller

Fractional
Freq_Div

clk_IO (FCLK_IO) clk_IO_#x (FCLK_IO/ρq)

ScratchPad
(8 KB)

ρq

ALU

Load tasks’
parameters

ClockData Path Control Path

[Int]

[Frac]

Fig. 8. Top-level micro-architecture of FSU.

EN-EX(t) =
∑

∀q∈t∧St=N-EX

P (q) · γ (4)

4.2 Overview of Energy Management
In I/O-GUARD, we partition the hardware elements into two
clock domains, i.e., compute domain and I/O domain, see Fig. 7.

The compute domain has processors, memory, and a NoC,
driven by a high-frequency clock source (i.e., clk compute).
Existing technologies, e.g., [12]–[15], can be adopted to man-
age the energy consumption of the elements.

The I/O domain contains I/O-GUARD hypervisor and I/O
devices, driven by a clock source with relatively lower fre-
quency (i.e., clk IO). The frequency of clk IO is denoted as
Fclk IO. Existing energy management IPs are not dedicately
designed for the I/O system/virtualization [16], which can
neither manage the energy effectively nor ensure the I/O-
GUARD’s predictability. Hence, we present a Virtualization
Energy Management Unit (VEMU), guaranteeing the energy-
efficiency and predictability of the I/O domain simulta-
neously. The VEMU contains multiple Frequency Scaling
Units (FSUs), shown in Fig. 7. Each FSU drives the clock
(clk IO #x) for an I/O device (#x) and its associated
virtualization manager and virtualization driver.

In this paper, we set the clock frequency to the high-
frequency (i.e., clk compte) and the low-frequency (i.e.,
clk IO) as 100MHZ and 75MHZ, respectively. In practice,
the high-frequency could be higher (usually more than
500 MHz for modern micro-controllers). We set the high-
frequency as 100 Mhz is because FPGA designs tend to-
wards lower clock frequencies for prototyping.
Frequency scaling. An FSU manages the energy consump-
tion using frequency scaling. Specifically, an FSU receives the
clk IO and divides it with a specific ratio. We denote the
frequency dividing ratio as ρq , where ρq ∈ [1, 3

2 , 2,
5
2 , ..., 10].

The FSU then exports the divided clock as clk IO #x
with frequency Fclk IO

ρq
. As the power consumption at any

time slot is linear increase with the executing frequency
(see Eq. (1)), an FSU dynamically adjusts the frequency of
clk IO #x using three phases:

• Phase 1 - FSU communicates with virtualization man-
ager to obtain the information of buffered I/O tasks.

• Phase 2 - FSU determines the maximum ρq that ensures
all buffered tasks can be completed before their dead-
lines. If none of the tasks is required to be executed, FSU
sets ρq as 10 to enable the lowest running frequency.

• Phase 3 - FSU increases/decreases the frequency of
clk IO #x to Fclk IO

ρq
.

To support these three executing phases, we introduce
the design of FSU in Sec. 4.3 and present a frequency identifi-
cation algorithm to find ρq in Sec. 5.3.

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 6

Computation Circuits

Register: ρq
Register: Int/Frac

ρq

ρq (Numerator)

Integer
Frequency

Divider

ρq (Numerator)
>>1

#_registers

`0'

Divde_ratio

clk_IO

clk_IO_#x

Clock Delay Module

Updated == ``1’’ or ``0’’

ClockData Path Control Path

M
C

addr

data

r/w

Memory Bank: shadow time slot (parameters only)

Addr

0x00

0x04

0x08

0x0C

0x10

...

Task ID
(k)

1

2

3

4

5

...

Period
(Tk)

T1

T2

T3

T4

T5

...

Duration
(Ck)

C1

C2

C3

C4

C5

...

Deadline
(Dk)

D1

D2

D3

D4

D5

...

Freq
u

en
cy Id

en
tificatio

n
 C

o
n

tro
ller

Fractional
Freq_Div

clk_IO (FCLK_IO) clk_IO_#x (FCLK_IO/ρq)

ScratchPad
(8 KB)

ρq

ALU

Load tasks’
parameters

ClockData Path Control Path

[Int]

[Frac]

clk_IFD

clk_DM

Fig. 9. Micro-architecture of fractional frequency divider.

4.3 Frequency Scaling Unit (FSU) Design
The top-level micro-architecture of FSU is illustrated in
Fig. 8, which contains three main elements: a memory unit,
computation circuits, and a Fractional Frequency Divider
(FFD). The memory unit behaves like a shadow time slot
table (σ), but only storing the parameters of the I/O tasks.
At run-time, the computation circuits obtain the parame-
ters of I/O tasks from the memory unit (Phases 1). With
the required parameters, the computation circuits calculate
ρq for the controlled elements using frequency identification
algorithm (Phase 2); and transmits ρq to FFD. The FFD
then adjusts clock frequency of the controlled elements,
correspondingly (Phase 3).

Below, we present the design details of the computation
circuits and the FFD, respectively.
Computation Circuits. The computation circuits contain
both data and control paths. The data path has an ALU,
a memory controller, and a scratchpad (8 KB). The ALU is
used for calculation; the memory controller collects task pa-
rameters, and the scratchpad buffers temporary data during
calculation. The control path is implemented using a Finite
State Machine (FSM), managing the data flow in data path
to realize the frequency identification algorithm when the
shadow time slot table is updated.

Once the computation is done, the ALU outputs the
calculated ρq with a notification to the FFD.
Fractional frequency divider (FFD). The FFD is designed
mainly based on an integer frequency divider (IFD) and a
delay module (see Fig. 9). The IFD is a ready-built IP, which
can divide the frequency of an input clock by an integer
(i.e., 1, 2, 3, ...) with fixed 50% duty cycle. The delay module
contains a chain of registers, and the registers are triggered
at both rising and falling clock edges. The delay module has
two responsibilities: (i) cooperating with the IFD to adjust
the frequency of clk IO #x and (ii) tuning the duty cycle
of clk IO #x to make it close to 50%.

A frequency update of clk IO #x is triggered by the
updated ρq sent by computation circuits. Once the FFD
receives the update, it first checks the type of received ρq
(i.e., integer or fraction). If the ρq is an integer, the delay
module are disabled, and the ρq is passed to the IFD,
allowing the IFD to fully control the clock frequency. If
the ρq is a fraction, both delay module and IFD is active,
and the numerator of ρq is passed to both IFD and delay
module (right-shifting one bit). The numerator determines
the divide ratio of the IFD and the delay stages of the delay
module. At last, an XOR gate combines the outputs from
both IFD and delay module, generating clk IO #x. Fig. 10
illustrates the generation of clk IO #x while ρq = 3

2 .

4.4 Discussion: Clock Gating and Voltage Scaling
As well as frequency scaling, clock gating and voltage
scaling are both effective mechanisms to improve the hard-

AWREADY

AWID

AWUSER

AWVALID

CLK

AWADDR

Se
co

n
d

a
ry

 Po
rt

TCU

Job_Priority

Job_ID

Primary_ ID

TCU_ID

Info_Valid

Address Decoder
(Look-up-Table)

[15:8]

[7:0]

Register_ Reset

Data Path Control Path Data Register Control Register

CLK

AWUSER[7:0]

AWREADY

AWVALID

AWID

AWUSER[15:8]
t1 t2 t30 t4 t5 t6 t7 t8 t9 t10 Time

Valid Information

0X040x030x07

0xF1

0x02 0x02

0x0F 0x01

0x02

Job PriorityJob IDPrimary ID

clk_IO

clk_IFD

clk_DM

clk_IO_#x

Fig. 10. Example: ρq = 3
2

, with duty cycle 33.33%.
(clk IFD: clock from IFD; clk DM: clock from delay module.

ware’s energy-efficiency [18]. Specifically, clock gating en-
tirely blocks the switch activities of the sequential logic,
effectively decreasing the αq in Eq. (1). Voltage decreases
the supply voltage of the hardware, i.e., Vq in Eq. (1).
As evidenced in [12]–[16], voltage scaling could be more
energy-efficient compared to frequency scaling, since the
power consumption is a convex increasing function of the
element’s supply voltage (see Eq. (1)). In future work, we
plan to integrate the clock gating and voltage scaling in I/O-
GUARD, and further investigate the effectiveness of these
different mechanisms.

5 ENERGY-AWARE SCHEDULABILITY TEST FOR
THE TWO-LAYER SCHEDULER

Our two-layer scheduler is designed to allocate free time
slots to the R-Channel I/O operations in a hierarchical
manner. In the global layer, available time slots are allocated
to n VMs, where each VM i (1 ≤ i ≤ n) is supported by a
periodic server task Γi = (Πi,Θi) with the interpretation
that the server task is invoked every Πi time slots and
receives exact Θi time slots between consecutive invoca-
tions. The I/O operations from VM i will be executed using
the time slots received by VM i. The I/O operations is
modeled by a set of sporadic tasks, each of which is denoted
τk = (Tk, Ck, Dk). τk releases a sequence of I/O operations,
or jobs, with minimum separation of Tk time slots, where
each job completes within Ck time slots of execution with
unit I/O frequency, i.e., ρq = 1, and has a deadline at Dk

time slots after it is released. That is, when ρq > 1, each
job of τk takes up to ⌈ρqCk⌉ time slots to complete (as the
frequency and therefore the processing speed is scaled down
to 1/ρq of the unit one). We assume constrained deadlines, i.e.,
∀k,Dk ≤ Tk. Let Ti denote the task set in VM i, i.e., τk ∈ Ti
means task k is in VM i. Recall that these jobs are executed
preemptively at the time-slot level, as described in Sec.3. Also,
this analysis focuses on each individual I/O device and
therefore is similar to a uniprocessor scheduling problem.
In the rest of this section, we describe our dual-hierarchy
scheduling in company with schedulability analysis.
Supply and demand. We say the supply to a set of tasks
during a certain time interval as the free time slots available
to this set of tasks, and say the demand of a set of tasks during
a certain time interval as the maximum amount of time slots
needed to complete all jobs of these tasks that are released
and have a deadline in this time interval. Under preemptive
earliest-deadline-first (P-EDF) scheduling, if the demand is
at most the supply for any time interval, then the deadlines
of all tasks in that set are guaranteed to be met [19], [20].

5.1 Allocating Free Time Slots to VMs (G-Sched)
We let σ∗ denote the Time Slot Table after P-Channel I/O
jobs having been allocated as shown in Figure 4, and let
H and F denote the number of total and free time slots in
σ∗. Then, this schedule σ∗ of length H repeats and results

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 7

in a (potentially infinitely long) table σ of free time slots to
support R-Channel I/O jobs.
Deriving sbf(σ, t). Let the supply bound function sbf(σ, t)
denote the minimum supply to R-Channel I/O jobs in σ
during any time interval of length t. Please note that t stands
for number of time slots and therefore must be an integer.
The value of sbf(σ, t∗) can be obtained for any t∗ such that
0 ≤ t∗ ≤ H − 1 by enumerating a sliding window of length
t∗ in σ for all cases and there are at most H distinct cases
for any given window length t∗ since σ repeats σ∗ which
has a length of H . We store them by a look-up table enum of
length H , i.e.,

sbf(σ, t) = enum(t) for 0 ≤ t ≤ H − 1. (5)

Also, due to σ strictly repeating σ∗, any time interval of
length H in σ must have exact F free time slots no matter
where this time interval starts. Therefore,

sbf(σ, t) = sbf(σ, t mod H) +

⌊
t

H

⌋
· F for t ≥ H (6)

Thus, sbf(σ, t) for all t ≥ 0 can be derived by (5) and (6).
On the other hand, we support each VM i by a periodic

sever task Γi = (Πi,Θi) in a manner that all free time slots
at which Γi is scheduled are devoted to R-Channel I/O jobs
from VM i. To ensure that each VM i is guaranteed to receive
Θi free time slots in every Πi, the set of tasks {Γi} must be
schedulable (i.e., meet all deadlines) on σ. We schedule the
task set {Γi} on free time slots in σ by EDF, and the demand
bound function dbf(Γi, t) that denotes the maximum demand
the periodic implicit-deadline task Γi can create in any time
interval of length t is calculated by

dbf(Γi, t) =

⌊
t

Πi

⌋
·Θi. (7)

Theorem 1. Each VM i is guaranteed to receive Θi time slots
every Πi time slots, if

∀t ≥ 0,
n∑

i=1

dbf(Γi, t) ≤ sbf(σ, t), (8)

where sbf(σ, t) and dbf(Γi, t) is calculated by (5), (6), and (7).

Note that Theorem 1 does not specify an upper-bound on
the ∀t. Therefore, we need to check up to the least common
multiple of all elements in {H} ∪ {Πi}ni=1, which can be
exponential to the input parameters of table σ∗ and tasks
{Γi}. The following theorem provides a pseudo-polynomial4
upper-bound on t for applying Theorem 1.

Theorem 2. For all systems such that F
H −

∑n
i=1

Θi

Πi
≥ c where

c is a constant such that c > 0 (e.g., c = 0.01), (8) is true if

∀t : 0 ≤ t <
F · H−1

H

c
,

n∑
i=1

dbf(Γi, t) ≤ sbf(σ, t).

Proof. We prove this by showing that

∃t∗ ≥ 0 such that
n∑

i=1

dbf(Γi, t
∗) > sbf(σ, t∗) (9)

4. Informally, that is polynomial to the values of the input parameters
of table σ∗ and tasks {Γi}. Note that, c is a constant and H−1

H
< 1.

𝑡

Π𝑖

Θ𝑖

𝑡′
Π𝑖 − Θ𝑖

𝑡′

Π𝑖
∙ Θ𝑖

𝜃

Fig. 11. An illustration of the scenario where (15) is derived.

implies t∗ <
F ·H−1

H

c . By (6), we have

sbf(σ, t∗) ≥
⌊
t∗

H

⌋
· F ≥ t∗ − (H − 1)

H
· F. (10)

On the other hand, by (7), we have
n∑

i=1

dbf(Γi, t
∗) ≤ t∗ ·

n∑
i=1

Θi

Πi
. (11)

Thus, by (10) and (11), (9) implies

t∗ ·
n∑

i=1

Θi

Πi
>

t∗−(H−1)

H
·F (12)

⇒ t∗ <
F ·H−1

H
F
H −

∑n
i=1

Θi

Πi

(13)

⇒ t∗ <
F ·H−1

H

c
(14)

The theorem follows.

On the limitation of Theorem 2. Please note that, compared
to F

H −
∑n

i=1
Θi

Πi
> 0, the limitation of Theorem 2 only ex-

cludes the extremely theoretical case that F
H −

∑n
i=1

Θi

Πi
= ε

where ε → 0+. On the other hand, F
H ≥

∑n
i=1

Θi

Πi
is

required anyway, or the system is over-utilized. Therefore,
the limitation of Theorem 2 is minimal in practical scenarios
(not applicable only when F

H =
∑n

i=1
Θi

Πi
).

5.2 Scheduling I/O Jobs within Each VM (L-Sched)
Once the free time slots have been allocated to VMs as
described in Sec.5.1, the R-Channel I/O jobs in each VM can
be scheduled and analyzed independently within that VM,
where each VM i supported by Γi guarantees Θi available
time slots in every Πi time slots to the tasks in this VM. This
guarantee follows the periodic resource model [20]. Therefore,
the supply bound function sbf(Γi, t) denotes the minimum
supply to R-Channel I/O jobs in VM i in any time interval
of length t can be calculated by

sbf(Γi, t) =

{
0 if t′ < 0⌊

t′

Πi

⌋
·Θi + θ if t′ ≥ 0

(15)

where t′ = t − (Πi − Θi) and θ =

max
(
t′ −Πi

⌊
t′

Πi

⌋
− (Πi −Θi), 0

)
. This supply bound

function presented in (15) was derived and reasoned
in [20]. The minimum-supply scenario that result in (15) is
illustrated in Fig. 11

We schedule the task set Ti on these free time slots
available to VM i by EDF, and the demand bound function
dbf(τk, t) that denotes the maximum demand a task τk ∈ Ti
can create in any time interval of length t is calculated by

dbf(τk, t) =

(⌊
t−Dk

Tk

⌋
+ 1

)
· ⌈ρqCk⌉. (16)

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 8

Thus, the following theorem provides a schedulability
test for the tasks in each VM i.

Theorem 3. All I/O jobs from VM i meet their deadlines if

∀t ≥ 0,
∑

τk∈Ti

dbf(τk, t) ≤ sbf(Γi, t), (17)

where sbf(Γi, t) and dbf(τk, t) are calculated by (15) and (16).

Again, Theorem 3 does not specify an upper-bound on
the ∀t, and checking up to the least common multiple of all
elements in {Πi}∪{Tk}τk∈Ti

may results in the schedulabil-
ity test running in exponential time. The following theorem
provides a pseudo-polynomial schedulability test with a
minimal limitation similar to that of Theorem 2.

Theorem 4. For each VM i such that Θi
Πi

−
∑

τk∈Ti

⌈ρqCk⌉
Tk

> c′

where c′ is a certain constant such that c′ > 0 (e.g., c′ = 0.01),
(17) is true if

∀t : 0 ≤ t <
maxτk∈Ti{Tk −Dk}+ 2Πi −Θi − 1

c′
,∑

τk∈Ti

dbf(τk, t) ≤ sbf(Γi, t).

Proof. We prove this by showing that

∃t∗ ≥ 0 such that
∑

τk∈Ti

dbf(τk, t) > sbf(Γi, t) (18)

implies t∗ <
maxτk∈Ti

{Tk−Dk}+2Πi−Θi−1

c′ . By (15), we have

sbf(Γi, t
∗) ≥

⌊
t∗−(Πi−Θi)

Πi

⌋
·Θi (19)

≥ t∗−(Πi−Θi)−(Πi−1)

Πi
·Θi

≥ t∗ · Θi

Πi
− (2Πi −Θi − 1). (20)

The last inequality is because 1 ≤ Θi ≤ Πi implies that
2Πi − Θi − 1 ≥ 0 and 0 < Θi

Πi
≤ 1. On the other hand,

by (16), we have

∑
τk∈Ti

dbf(τk, t
∗) ≤

∑
τk∈Ti

t∗ + (Tk −Dk)

Tk
· ⌈ρqCk⌉

≤
∑

τk∈Ti

t∗ +maxτk∈Ti{Tk −Dk}
Tk

· ⌈ρqCk⌉

=
∑

τk∈Ti

⌈ρqCk⌉
Tk

· (t∗ + max
τk∈Ti

{Tk −Dk})

≤
∑

τk∈Ti

⌈ρqCk⌉
Tk

· t∗ + max
τk∈Ti

{Tk −Dk}.

(21)

The last inequality is because
∑

τk∈Ti

⌈ρqCk⌉
Tk

≤ Θi

Πi
≤

1 is necessarily required for no over-utilization and

maxτk∈Ti
{Tk − Dk} ≥ 0 holds for constrained-deadline

tasks. Thus, by (20) and (21), (18) implies∑
τk∈Ti

⌈ρqCk⌉
Tk

· t∗ + max
τk∈Ti

{Tk −Dk} > t∗ · Θi

Πi
− (2Πi −Θi − 1)

⇒ t∗ <
maxτk∈Ti{Tk −Dk}+ 2Πi −Θi − 1

Θi
Πi

−
∑

τk∈Ti

⌈ρqCk⌉
Tk

⇒ t∗ <
maxτk∈Ti{Tk −Dk}+ 2Πi −Θi − 1

c′

The theorem follows.

5.3 Frequency Identification Algorithm
We are now ready to present our frequency identification
algorithm that select the largest ρq (so that the minimum
frequency) such that the system is still schedulable.

In this frequency identification algorithm, we assume
that the period of each VM (i.e., Πi) is pre-selected and
given while the budget (i.e., Θi) can be adjusted to max-
imize the schedulability. That is, system designers need
select such periods according to the application and system
requirements and limitations first, e.g., considering context-
switch overheads. Then. for each selected combination of
the periods of VMs, our frequency identification algorithm is
able to identify the minimum needed operation frequency
as well as the budgets for each VM. If multiple candidates
of the period selection may be considered, the frequency
identification algorithm can be applied multiple times to each
candidate and therefore identify the best periodic selection
from the candidates.

For clarity and conciseness, we describe the frequency
identification algorithm as follows, so that we do not need
to present fairly standard code/pseudo-code structure (e.g.,
binary search) nor re-present mathematical formulas we
just derived in the above subsections. Please note that, the
following 1) to 4) are not four subsequent steps; instead,
they are four layers.

1) We can determine the largest schedulable ρq by
a binary search on all its possible candidates (i.e.,
{1, 3

2 , 2,
5
2 , ..., 10}).

2) For each given ρq , we determine the YES/NO for
schedulability by Theorem 1, where the time slot table σ
is given and VM parameters {(Πi,Θ

∗
i)} are determined

below.
3) Under the given ρq , for each VM i with given Πi and its

associated task set Ti, we can determine the minimum
required budget Θ∗

i by a binary search for Θi in the
range [0,Πi].

4) Under the given ρq , i, Πi, and Ti, for each Θi, we can de-
termine the YES/NO for schedulability by Theorem 3.

In terms of the time complexity of our frequency identi-
fication algorithm, it can be analyzed as follows.

• The largest schedulable ρq is obtained when 1) has been
completed. Due to the binary search, 1) consists of at
most O(logNρ) iterations of 2), where Nρ denote the
number of candidates to be selected as ρq . — There are
polynomial number of iterations of 2).

• Each iteration of 2) completes by applying Theorem 1.
According to Theorem 2, it takes pseudo-polynomial
time.

• Moreover, for each iteration of 2), we need do one itera-
tion of 3) to determine the {Θ∗

i }. 3) consists O(n) binary

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 9

0

20

40

60

80

100

Hypervisor Kernel I/O Driver:UART I/O Driver:SPI I/O Driver:ETH

BS|Legacy BS|RT-XEN BS|BV Proposed

Fig. 12. Run-time software overhead (unit: KB). The software overhead
is evaluated via memory footprint, containing BSS, data and text.

searches, where n is the number of VMs, and each
binary search consists of at most O(logΠi) iterations
of 4). In total, each iteration of 3) consists of at most
O(n log Πmax) iterations of 4), where Πmax = maxi Πi.
— 3) consists of a polynomial number of iterations of
4).

• Each iteration of 4) completes by applying Theorem 3.
According to Theorem 4, it takes pseudo-polynomial
time.

Thus, to sum up, our frequency identification algorithm
runs in pseudo-polynomial time.

6 EVALUATION

We now conduct experiments to evaluate I/O-GUARD.
Experimental platform. We built two variants of I/O-
GUARD on a Xilinx VC709 evaluation board , configured
the size of the priority queues to 16, and adopted the
pass-through design for the response channel. The only
difference between the variants is the deployment (with
or without) of VEMU (detailed in Sec. 4.2). We use I/O-
GUARD|E to indicate the system with VEMU. In each I/O-
GUARD variant, the hypervisor was implemented using
BlueSpec System Verilog [21] and connected to a 5 × 5
mesh type open-source NoC [10]. As well to the hypervi-
sor, the NoC also contained 16 MicroBlaze processors [22],
memory and I/O peripherals. Each processor supported
up to three guest VMs. The software executing on the
processors was compiled using a Xilinx MicroBlaze GNU
tool-chain [22]. We selected FreeRTOS (v.10.4) as the OS
kernel for all VMs, with the modifications introduced in
Sec.2.3. Additionally, we introduced three baseline systems
(BSs) running on a similar hardware architecture: BS|Legacy
was an NoC system without virtualization support, which
left the scheduling related to resource management to the
routers, and each processor is deemed as a VM. BS|RT-XEN
was a virtualized system established using a Xen hypervisor
with a server-based scheduling scheme [23]. Following the
observations given by [24], we configured the hypervisor
with a global EDF scheduling policy. We also removed the
redundant checking modules in the I/O drivers to enhance
the I/O performance. Both patches and I/O enhancement
were implemented in the software. BS|BV was a virtualized
system built on hardware assistance (BlueVisor) introduced
in [9], which was reviewed in Sec. 7. For all architectures,
we set the clock frequency to the compute domain (i.e.,
clk compte) and I/O domain (i.e., clk IO) as 100MHZ and
75MHZ, respectively.

6.1 Software Overhead

Experimental setup. The software overhead was evaluated
using the run-time memory footprint, with specific con-
sideration of hypervisor, OS kernel and I/O drivers. The
legacy OS kernel was fully-featured, but excluded from I/O

drivers [25]. Note, I/O-GUARD|E was not examined, as the
VEMU does not involve any software implementation.
Obs 1. Additional software overheads were induced by
the conventional I/O virtualization compared to the legacy
system. These were considerably improved in I/O-GUARD.

This observation is shown in Figure 12. In BS|RT-XEN,
the introduction of a hypervisor and modifications to the OS
kernel brought an additional 61 KB (129.8%) memory foot-
print compared to the legacy system. The hardware-assisted
virtualization (BS|BV and I/O-GUARD) effectively reduced
this overhead by moving I/O virtualization to the hardware.
Compared to BS|BV, the I/O-GUARD entirely eliminated
the software overhead of the VMM by directly running the
kernels on the processors. For I/O drivers, the complexity of
the I/O device determines its software overhead. For each
of the evaluated I/O drivers, BS|RT-XEN always sustained
the most significant software overhead. This overhead was
reduced by I/O-GUARD, since it integrates the low-level I/O
drivers into the hardware.

6.2 Hardware Overhead

I/O-GUARD requires additional implementation of the hy-
pervisor. Therefore, we evaluate its hardware overhead.
Experimental setup. We first configured the I/O-GUARD to
support 16 VMs and x I/Os (x ∈ [2, 4, 8]). This means the
hypervisor contained x groups of virtualization managers
and virtualization drivers, where each virtualization man-
ager contained 16 I/O pools (see Sec. 3.1). We used I/O-
GUARD(|E)-x to denote the I/O-GUARD(|E) variants, where
x indicates the number of I/Os.

We compared the hypervisors with two general-purpose
processors (MicroBlaze and RISC-V), two mainstream I/O
controllers (SPI, and Ethernet), and another hardware-
implemented hypervisor (i.e., BlueVisor used in BS|BV).
The MicroBlaze was full-featured, enabling all the perfor-
mance related functionalities (e.g., pipeline, data cache). The
RSIC-V was implemented based on [26], supporting all the
functionalities of the MicroBlaze, as well as multi-branch,
out-of-order processing and the related functionalities (e.g.,
branch-prediction). The I/O controllers were chosen from
the standard Xilinx IP library. For fair comparison, we also
configured BlueVisor to support 2 I/Os. All the elements
were synthesized using Vivado (v2020.2).
Obs 2. The design of the hypervisor (of I/O-GUARD) was
resource-efficient, compared to the full-featured processors.
Its hardware consumption was higher than commonly used
I/O controllers.

As shown in Table 1, I/O-GUARD-2 required signif-
icantly less hardware than full-featured processors: Mi-
croBlaze (56.6% LUTs, 67.8% registers, 100.0% RAM) and
RSIC-V (37.4% LUTs, 18.2% registers, 50.0% RAM). Due to
the hardware-implemented virtualization and drivers, I/O-
GUARD-2 consumed more hardware than the standard I/O
controllers. But when compared to BS|BV, I/O-GUARD re-
quired the same memory consumption, but less LUTs, reg-
isters and DPSs. We also reported that the hardware con-
sumption of the I/O-GUARD and I/O-GUARD|E is linearly
increased when the number of I/O devices increases. This
is because the virtualization manager and driver in I/O-
GUARD hypervisor are independently associated with each
I/O device, i.e., when adding a new I/O device, a group
of a virtualization manager and a virtualization driver are
required to be instantiated (described in Sec. 4).

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 10

0 30 60 90 120 150

Blocking
Time

Response
Time

Unit: ms

BS|Legacy
BS|RT-XEN
BS|BV

I/O-GUARD
I/O-GUARD|E

(a) 4 requesters and 2 operators.

0 60 120 180 240 300 360

Blocking
Time

Response
Time

Unit: ms

BS|Legacy
BS|RT-XEN
BS|BV

I/O-GUARD
I/O-GUARD|E

(b) 8 requesters and 2 operators.

0 140 280 420 560 700

Blocking
Time

Response
Time

Unit: ms

BS|Legacy
BS|RT-XEN
BS|BV
I/O-GUARD

I/O-GUARD|E

(c) 16 requesters and 2 operators.

Fig. 13. Synthetic workloads: average I/O response and blocking time (x-axis: ms).

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

Su
ce

ss
 R

at
io

Target Utilization

BS|Legacy BS|RT-XEN BS|BV
I/O-GUARD-0 I/O-GUARD-40 I/O-GUARD-70
I/O-GUARD-100 I/O-GUARD|E-0 I/O-GUARD|E-40
I/O-GUARD|E-70 I/O-GUARD|E-100 Theorical

(a) 4-VM system.

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

Su
ce

ss
 R

at
io

Target Utilization

BS|Legacy BS|RT-XEN BS|BV
I/O-GUARD-0 I/O-GUARD-40 I/O-GUARD-70
I/O-GUARD-100 I/O-GUARD|E-0 I/O-GUARD|E-40
I/O-GUARD|E-70 I/O-GUARD|E-100 Theorical

(b) 8-VM system.

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

Su
ce

ss
 R

at
io

Target Utilization

BS|Legacy BS|RT-XEN BS|BV
I/O-GUARD-0 I/O-GUARD-40 I/O-GUARD-70
I/O-GUARD-100 I/O-GUARD|E-0 I/O-GUARD|E-40
I/O-GUARD|E-70 I/O-GUARD|E-100 Theorical

(c) 16-VM system.

Fig. 14. Automotive case study: success ratios of different systems (x-axis: target utilization).

0

25

50

75

100

125

Ethernet FlexRay

ET
H:

 M
B/

S;
 F

le
xR

ay
:1

02
KB

/S

BS|Legacy BS|RT-XEN BS|BV I/O-GUARD-0
I/O-GUARD-40 I/O-GUARD-70 I/O-GUARD-100 I/O-GUARD|E-0
I/O-GUARD|E-40 I/O-GUARD|E-70 I/O-GUARD|E-100

(a) 4-VM system.

0

25

50

75

100

125

Ethernet FlexRay

ET
H:

 M
B/

S;
 F

le
xR

ay
:1

02
KB

/S

BS|Legacy BS|RT-XEN BS|BV I/O-GUARD-0
I/O-GUARD-40 I/O-GUARD-70 I/O-GUARD-100 I/O-GUARD|E-0
I/O-GUARD|E-40 I/O-GUARD|E-70 I/O-GUARD|E-100

(b) 8-VM system.

0

25

50

75

100

125

Ethernet FlexRay

ET
H:

 M
B/

S;
 F

le
xR

ay
:1

02
KB

/S

BS|Legacy BS|RT-XEN BS|BV I/O-GUARD-0
I/O-GUARD-40 I/O-GUARD-70 I/O-GUARD-100 I/O-GUARD|E-0
I/O-GUARD|E-40 I/O-GUARD|E-70 I/O-GUARD|E-100

(c) 16-VM system.

Fig. 15. Automotive case study: Average I/O throughput (The error bars indicate the experimental variances).

TABLE 1
Hardware Overhead (Implemented on FPGA)

LUTs Registers DSP RAM (KB)
MicroBlaze 4,908 4,385 6 256

RSIC-V 7,432 16,321 21 512
SPI 632 427 0 0

Ethernet 1,321 793 0 0
BlueVisor 3,236 3,346 0 256

I/O-GUARD-2 2,777 2,974 0 256
I/O-GUARD|E-2 3,164 3,273 0 288
I/O-GUARD-4 4,915 5,055 0 512

I/O-GUARD|E-4 5,137 5,344 0 576
I/O-GUARD-8 8,422 9,457 0 1024

I/O-GUARD|E-8 9,457 10,145 0 1,152

Obs 3. Although bringing a VEMU slightly increased overall
hardware overhead, I/O-GUARD|E still required less LUTs
and registers than the other hardware hypervisor.

This observation is given by the comparison between the
two I/O-GUARD variants and BlueVisor. Introducing VEMU
in I/O-GUARD hypervisor brought additional 387 (13.9%)
LUTs, 299 (10.1%) registers, and 32 KB (11.1%) RAM. Even
with the VEMU, I/O-GUARD hypervisor still required less
LUTs (2.2%) and registers (2.2%) compared to BlueVisor.

6.3 Synthetic Workloads:
I/O Response Time and I/O Blocking Time
We examined the I/O response time and blocking time of the
I/O-GUARD using synthetic workloads.
Experimental setup. We deployed 4/8/16 VMs as I/O re-
questers and configured 2 Ethernet controllers (1 Gbps, with
loop-back mode) as I/O operators. During the experiments,
a requester randomly generated 2-4 I/O requests (with 0.5 -
1.5 KB data) to each operator and assigned a unique priority
to each I/O request. The operators acknowledged requesters
for requests by looping them back. The operator paused
until it had no outstanding request and then started to

reissue new requests. Synthetic transaction workloads such
as this provide traffic patterns close to practical applications
and facilitate behavior observation. We examined the systems
using average response and blocking time of I/O requests. The
response time of an I/O request records the time duration
from issue to completion. The blocking time of an I/O re-
quest indicates the duration of time it is blocked by requests
with lower priority. Experiments were executed 1,000 times.

Obs 4. I/O-GUARD had the best real-time performance. This
benefit was consistently magnified when the system scaled
with deploying more elements in the system.

This observation by given in Fig. 13, which is sum-
marized from two perspectives. First, I/O requests in I/O-
GUARD always had the shortest response time, indicating
that I/O-GUARD has the highest I/O throughput. This ben-
efit is given by the optimization of system architecture in
I/O-GUARD (see Sec. 2.3). Second, the I/O requests in I/O-
GUARD always suffered the least blocking time. This is be-
cause I/O-GUARD achieves requests’ prioritization and real-
time scheduling at the hardware level (see Sec. 3.1), ensuring
I/O requests are operated based on their importance and the
system executes predictably.

Obs 5. Deploying the energy management module slightly
decreased the real-time performance of I/O-GUARD|E. Such
reduction is trivial.

This observation is shown in the comparison between
the I/O-GUARD and I/O-GUARD|E of three experimental
groups in Fig. 13. When the systems were configured with
the same settings, the I/O-GUARD|E was outperformed by
the I/O-GUARD in most cases, indicating that introducing
VEMU slightly affects I/O-GUARD’s real-time performance.
Such performance reduction was bounded in a small mar-
gin: about 3%− 5%.

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 11

6.4 Case Study: Overall Real-time Performance
We use an automotive case study to examine the benefits of
the I/O-GUARD over conventional virtualized systems.
Systems Configurations. We configured I/O-GUARD(|E) as
I/O-GUARD(|E)-x (x ∈ [0, 40, 70, 100]), which pre-loaded x%
of I/O tasks into the virtualization manager before run-time.
In other words, I/O-GUARD(|E)-x indicates that x% of I/O
tasks were executed by the P-channel and (1 − x%) of I/O
tasks were executed by the R-channel.
Task sets. We introduced three sets of I/O-related tasks:

• 20 automotive safety tasks, selected from the Renesas
automotive use case database [27], e.g., RSA32, etc..

• 20 automotive function tasks, selected from EEMBC
benchmark [28], e.g., FFT, speed calculation, etc..

• synthetic workloads, selected from EEMBC benchmark,
can be optionally added to control overall utilization.

We employed a hybrid-measurement approach to obtain
WCETs for all the task. The raw data processed by the
40 tasks was randomly generated off-chip and sent to the
evaluated systems via an Ethernet controller (1 Gbps) at
run-time. The fetching of the raw data was packed as I/O
tasks in I/O-GUARD variants. The results were sent back
via a FlexRay (10 Mbps), which were formed as sporadic
I/O tasks. Each task had a randomly defined period and
implicit deadline, with overall system utilization approxi-
mately 40%. Since the execution time of a task is affected
by diverse factors (e.g., cache miss rate); hence, adding syn-
thetic workloads to a system only gives it a target utilization.
Note that the random generation of the task parameters may
result in the taskset being physically unschedulable.
Experimental Setup We introduced three groups of experi-
mental setups, which activated 4/8/16 VMs to execute the
experimental task sets and synthetic workloads. In each
experimental group, we executed each examined system
1, 000 times under varying target utilization from 40% to
100% (with an interval of 5%). Each execution lasted 100
seconds, which guaranteed that all tasks executed at least
250 times. For fair comparison, we also ensured the data in-
put to the examined systems was identical in each execution.
We evaluated the examined systems using success ratio and
I/O throughput. The success ratio recorded the percentage of
trials that executed successfully (i.e., without deadline miss
of any safety and function task), under a specified target
utilization. The I/O throughput evaluated the average I/O
performance during I/O processing. We also performed the
schedulability tests (Sec. 5) on the given tasksets to check
the consistency between theoretical analysis and practical
evaluation. Based on the experimental results in Sec. 6.3, we
configured the I/O-GUARD without VEMU to ensure the
best real-time performance.
Obs 6. Introducing I/O-GUARD improved system-level real-
time performance. Such benefit was slightly decreased by
the energy management module in I/O-GUARD|E.

As shown in Fig. 14 and 15, with the same configu-
rations, the I/O-GUARD variants always achieved higher
success ratios and I/O throughput compared to the base-
line systems. However, such improvements were slightly
decreased in I/O-GUARD|E, due to the involvement of
VMEU. This observation is aligned to the experiments using
synthetic workloads, i.e., Obs. 5. The results also shows
that I/O-GUARD(|E)-100 consistently outperformed other
I/O-GUARD(|E) variants in both success ratios and I/O
throughput, with less experimental variance, meaning that
pre-loading a higher percentage of I/O tasks into the I/O-

GUARD before run-time introduces more benefits. While
comparing the theoretical results with the experimental
results in Fig. 6.4, we reported that the I/O-GUARD vari-
ants consistently outperformed the theoretical results, which
demonstrates the consistency between theoretical analysis
and the experimental results.
Obs 7. I/O-GUARD(|E)-0 had the worst real-time perfor-
mance in I/O-GUARD(|E) variants, but still outperformed
the baseline systems.

This observation is given by Fig. 14. With the same con-
figurations, I/O-GUARD(|E)-0 achieved the lowest success
ratio in the I/O-GUARD(|E) variants, but still higher than the
baseline systems. In I/O-GUARD(|E)-0, none I/O task was
pre-loaded in I/O-GUARD hypervisor, and such improve-
ment is acquired by the novel architecture presented by I/O-
GUARD (see Sec. 2), simplifying the I/O access paths.
Obs 8. Increasing the number of VMs reduced the success
ratio and I/O throughput of the conventional virtualization.
I/O-GUARD effectively reduced such issues.

This observation is shown by the comparison between
the results of three experimental groups in Fig. 14 and 15.
In 4-VM BS|RT-XEN and BS|BV, significant drops in the
success ratios occurred at 70% and 75% of target utilization;
whereas these drops moved to 60% target utilization in
16-VM BS|RT-XEN and BS|BV. Moreover, BS|RT-XEN and
BS|BV also suffered from an approximate 20% reduction
of I/O throughput. This observation mainly results from
the additional on-chip interference and resource contention
generated by the introduced VMs and tasks (see Sec.1).

In I/O-GUARD and I/O-GUARD|E, the system architec-
ture optimizes the I/O access paths and leaves the re-
source management to the hypervisor. It hence reduces
on-chip interference and manages the I/O resources in a
time-predictable manner (achieved via 2-layer scheduler),
which improves overall I/O real-time performance. In an
8-VM system, when target utilization approached 100%,
I/O-GUARD(|E)-100 maintained a success ratio which was
close to 45% (35%) with negligible loss of I/O throughput.
For the experiments with 16 VMs, I/O-GUARDs still kept
outperforming the baseline systems.

6.5 Power Distribution and Energy Efficiency

We now evaluate power distribution and energy efficiency
of I/O-GUARD|E.
Experimental Setup. We configured I/O-GUARD|E to sup-
port 4 processors and 2/4/8 I/Os (Ethernet). We first
adopted the method described in Sec. 6.2 to synthesize the
systems and reported their power distributions. We then
executed the case study described in Sec. 6.4 and recorded
the clock frequency in the I/O domain. With that, we cal-
culated the dynamic energy consumption using the method
described in Sec. 4. We executed the experiments 100 times.
Note that, we set γ as 0.5 (median number) and normalized
the experimental results by I/O-GUARD.
Obs 9. With the increasing number of I/Os, the I/O virtual-
ization dominated the entire system’s energy consumption.

This observation is shown by comparing the three exper-
imental groups in Fig. 16. When the number of I/Os scaled
from 2 (Fig. 16(a)) to 8 (Fig. 17(c)), the power distribution of
the I/O domain was increased from 39.9% to 70.1%, becom-
ing to dominate the entire system’s energy consumption.
Obs 10. Implementing VEMU in I/O-GUARD effectively
reduced the overall dynamic energy consumption.

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 12

(a) 2-I/O I/O-GUARD|E. (b) 4-I/O I/O-GUARD|E. (c) 8-I/O I/O-GUARD|E.

Fig. 16. Power distribution of I/O-GUARD|E with different numbers of I/Os. CD: Compute Domain; ID: I/O Domain.

Target Utilization

0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

ize
d

En
er

gy

0%

20%

40%

60%

80%

100%

(a) 2-I/O I/O-GUARD|E.

Target Utilization

0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

ize
d

En
er

gy

0%

20%

40%

60%

80%

100%

(b) 4-I/O I/O-GUARD|E.

0.4 0.5 0.6 0.7 0.8 0.9 1

Target Utilization

N
or

m
al

ize
d

En
er

gy

0%

20%

40%

60%

80%

100%

(c) 8-I/O I/O-GUARD|E.

Fig. 17. Dynamic energy consumption of I/O-GUARD|E with different numbers of I/Os.

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5 6

Ar
ea

 (%
) o

f V
C7

09

h

BS|Legacy
I/O-Guard Hypervisor
I/O-Guard

(a) Area consumption.

0

200

400

600

800

1000

0 1 2 3 4 5 6

Po
w

er
 (m

W
)

h

BS|Legacy
I/O-Guard Hypervisor
I/O-Guard

(b) Power consumption.

0

100

200

300

400

500

0 1 2 3 4 5 6

Fr
eq

ue
nc
y m

ax
(M

hz
)

h

BS|Legacy

I/O-Guard Hypervisor

(c) Maximum frequency.

Fig. 18. Area, power, and maximum frequency v.s. η (I/O-GUARD: entire I/O-GUARD system; I/O-GUARD hypervisor: hypervisor in I/O-GUARD).
This observation is given by Fig. 17. As shown in

Fig. 17(a), 17(b), and 17(c), I/O-GUARD|E saved about 56%,
73% and 70% dynamic energy consumption in the best
case. However, such benefits were slightly reduced with the
increase of I/O utilization, since the VEMU must provide a
relatively high frequency when the I/O-GUARD hypervisor
and I/O devices were busy.

6.6 Scalability

We acknowledge that the scalability impacts the feasibility
of the proposed design, the scalability of I/O-GUARD is
lastly examined by a varying number of VMs.
Experimental setup. The same method described in
Sec. 6.2 is adopted to implement the I/O-GUARD and
BS|Legacy with a scaling number of basic MicroBlaze pro-
cessors. Additionally, we introduced a scaling factor: η to
control the number of VMs (2η).

First, we compared the scalability of area consumption
between the evaluated systems, where the area consump-
tion was normalized by the overall area of the experimen-
tal platform. We then examined the scalability of power
consumption, calculated as the sum of static and dynamic
power. Lastly, we evaluated the maximum frequency of the
hypervisor in I/O-GUARD and BS|Legacy using varying η.
Obs 11. The I/O-GUARD’s area consumption was linearly
scaled by log2η (the number of VMs), and the power con-
sumption was linearly scaled by η. Compared to the legacy
system, I/O-GUARD increased such consumption, slightly.

As shown in Figure 18(a), when the system scaled with
log2η, the area consumption of both BS|Legacy and I/O-
GUARD linearly increased. In all examined cases, although
I/O-GUARD consumed more area than BS|Legacy, the addi-
tionally introduced area consumption was always bounded
within a small margin – less than 20%. As described in
Sec. 4.1, power consumption is usually determined by four

factors: voltage, clock frequency, toggle rate and design
area [29]. Because the unified voltage, clock frequency and
simulated toggle rate were assigned to the systems being
compared, the design area dominated the overall power
consumption. In Fig. 18(b), we observed linearly increased
power consumption in these systems when η increases.
Obs 12. When the system scaled with η, brining the hypervi-
sor (in I/O-GUARD) did not affect maximum performance.

As shown in Figure 18(c), when the system scaled with
η, the maximum frequency of the hypervisor was always
greater than the BS|Legacy. This indicates that the hyper-
visor did not become a critical path and could not reduce
maximum system performance.
Limitations of scalability. Although the evaluation demon-
strates the hardware scalability of I/O-GUARD, deploying
a hardware hypervisor in I/O-GUARD still increased the
hardware overhead compared to the software-based solu-
tions, i.e., BS|Legacy and BS|RT-XEN. As shown in Fig. 18(a)
and 18(b), with the same configurations, I/O-GUARD always
consumed more area and power compared to BS|Legacy. The
software-based solutions usually suffer fewer limitations in
area, power and frequency, because the system only needs
to add more processors when the number of VMs increases.

7 RELATED WORK

A range of research efforts and industrial products aiming to
achieve real-time I/O virtualization in multi-core and many-
core systems have been proposed, with a different focus and
design philosophies.
Software-level Optimization. Research frameworks in the
software level mostly focus on VMM/hypervisor. For in-
stance, RT-XEN [23] and Quest-V [30] have been developed
which improve I/O predictability by integrating a pre-
dictable scheduler into the hypervisor. Each of the projects
presents results to show they improve predictability in the
VMM layer, and such innovations are key to the overall goal

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 13

of predictable I/O virtualization. However, without consid-
eration of other system layers (research challenge C.1), real-
time virtualization can not be guaranteed from the system-
level perspective. Different from the previously reviewed
work, Kim et al. [31] proposed a methodology to enhance
I/O predictability from the OS level. This work proposed
optimized memory management (i.e., isolating dynamic-
memory allocations) and improved IPC-related mechanisms
(i.e., selective LLC bypass, and concurrency elimination) to
improve the system performance and predictability. This
work makes numerous improvements but has the same
drawbacks when the system as a whole is considered.
Hardware-level Optimization. Work focusing on the hard-
ware level has mostly contributed to the predictability
of on-chip communication. For instance, Burns et al. [32]
and Plumbridge et al. [10] adopted different scheduling
algorithms to optimize predictable communication flow in
many-core systems, such as via an on-chip network. This
work, and others like it, assist the system designer to de-
velop predictable traffic flows, although they focus entirely
on the communications network making it challenging to
cast virtualization-related overheads into the context of real-
time virtualization. With consideration of both virtualiza-
tion and hardware implementation, Single Root I/O virtu-
alization [33] proposed a set of hardware enhancements for
PCIe devices. Rather than relying on the VMM to intervene
on I/O instructions, it moved the intervention for perfor-
mant data movement to the I/O device itself, for tasks such
as packet classification and address translation. However,
these research efforts did not aim to provide system-level
predictability, although it is a contributing factor.
System Structure Optimization. Considering the entire
system, Intel’s VT-D and AMD’s IOMMU optimized the
access paths in the I/O virtualization, providing direct
communication channels between the VMs and the un-
derlying hardware. However, these technologies have not
been developed for real-time application scenarios. Based
on the concept of “VMM-bypass virtualization”, Jiang et
al. [9] proposed BlueVisor, a dedicated coprocessor, handling
I/O virtualization at the hardware level, which improved
I/O throughput by introducing paralleling computation for
virtualization-related functionalities. However, same as the
other frameworks, the implementation of the BlueVisor re-
mains the FIFO structure at I/O hardware level , leading
the timing-bound of the I/O behaviors to become very pes-
simistic. (i.e., research challenge C.2). Distinct from VMM-
bypass virtualization, Siemens has presented a static parti-
tioning virtualization architecture, named Jailhouse [34]. It
statically allocates all system resources, including I/Os, at
initialization time by exclusively assigning each to a single
partition. Jailhouse replaces run-time memory allocation
and physical-to-virtual CPU assignment with a 1:1 map-
ping, which effectively reduces system overhead and en-
sures that system performance is close to the native system.
Such physical separation provides strong isolation between
different VMs. However, this separation is contrary to a
fundamental concept of virtualization. Since the hardware
can only be accessed by a specific partition, it is not really
shared between VMs.
Timing Analysis for I/O Virtualization. In real-time sys-
tems, there has been existing work modeling and providing
the timing guarantee for I/O virtualization. In the context
of Quest-V, Danish et al. [35] proposed a Sporadic Servers
(SS) and Priority Inheritance Bandwidth Preserving Server

(PIBS) to handle I/O operations. Following this work, Mis-
simer et al. [30] further presented a theoretical model and
schedulability analysis for the SSs and PIBSs, ensuring the
I/Os’ predictability in the context of Quest-V. However,
the hardware-assisted I/O virtualization was not consid-
ered. Schwaricke et al. [36] presented a “broker-based” real-
time communication framework for the VMs, and pro-
vided guidelines to system designers on the dimensioning
of the system regulation to achieve maximum bandwidth
while preserving the I/O flow schedulability. Same as [35]
and [30], this work only focused on the software-based I/O
virtualization. As a summation of real-time I/O virtualiza-
tion, Casini et al. [37] grouped I/O virtualization into three
categories: pass-through virtualization, para-virtualization
with I/O VMs, and para-virtualization I/O VMs and shared
buffers. With that, this work presented the theoretical model
and schedulability analysis for each category, providing the
timing guarantees for I/O virtualization. However, same
with the other work, hardware-assisted was not discussed.

8 CONCLUSION

This paper proposes a system framework for multi-/many-
core NoC-based I/O virtualization. I/O-GUARD introduces
a novel system architecture, including both a new hy-
pervisor micro-architecture and a two-layer scheduler, to
simultaneously optimize I/O access paths and resource
management throughout the system. I/O-GUARD contains a
dedicated energy management unit to adjust the energy con-
sumption of the I/O virtualization using frequency scaling.
Associated with that, a frequency identification algorithm
is proposed to find the appropriate clock frequency at run-
time. A theoretical model and schedulability analysis are
presented for I/O-GUARD, which demonstrates improved
schedulability compared to conventional I/O virtualization.
As shown in the evaluation, I/O-GUARD outperforms state-
of-the-art I/O virtualization with varying hardware archi-
tectures. Also, the I/O-GUARD design is energy efficient.

REFERENCES

[1] A. Burns and R. Davis, “Mixed criticality systems-a review,”
Department of Computer Science, University of York, Tech. Rep, 2013.

[2] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems,”
in 2011 IEEE 32nd Real-Time Systems Symposium. IEEE, 2011.

[3] A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, and C. Rochange,
“Run-time control to increase task parallelism in mixed-critical
systems,” in Proc. ECRTS. IEEE, 2014.

[4] A. Vaishnav, K. D. Pham, and D. Koch, “A survey on fpga
virtualization,” in International Conference on Field Programmable
Logic, 2018.

[5] A. Burns and A. J. Wellings, Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX, 2001.

[6] Z. Jiang et al., “Mcs-iov: Real-time i/o virtualization for mixed-
criticality systems,” in Proc. RTSS.

[7] J. Mössinger, “Software in automotive systems,” IEEE software,
2010.

[8] X. Gong, D. Cao, Y. Li, X. Liu, Y. Li, J. Zhang, and T. Li, “A
thread level slo-aware i/o framework for embedded virtualiza-
tion,” TPDS, 2020.

[9] Z. Jiang and N. Audsley, “Bluevisor: A scalable real-time hardware
hypervisor for many-core embedded systems,” in RTAS, 2018.

[10] G. Plumbridge, “Blueshell: a platform for rapid prototyping
of multiprocessor NoCs and accelerators,” Computer Architecture
News, 2014.

[11] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on
concepts, taxonomy and associated security issues.”

[12] R. Nathuji, K. Schwan, A. Somani, and Y. Joshi, “Vpm tokens:
virtual machine-aware power budgeting in datacenters,” Cluster
computing, vol. 12, no. 2, pp. 189–203, 2009.

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 14

[13] J. Doweck et al., “Inside 6th-generation intel core: New microar-
chitecture code-named skylake,” IEEE Micro, 2017.

[14] H. Zhang and H. Hoffmann, “Maximizing performance under
a power cap: A comparison of hardware, software, and hybrid
techniques,” ACM SIGPLAN Notices, 2016.

[15] P. S. Bhojwani, J. D. Lee, and R. N. Mahapatra, “Sapp: Scalable
and adaptable peak power management in nocs,” in Proceedings of
ISLPED, 2007.

[16] J. Haj-Yahya, M. Alser, J. Kim, A. G. Yağlıkçı, N. Vijaykumar,
E. Rotem, and O. Mutlu, “Sysscale: Exploiting multi-domain dy-
namic voltage and frequency scaling for energy efficient mobile
processors,” in 2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA). IEEE, 2020, pp. 227–240.

[17] S. Safari, S. Hessabi, and G. Ershadi, “Less-mics: A low en-
ergy standby-sparing scheme for mixed-criticality systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 12, pp. 4601–4610, 2020.

[18] J. L. Hennessy and D. A. Patterson, Computer architecture: a quanti-
tative approach. Elsevier, 2011.

[19] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively schedul-
ing hard-real-time sporadic tasks on one processor,” in RTSS, 1990.

[20] I. Shin and I. Lee, “Periodic resource model for compositional real-
time guarantees,” in Real-Time Systems Symposium, 2003, 2003.

[21] “Bluespec System Verilog,” https://bluespec.com.
[22] Xilinx, “Microblaze,” https://www.xilinx.com/products/microblaze.
[23] S. Xi, J. Wilson, C. Lu, and C. Gill, “Rt-xen: Towards real-time

hypervisor scheduling in xen,” in 2011 the Ninth ACM International
Conference on Embedded Software. IEEE, pp. 39–48.

[24] S. Xi, M. Xu, C. Lu, L. T. Phan, C. Gill, O. Sokolsky, and I. Lee,
“Real-time multi-core virtual machine scheduling in xen,” in 2014
International Conference on Embedded Software. IEEE, 2014, pp. 1–10.

[25] FreeRTOS, “FreeRTOS website,” http://www.freertos.org/.
[26] S. Mashimo et al., “An open source fpga-optimized out-of-order

RISC-V soft processor,” in ICFPT, 2019.
[27] R. Electronics, “Renesas: Automotive Use Cases,” https://www.

renesas.com/solutions/automotive.html.
[28] EEMBC, “EEMBC benchmark,” https://www.eembc.org/

autobench/.
[29] A. Bellaouar and M. Elmasry, Low-power digital VLSI design: circuits

and systems. Springer Science & Business Media, 2012.
[30] E. Missimer, K. Missimer, and R. West, “Mixed-criticality schedul-

ing with i/o,” in 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS). IEEE, 2016, pp. 120–130.

[31] N. Kim, S. Tang, N. Otterness, J. H. Anderson, F. D. Smith,
and D. E. Porter, “Supporting I/O and IPC via fine-grained OS
isolation for mixed-criticality real-time tasks,” in RTNS, 2018.

[32] A. Burns, L. Indrusiak, N. Smirnov, and J. Harrison, “A novel flow
control mechanism to avoid multi-point progressive blocking in
hard real-time priority-preemptive nocs,” in 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium, pp. 137–147.

[33] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High
performance network virtualization with sr-iov,” Journal of Parallel
and Distributed Computing, 2012.

[34] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look mum,
no vm exits!(almost),” arXiv preprint arXiv:1705.06932, 2017.

[35] M. Danish, Y. Li, and R. West, “Virtual-cpu scheduling in the
quest operating system,” in 2011 17th IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, 2011, pp. 169–179.

[36] G. Schwäricke, R. Tabish, R. Pellizzoni, R. Mancuso, A. Bastoni,
A. Zuepke, and M. Caccamo, “A real-time virtio-based framework
for predictable inter-vm communication,” in Proc. RTSS, 2021.

[37] D. Casini, A. Biondi, G. Cicero, and G. Buttazzo, “Latency analy-
sis of i/o virtualization techniques in hypervisor-based real-time
systems,” in Proc. RTAS. IEEE, 2021.

Zhe Jiang received his Ph.D. from University
of York (2019). He is currently working as the
system design engineer of Central Engineering
Department in ARM Ltd and visit research as-
sociate in University of York. He is research
interests include safety-critical system, system
architecture, and system micro-architecture. He
can be reached at: zhejiang.uk@gmail.com

Kecheng Yang received the BE degree in com-
puter science and technology from Hunan Uni-
versity in 2013, and the MS and PhD degrees
from the University of North Carolina at Chapel
Hill in 2015 and 2018, respectively. He is an as-
sistant professor in the Department of Computer
Science at Texas State University. His research
interests include real-time systems and schedul-
ing algorithms. He received an Outstanding Pa-
per Award and the Best Student Paper Award at
the 40th IEEE RTSS, and an Oustanding Paper

Award at the 26th RTNS.

Yunfeng Ma, engineering professor, has his
BSc. degree in Electronic and Information En-
gineering awarded by Huaqiao University and
a MSc. degree in Digital Systems Engineering
and Ph.D in Computer Science awarded by the
University of York. His research interests include
cyber-physical critical systems and unmanned
system swarm.

Nathan Fisher received the Ph.D. from the Uni-
versity of North Carolina at Chapel Hill in 2007,
and M.S. degree from Columbia University in
2002, and the B.S. degree from the University of
Minnesota in 1999, all in computer science. He
is an Associate Professor with the Department
of Computer Science, Wayne State University.
His research interests include real-time and em-
bedded computer systems and approximation
algorithms. He was the recipient of the NSF
CAREER Award in 2010.

Neil C. Audsley is currently Deputy Dean of the
School of Mathematics, Computer Science and
Engineering at City, University of London. His re-
search interests include high performance real-
time systems; real-time computer and memory
architectures; real-time operating systems and
their acceleration on FPGAs; timing analysis.

Zheng Dong received the BS degree from
Wuhan University, China, in 2007, the MS de-
gree from University of Science and Technology
of China, in 2011, and the PhD degree from the
University of Texas at Dallas, USA, in 2019. He
is an assistant professor with the Department
of Computer Science, Wayne State University,
Detroit, Michigan. His research interests are in
real-time embedded computer systems and con-
nected autonomous driving systems. His current
research focus is on multiprocessor scheduling

theory and hardware-software co-design for real-time applications. He
received the Outstanding Paper Award at the 38th IEEE RTSS. He is a
member of the IEEE Computer Society.

