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Abstract—Many safety-critical real-time systems are consid-
ered certified when they meet failure probability requirements
with respect to the maximum permitted incidences of failure
per hour. In this paper, the mixed-criticality task model with
multiple worst-case execution time (WCET) estimations is ex-
tended to incorporate such system-level certification restrictions.
A new parameter is added to each task, characterizing the
distribution of the WCET estimations – the likelihood of all jobs
of a task finishing their executions within the less pessimistic
WCET estimates. Efficient algorithms are derived for scheduling
mixed-criticality systems represented using this model for both
uniprocessor and multiprocessor platforms for independent tasks.
Furthermore, a 0/1 covariance matrix is introduced to represent
the failure-dependency between tasks. An efficient algorithm is
proposed to schedule such failure-dependent tasks. Experimental
analyses show our new model and algorithm outperform current
state-of-the-art mixed-criticality scheduling algorithms.

Index Terms—Multicore real-time scheduling, Mixed-
Criticality, Failure probability, Dependency.

I. INTRODUCTION

Safety-critical systems are as failure prone as any other
system, and today’s system certification approaches recognize
this and specify permitted system failure probabilities. The
underlying idea is to certify considering more realistic system
models which account for any possible behavior, including
faulty conditions, and the probability of these behaviors occur-
ring. The gap that still exists is between such enhanced models
and the current conservative deterministic analyses which tend
to be pessimistic.

The worst-case execution time (WCET) abstraction plays a
central role in the analysis of real-time systems. The WCET of
a given piece of code upon a specified platform represents an
upper bound to the duration of time needed to finish execution.
Unfortunately, even when severe restrictions are placed upon
the structure of the code (e.g., known loop bounds), it is
still extremely difficult to determine the absolute WCET. An
illustrative example is provided in [2], which demonstrates
how the simple operation “a = b + c” on integer variables
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could take anywhere between 3 and 321 cycles upon a widely-
used modern CPU. The number of execution cycles highly
depends upon factors such as the state of the cache when
the operation occurs. WCET analysis has always been a very
active and thriving area of research, and sophisticated timing
analysis tools have been developed (see [3] for an excellent
survey).

Traditional rigorous WCET analysis may lead to a result
of much pessimism, and the occurrence of such WCET is
extremely unlikely, unless under highly pathological circum-
stances. For instance, although a conservative tool would
assign the “a = b + c” operation a WCET bound of 321
cycles, a less conservative tool may assign it a much smaller
WCET (e.g., 30) with the understanding that the bound may
be violated on rare occasions under certain (presumably highly
unlikely to occur) pathological conditions.
Mixed-Criticality Systems. The gap between the actual run-
ning time and the WCET may be significantly large. Instead
of completely wasting the processor capacities within the gap,
recent researches focused on implementing functionalities of
different degrees of importance, or criticalities, upon a com-
mon platform, so that the less important tasks that may execute
in these gaps under normal circumstances, may be dropped in
occasional situations where jobs of higher importance level
execute beyond their estimated common case running time.
Much prior research on mixed-criticality scheduling (see [4]
for a review) has focused upon the phenomenon that different
tools for determining WCET bounds may be more or less con-
servative than one another, which results in multiple WCET
estimations for each individual task (piece of code). Typically
in the two-criticality-level case, each task is designated as
being of either higher (HI) or lower (LO) criticality, and two
WCETs are specified for each HI-criticality task: a LO-WCET
determined by a less pessimistic tool, and a larger HI-WCET
determined by a more conservative one, which is sometimes
larger than the LO-WCET by several orders of magnitude.
The scheduling objective is to determine a run-time scheduling
strategy which ensures that (i) all jobs of all tasks complete
by their deadlines if each job completes upon executing for no
more than its LO-WCET; and (ii) all jobs of tasks designated as
being of HI criticality continue to complete by their deadlines
(although the LO-criticality jobs may not) if any job requires
execution for more than its LO-WCET (but no larger than its
HI-WCET) to complete.
Under the current mixed-criticality model, it is assumed that
all HI-criticality jobs may require executions up to their HI-
WCETs in HI mode simultaneously. However, since WCET
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tools are normally quite pessimistic, LO-WCET are not very
likely to be exceeded during run-time.

Example I.1. Consider a system comprised of two indepen-
dent1 HI-criticality tasks τ1 and τ2, where each task is denoted
by two utilization estimations uLO ≤ uHI. The two tasks
τ1 = {0.4, 0.6}, τ2 = {0.3, 0.5}, represented by utilizations
in different modes, are to be scheduled on a preemptive unit-
speed uniprocessor. It is evident that this system cannot be
scheduled correctly under the traditional model, since the
HI-criticality utilization, at (0.6 + 0.5), is greater than the
processor capacity which is 1.

However, suppose that: (i) absolute certainty of correctness
is not required; instead it is specified that the system failure
probability should not exceed 10−6 per hour; and (ii) it is
known that the timing analysis tools used to determine LO-
criticality WCETs ensure that the likelihood of any job of a
task exceeding its LO-WCET is no larger than 10−4 per hour.

Based on the task independence assumption, the proba-
bility of jobs from both tasks exceeding their LO-WCETs is
10−4×10−4 = 10−8 per hour. Thus, we know that it is safe to
ignore the case that both tasks simultaneously exceed their LO-
WCETs. Hence, the system is probabilistically feasible, since
the total remaining utilization will not exceed:

max{0.4 + 0.3, 0.4 + 0.5, 0.6 + 0.3} = 0.9 ≤ 1.

Example I.1 gives us an intuition that with the help of
probabilistic analysis, we may be able to ignore some ex-
tremely unlikely cases, and come up with some less pessimistic
schedulability analysis – if we have the prior knowledge that
there will be at most a fixed number of HI-criticality tasks with
execution exceptions per hour, then dropping of less important
jobs may not be necessary at all.

In traditional MC models, each HI-criticality task is char-
acterized by two WCETs, cLO and cHI, which could be
derived with different timing analysis tools. By the level
of pessimism and/or other properties in the timing analysis,
such a tool usually provides a confidence for its resulting
WCET estimates. Confidence level of the execution budget
estimates is the likelihood that the estimate is true, given
the information available. However, very few work on MC
analysis has leveraged any information from the confidence
of the provisioned WCET.

Existing MC analysis usually makes the most pessimistic
assumption that every HI-criticality task may execute beyond
its LO-WCET and reach its HI-WCET simultaneously. In real
applications, the industry standards usually only require the
expected probability of missing deadlines within a specified
duration to be below some specified small value, as the
deadline miss can be seen as a faulty condition. Instead,
our work aims at leveraging probabilistic information from
the timing analysis tools (i.e. confidence) to rule out the too
pessimistic scenarios and to improve schedulability of the
whole system under a probabilistic standard.

Our work also differs from most prior work on WCET
analysis as follows: Existing timing analysis works usually

1Two events are independent if the occurence of one event does not have
any impact on the other.

analyze the WCET for a task on a per-job basis; i.e., by
focusing on the distribution of WCETs of jobs of a certain
task[3]. When it comes to analyzing a series of consecutive
jobs generated from the same task, the distribution is directly
applied. It is usually assumed that i) all jobs WCET of a
certain task obey the same distribution (identically distributed),
and ii) the WCET of a job is probabilistically drawn from
the distribution with no dependence on other jobs of the
same task (independence). While the independence assumption
holds for the WCET, as we will see in the next section,
it may not hold for the task execution time. For example,
in many applications such as video frames processing, the
execution times of processing consecutive frames of a certain
video are usually dependent. However, the event that a certain
task has ever over run its provisioned execution time in time
intervals of a certain adequate large length (e.g., an hour) is
independent from the scenario in other such intervals, and
the probability of such event should be derived from the
confidence of corresponding timing analysis tools only.
Contributions. In addition to the existing mixed-criticality
task model, this work introduces a new parameter to each task
that represents the distribution information about its WCET.
This work aims to provide schedulability analysis to instances
with this additional probability information, with respect to
the given safety certification requirement of the whole system,
which is the permitted system failure probability per hour.

We consider the scheduling of dual-criticality task systems
upon both preemptive uniprocessor and multiprocessor plat-
forms. As stated above, dual-criticality tasks are traditionally
characterized with two WCET estimations – a LO-WCET and
a larger HI-WCET. Our contributions are as follows:

(i) We propose a supplement to current MC task models:
an additional parameter for each HI-criticality task, denoting
the probability of no job of this task exceeding its LO-WCET
within an hour of execution.

(ii) We further generalize our notion of system behavior
by allowing for the specification of a permitted system failure
probability per hour, denoting an upper bound on the proba-
bility that the system may fail to meet its timing constraints
during any hour of running.

(iii) We derive a novel scheduling algorithm (and an as-
sociated sufficient schedulability test) for a given MC task
set and an allowed system failure probability on uniprocessor
platforms. We seek to schedule the system such that the
probability of failing to meet timing constraints during run-
time is guaranteed to be no larger than the specified allowed
system failure probability.

(iv) We further extend our uniprocessor scheduling tech-
nique to multiprocessor platforms by combining with the
partitioned scheduling techniques.

(v) While our initial scheduling technique focuses on inde-
pendent task sets, we further introduce a covariance matrix
in the system model to represent the failure-dependencies
between tasks in a task set, and we propose an efficient
scheduling technique to schedule task sets with given failure-
dependencies.

We emphasize that our algorithm, in the two criticality level
case, requires just one probabilistic parameter per task – the
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probability that the actual execution requirement will exceed
the specified LO-WCET in an hour. We believe our scheduling
algorithm is novel in that it is, to our knowledge, the first MC
scheduling algorithm that makes scheduling decisions (e.g.,
when to trigger a mode switch) based not only on release
times, deadlines, and WCETs, but also on the probabilities
drawn from PTA tools (see, e.g., [5] [6] [7]).

Organization. Sec. II introduces the model and shows its
advantage by a motivating example. Sec. III formally defines
probabilistic schedulability and related concepts. In Sec. IV,
we propose a clustering-based scheduling strategy, and the
corresponding schedulability test, while Sec. V presents the
multiprocessor scheduling algorithm and the corresponding
schedulability test. In Sec. VI, we introduce the covariance
matrix to represent the failure-dependencies between the tasks
and present the scheduling technique for such task sets, and
finally, Sec. VII performs their experimental evaluations and
comparisons. Sec. VIII elaborates the existing results and
Sec. IX concludes and suggests future work.

II. MODEL

We start out considering a workload model consisting of in-
dependent implicit-deadline sporadic tasks, where the deadline
and the period of a task share the same value. In Sec. VI, we
extend this model to allow for pairwise dependencies between
tasks. Throughout this paper, an integer model of time is
assumed — all task periods are assumed to be non-negative
integers, and all job arrivals are assumed to occur at integer
instants in time.

Before detailing our task model, a few statistical notions
need to be introduced in order to clarify previous and next
observations. Given a task τi, its pWCET estimate comes from
a random variable (the worst-case execution time distribution),
notably continuous distributions2 denoted by Ci. Equivalent
representations for distributions are the probabilistic density
functions (pdfs), fCi , the Cumulative Distribution Functions
(CDFs) FCi , and the Complementary Cumulative Distribution
Functions (CCDFs), F ′Ci . In the following, calligraphic upper-
case letters are used to refer to probabilistic distributions, while
non calligraphic letters are used for single value parameters.

The CCDF representation relates confidence to probabil-
ities; indeed, from F ′Ci(c(LO)) we have the probability of
exceeding cLO. The confidence is then for c(LO) being an
upper-bound to task execution time. The WCET threshold,
simply named pWCET or WCET in the rest of the paper,
is a tuple 〈c(LO), p(LO)〉, where the probability p(LO) sets the
confidence (at the job level) of exceeding c(LO), p(LO) =
F ′C(c(LO)) = P (C > c(LO)). By decreasing the probability
threshold p(LO), the confidence on the upper-bounding worst-
case, c(LO), increases.

Given the event A that a job exceeds its threshold and its
probability of happening pA = P (Ci > c(LO)); given B the
event that another job exceeds its threshold (in a different
execution interval) with pB = P (Ci > c(LO)) its probability of

2The timing analysis that makes use of the EVT, by definition provides
continuous distributions as pWCET estimates [5]; they are then discretized,
to ease their representation, by assigning them a discrete support.

happening. With separate jobs as well as separate execution
intervals, and considering WCETs, the conditional probability
P (A|B) is equal to P (A), thus the joint probability is

P (A,B) = P (A|B)× P (B) = P (A)× P (B), (1)

due to the independence between WCETs. Projecting the per
job probability threshold p(LO) = F ′Ci(c(LO)) to one hour task
execution interval, we make use of the joint probability of all
the exceeding threshold events within the one hour interval.
The joint probability is

1− P (Ci ≤ c(LO), Ci ≤ c(LO), Ci ≤ c(LO), . . . , Ci ≤ c(LO)), (2)

as the probability of at least one task job exceeding its
thresholds c(LO). With full independence, the probability of
exceeding threshold in one hour would be at most 1 −
FCi(c(LO)) × bTi/3, 600, 000c, with the task τi period Ti
expressed in msec.

III. PROBABILISTIC SCHEDULABILITY

System failure probability Fs. In our model, an allowed
system failure probability FS is specified. It describes the
permitted probability of the system failing to meet timing
constraints during one hour of execution3. FS may be very
close to zero (e.g., 10−12 for some safety critical avionics
functionalities)4.
Failure probability. A failure probability parameter fi is
added to HI-criticality task τi, denoting the probability that the
actual execution requirement of any job of the task exceeding
ci(LO) (but still below ci(HI)) in one hour (i.e., the adequate
long time interval we assumed in this paper). fi depends on a
failure distribution Fi(t) that describes the task τi probability
of failure up to and including time t. Since Fi(t) would refer
to time (interval) and to task execution, it is going to be the
one we computed for one hour interval or any another interval,
Eq. (2). Thus, fi can be directly derived from FCi

5.
A HI-criticality task is represented by: τi =

([ci(LO), ci(HI)], fi, Ti, χi), where Ti is the task period
and χi ∈ {LO, HI} is the criticality level of the task;
LO-criticality tasks continue to be represented with three
parameters as before. This enhanced model is essentially
asserting, for each HI-criticality task τi, within a time interval
of one hour, no job of τi has an execution greater than ci(HI)
and the probability of any job of τi having an execution
greater than ci(LO) is fi — we would expect fi to be a
very small positive value. In our work we assume ci(HI)
the deterministic WCET, 〈ci(HI), 0〉, while 〈ci(LO), fi > 0〉
the probabilistic WCET with ci(LO) ≤ ci(HI). Normally we
do not guarantee higher assurance for LO-criticality tasks
(than HI-criticality ones), and thus only ci(LO) is adopted
for them. In traditional MC model, the ci(LO) and ci(HI)

3Failure probability are easily referable to failure rate, being careful at
considering the failure rate as a probability.

4From DO-178B/C at the highest DAL - Level A, the acceptable failure
rate is below 10−9/h.[8]

5It is possible to apply existing timing analysis tools to determine fi – by
monitoring executions of a piece of code for enough length, one may derive
a stable pWCET, or may need to adapt EVT in case there are significant
changes of execution time (to guarantee the safety of pWCET).
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values are chosen from the worst-case execution time
distribution. However, the corresponding probabilities, fi and
0 respectively, are omitted from the task model. The proposed
task model retains the probability information associated with
the WCET estimates.

Definition 1 (MC Task Instance). A MC task instance I
is composed of a MC task set τ = {τ1, τ2, . . . , τn} and a
system failure requirement FS ∈ (0, 1). (Although FS may be
arbitrarily close to 0, FS = 0 is not an acceptable value —
“nothing is impossible.”)

Let nHI ≤ n denote the number of HI-criticality tasks in
τ . We assume that the tasks are indexed such that the HI-
criticality ones have lower indices; i.e., the HI-criticality tasks
are indexed 1, 2, . . . , nHI.

We seek to determine the probabilistic schedulability of any
given MC task instance:

Definition 2 (probabilistic schedulability). A MC task set is
strongly probabilistic schedulable by a scheduling strategy if it
possesses the property that upon execution, the probability of
missing any deadline is less than FS . It is weakly probabilistic
schedulable if the probability of missing any HI-criticality
deadline is less than FS . (In either case, all deadlines are
met during system runs where no job exceeds its LO-WCET.)

That is, if a schedulability test returns strongly schedulable,
then all jobs meet their deadlines with a probability no less
than 1− FS , while weakly schedulable only guarantees (with
probability no less than 1 − FS) that HI-criticality jobs meet
their deadlines. Moreover, similar to all MC works, for either
strongly or weakly probabilistic schedulable, all deadlines are
met when all jobs finish upon executing their LO-WCETs.
Again, FS comes from the natural need of some system
certifications, while fi is the additional information for each
task that we need to derive from WCET estimations to achieve
such probabilistic certification levels.

A. On the WCET Dependencies

In our model, the failure probability per hour of each
task fi represents the probability of any job of the task τi
exceeding its LO-WCET. Thus dependences between tasks and
task executions could have a strong impact on fi. We hereby
detail how we intend to cope with statistical dependence.

In [9] it has been shown that neither probabilistic depen-
dence among random variables nor statistical dependence of
data implies the loss of independence between tasks’ pWCETs
or WCET estimates. The WCET is an upper-bound to any
execution time, which makes the important consequence on
the independence between WCETs: jobs and tasks modeled
with WCETs are independent because WCETs already embed
dependence effects. Although both execution bounds (LO-
WCET, HI-WCET) are so far called worst-case execution
time estimations, the LO-WCET may also serve as an execu-
tion time upper-bound, where dependence between tasks and
within tasks needs to be more carefully accounted for (see
[10] for the original definition of MC task model).

Each MC task may generate an unbounded number of jobs.
Since jobs generated from the same task set typically represent

execution of the same piece of code, and consecutive such jobs
could experience similar circumstances, in the definition of
the failure probability fi (of a task τi), we naturally assume
dependence among jobs of the same task; i.e., it represents
the likelihood that the required execution time of any job
generated within an hour by τi will exceed ci(LO). In [11],
[12] it has been shown that real safety-critical embedded
systems have natural variability on the task execution time,
thus it is reasonable to assume independence or extremal
independence between jobs.

Concerning task dependencies, we can cope with the de-
pendence by specifying the task pairwise dependence model.
Assuming we are given a list of pairs (τi, τj) indicating
that (WC)ETs of these two tasks may be dependent on each
other. It means that the probability of them both exceeding
their LO-WCET is no longer the product of their individual
probabilities. By knowing P (Ci > ci(LO), Cj > cj(LO)) we
are able to model (τi, τj) dependence including execution
time task dependencies in our framework, Section IV-A. For
many real-world systems, it is reasonable to assume that many
(or most) task pairs do not have such dependencies to each
other (although at the execution time level), since the limited
impact of one task to another in a mixed-critical partitioned
system. In Sec. IV and V, we consider inter-task independence
(no pairwise failure-dependencies) to schedule the MC task
set on uniprocessor and multiprcessor platforms respectively.
Furthermore, in Sec. VI we introduce a covariance matrix to
represent the pairwise failure-dependencies and present the
corresponding scheduling technique.

To summarize, intra-task as well as inter-task job depen-
dences are covered by our model.

B. Utilization Costs

The notion of additional utilization cost, defined below,
helps quantify the capacity that must be provisioned under
HI-criticality mode.

Definition 3 (additional utilization cost). The additional uti-
lization cost of HI-criticality task τi is given by

δi = (ci(HI)− ci(LO))/Ti. (3)

Since we consider EDF schedulability instead of fixed-
priority, we would like to know whether, and how likely system
utilization may exceed 1: (i) if it is extremely unlikely that the
total HI-criticality utilization exceeds 1 (weakly probabilistic
schedulable), we could assert a system that is infeasible in
traditional MC model to be probabilistic feasible; (ii) if it
is extremely unlikely that total system utilization exceeds
1 (strongly probabilistic schedulable), we could decide not
to drop any LO-criticality task even if some HI-criticality
tasks accidentally suffer from failures (that they require more
execution time than expected).

Example I.1 has shown an infeasible task set (under tradi-
tional MC scheduling) being weakly probabilistic schedulable
under our model. As seen from the definitions, existing mixed-
criticality systems are often analyzed under two modes – the
HI mode and the LO mode, and mode switch is triggered when
any HI-criticality job exceeds its LO-WCET without signaling
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finishing. Upon such a mode switch, deadlines of all LO-
criticality jobs will no longer be guaranteed. A natural ques-
tions arises – is such sacrifice (dropping all LO-criticality jobs)
necessary whenever a HI-criticality job requires execution for
more than its LO-WCET? The following example illustrates
the potential benefits in terms of enhanced schedulability of
the proposed probabilistic MC model.

Example III.1. Consider a system composed of the three
independent MC tasks that τ1 = {[2, 3], 0.1, 5, HI}, τ2 =
{[3, 4], 0.05, 10, HI}, and τ3 = {[1, 1], 10, LO}, to be scheduled
on a preemptive uniprocessor, with desired system failure
probability threshold of FS = 0.01.

Since HI-utilization of the system is uHI = 3/5 + 4/10 = 1,
any deterministic MC scheduling algorithm will prioritize τ1
and τ2 over the LO-criticality task τ3, and drop τ3 if any HI-
criticality job exceeds its LO-WCET.

With the additional probability information provided in our
richer model, however, more sophisticated scheduling and
analysis can be done. Recall from the definition of fi, τ1 has a
probability of no larger than 0.1 to exceed a 2-unit execution
within an hour, while the probability of any job in τ2 exceeding
a 3-unit execution within an hour is 0.05. Under the task-level
independence assumption, the probability of jobs from both
HI-criticality tasks requiring more than their LO-WCETs in
an hour (P (x1 = x2 = 1) = P (x1 = 1) × P (x2 = 1) =
0.1× 0.05 = 0.005) is smaller than FS6

Hence, in the schedulability test, we do not need to consider
the case that both HI-criticality tasks exceed their LO-WCETs
simultaneously. Moreover, either one of them exceeding its
LO-WCET will not result in an over-utilized system – a HI-
criticality “server” with budget 0.2 and period 1 can be added
to provide the additional capacity (over and above the LO-
WCET amount). This server will be scheduled and executed
as a virtual task, and both HI-criticality tasks may run on
the server. The additional budget of 0.2 is sufficient to handle
either δ1 = 0.2 or δ2 = 0.1, which is necessary when one
of the HI tasks exceed their LO-WCET. The server needs not
provide δ1 + δ2 = 0.3 budget, since the probability of such an
event is less than Fs.

The total system utilization thus provisioned for the HI-
criticality tasks is 2/5+3/10+0.2/1 = 0.9; upon provisioning
an additional utilization of 1/10 = 0.1 for the LO-criticality
task τ3, the total utilization becomes 1. Thus under any optimal
uniprocessor scheduling strategy, e.g., EDF, the failure (any
deadline miss) rate of the system in any hour will be no
greater than FS , and the MC instance is strongly probabilistic
schedulable under this scheduling strategy (EDF plus the HI-
criticality server) for the specified threshold FS .

IV. SCHEDULING STRATEGY

A. The LFF-Clustering Algorithm

In this subsection, we present our strategy for scheduling
independent preemptive MC task instances, by combining

6In general, we cannot simply ignore an event when its failure probability
is below FS . Instead, we do not need to consider a set of events only when
the sum of their failure probability is below FS . More details on this can be
found in Section III.

HI-criticality tasks into clusters intelligently, and provide a
sufficient schedulability test for it. Consider what we have
done in Example III.1 above. We essentially: (i) conceptually
combined the HI-criticality tasks τ1 and τ2 into a single
cluster, provisioning an additional server into the system to
accommodate their possible occasional HI-mode behaviors
(execution beyond their LO-WCETs); and (ii) performed two
EDF schedulability tests: one considering only HI-criticality
tasks (with LO-WCETs) and the server, and the other also
considering the LO-criticality task (τ3). Since both tests suc-
ceed, we declare strongly probabilistic schedulable for the
given instance; we would have declared weakly probabilistic
schedulable if the second schedulability test had failed while
the first one succeeded.

The technique that was illustrated in Example III.1 forms the
basis of the scheduling strategy that we derive in this section.
To obtain a good upper bound to HI-criticality utilization of
the system, we combine tasks into clusters – suppose that the
nHI HI-criticality tasks have been partitioned into M clusters
G1, G2, ..., GM , and let yi ∈ {1, 2, ...,M} denote to which
cluster (number) task τi is assigned.

Definition 4. (Failure probability of a cluster) Failure of a
cluster Gm is defined as jobs generated by more than one
tasks in a single cluster exceeding their LO-WCETs within an
hour. The probability of a failure occurring in cluster m is
denoted as gm and is given by

gm
def
= 1−

∏
i|yi=m

(1− fi)−
∑

j|yj=m

fj

∏
i|yi=m(1− fi)

1− fj
, (4)

where the second term of right hand side is the probability
of no task (in the cluster) exceeding its LO-WCET, and the
last term represents the probability of exactly one of the tasks
exceeding its LO-WCET in an hour.

Lemma 1. If gm < FS/M holds for every cluster Gm, then
the probability of having no failure in all clusters is greater
than (1− FS).

Proof. Since clusters do not overlap with each other (each
HI-criticality task belongs to a single cluster) and thus are
independent of each other, the probability of having no failure
in all clusters is given by the product of each cluster being
failure-free, which is:

∏M
m=1(1−gm) >

∏M
m=1(1−FS/M) =

(1− FS/M)M ≥ 1− FS (From Binomial Theorem).

Lemma 1 provides a safe failure threshold FS/M for each
cluster; i.e., the rule for forming clusters is gm < FS/M ,
where M is the current number of clusters.

The additional utilization cost of a cluster Gm is defined
to be equal to the additional utilization cost (δi) of the task
within the cluster with the largest δi value; i.e.,

∆m
def
= max

i|τi∈Gm

δi. (5)

The total system additional utilization cost is given by the
sum of additional utilization cost of all M clusters;

∆
def
=

M∑
m=1

∆m. (6)
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A critical observation is that, if a task τi with additional
utilization cost δi has been assigned to a cluster, assigning any
other task τj with δj ≤ δi to the cluster will not increase the
additional utilization cost. To minimize the total additional uti-
lization cost of the entire task set, we therefore greedily expand
existing clusters with tasks of larger additional utilization cost
while ensuring that the relationship gm < FS/M continues
to hold, which leads to the Largest Fit First (LFF)-Clustering
algorithm.

Algorithm 1: Algorithm LFF-Clustering
Input: FS , {fi}nHI

i=1, {δi}nHI
i=1

Output: maximum total additional utilization cost ∆

begin
Sort the tasks in non-increasing order of δi;
m← 1, M ← nHI, yi ← 0 for i = 1, ..., n;
while

∏nHI
i=1 yi = 0 (an unassigned task exists) do

∆m ← 0 (additional utilization of each cluster);
for i← 1 to nHI do

if yi > 0: continue;
yi ← m, M ←M − 1;
if gm ≥ FS/(M +m): yi ← 0, M ←M + 1;

end
∆m ← maxi|yi=m δi; m← m+ 1, M ←M + 1;

end
return

∑M
m=1 ∆M ;

end

This algorithm greedily expands each existing cluster with
unassigned tasks while the condition gm < FS/M holds;
while a new cluster is created only if it is not possible to assign
a task to any current cluster without violating the condition
(gm < FS/M).

Remark 1. Similar to what has been done in [13] and [14],
we may achieve a precise distribution to the total utilization
of all tasks by applying the convolution operation ‘⊗’, which
results in an exponential (O(2nHI ), to be precise) running time
(see Appendix B). The sufficient schedulability test based on
the LFF-Clustering algorithm runs in O(n2HI) time, where nHI

is the number of HI-criticality tasks.

Remark 2. In the case that all tasks share the same fi value,
the schedulability test based on LFF-Clustering becomes nec-
essary and sufficient.

Run-Time Strategy. During execution, a HI-criticality server
τs with utilization ∆ and a period of 1 tick is added to the
task system. The server is represented as τs = {∆, 1, HI}.

We need the server period as 1 tick because the mechanism
and the analysis will not work if there is release or deadline
within a server period. At any time instant that the server
is executing, if there are active7 HI-criticality jobs, they are
executed following earliest deadline first policy; if not, then

7A job is active if it is released and incomplete at that time instant.

the current server job is dropped8. All jobs including the server
are scheduled and executed in EDF order, and a job is dropped
at its deadline if it is not completed by then.

Although we introduce a server task with period of 1,
preemption does not necessarily happen that often. The goal of
the sever task with utilization ∆ is to preserve a “bandwidth”
of at least ∆ for HI- criticality jobs if the HI-criticality ready
queue is not empty. There are three situations to be considered:

Situation 1: The job with the earliest deadline is a HI-
criticality job. In this situation, we execute the HI-criticality
job with 100% processor share, and no more preemption is
incurred by the server.

Situation 2: The job with the earliest deadline is a LO-
criticality job and the HI-criticality ready queue is empty. In
this situation, we execute the LO-criticality job with 100%
processor share, and hence there is no additional preemption
in this situation either.

Situation 3: The job with the earliest deadline is a LO-
criticality job and the HI-criticality ready queue is not empty.
In this situation, we want to preserve a processor share of ∆
for HI-criticality jobs and to execute the LO-criticality ones
with the rest 1 −∆ of the processor capacity. Therefore, the
server creates preemptions every time unit.

That is, only in Situation 3, our algorithm “introduces”
extra preemptions due to the server scheme, and normal EDF
scheduling is applied in other cases. One may claim that such
server allocation scheme may results in more preemptions
than the approaches where the server capacity is only used
for overruns. Actually this is because that the goal here is
trying not to drop LO-criticality tasks even when a few HI-
criticality ones exceed their LO-WCETs. Thus, in order to
guarantee HI-deadline being always met, we have to make
certain use of the server even when no HI-criticality behavior
is detected – simply taking “precautions”. Alternative way
such as assigning HI-criticality jobs virtual deadlines may lead
to fewer preemptions, at a cost of losing the performance of
schedulability ratio (see Sec. VII).

B. Schedulability Test

It is evident that for strongly probabilistic schedulable
(i.e., to ensure that the probability of missing any deadline
is no larger than the specified system failure probability
FS – see Definition 2), it is (necessary and) sufficient that(∑n

i=1 ci(LO)/Ti+∆
)

must be no larger than the capacity of
the processor (which is 1).

For weakly probabilistic schedulable (i.e., to ensure that
the probability of missing any HI-criticality deadline is no
larger than FS – again, see Definition 2), it is necessary that(∑

i|χi=HI ci(LO)/Ti + ∆
)

must be no larger than 1 as well.
The following theorem helps establish a sufficient condition
for ensuring weakly probabilistic schedulable:

Theorem 1. If no job exceeds its LO-WCET, then no deadline
is missed if

8Since an integer model of time is assumed (i.e., all task periods are integers
and all job arrivals occur at integer instants in time), and the server has a
period of 1, it is safe to drop the current job of the server if there are no
active HI-criticality jobs since there can be no HI-criticality job releases in
the current period of the server.
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∆ ·
(

1−
∑

i|χi=HI

ci(LO)

Ti

)
+

n∑
i=1

ci(LO)

Ti
≤ 1. (7)

Proof. Please refer to the conference version [1].

Theorem 1 yields the schedulability test pMC (Algorithm
2), while Theorem 2 below establishes its correctness.

Algorithm 2: Schedulability Test pMC
Input: τ, FS
Output: schedulability

begin
Calculate δi values for all HI-criticality tasks in τ ;
uLO ←

∑n
i=1 ci(LO)/Ti;

u′LO ←
∑
i|χi=HI ci(LO)/Ti;

∆← LFF-Clustering(FS , {fi}nHI
i=1, {δi}nHI

i=1);
if uLO + ∆ ≤ 1 then

return strongly probabilistic schedulable;
else if u′LO + ∆ ≤ 1, ∆ · (1− u′LO) + uLO ≤ 1 then

return weakly probabilistic schedulable;
return unknown;

end

Theorem 2. The schedulability test pMC is sufficient in the
following sense: If it returns strongly probabilistic schedu-
lable, the probability of any task missing its deadline is
no greater than FS ; and if it returns weakly probabilistic
schedulable, the probability of any HI-criticality task missing
its deadline is no greater than FS , and no deadline is missed
when all jobs finish upon execution of their LO-WCETs.

Proof. Please refer to the conference version [1].

The schedulability test pMC returns strongly probabilistic
schedulable if we are able to schedule the system such that
the probability of missing any deadline is at most the specified
threshold FS , or weakly probabilistic schedulable if we are
able to schedule the system such that the probability of missing
any HI-criticality deadline is at most FS . We will then use EDF
to schedule and execute the task set with LO-WCETs and the
additional server task τs = {∆, 1, HI}.

In the case that the schedulability test pMC returns un-
known, we are not able to schedule the system using the pro-
posed probabilistic analysis technique. Normally it is because
either the safety requirement of the system is too high; (i.e., the
threshold FS is too small), or the WCET estimations are not
precise enough for HI-criticality tasks; (i.e., the fi values are
not small enough compared to FS (and nHI), and/or the ci(LO)
values are not differentiable enough against ci(HI) values).

V. THE MULTI-PROCESSOR CASE

Multi-processor devices are becoming more and more pop-
ular, while it is becoming more efficient to schedule real-
time tasks in multi-processor platforms to achieve better
throughput. Considering the pragmatic application of applying
probabilistic scheduling, implementing a similar technique
in multi-processors will dissipate the pessimistic assumption
of existing scheduling mechanism and improve the resource

efficiency. This section proposes a multi-processor scheduling
technique of MC tasks considering the failure probability
based on an partitioned-based approach.

The partitioned-based scheduling of implicit-deadline spo-
radic task system can be converted into a bin-packing prob-
lem [15]. Hence, each processor is modeled as a bin of
capacity one, and each task τi has the capacity of size ui
(its utilization). As bin packing is NP-Hard [15], heuristics
can be applied for solving the problem. As our system model
considers MC tasks with failure probability, we need to modify
the task sets to fit into a traditional bin packing heuristics.
Here we briefly discuss three most-common heuristics (First-
Fit, Best-Fit, and Worst-Fit) and then present an algorithm to
schedule our system model in multi-processor environments.
Different Allocation Heuristics. For partitioned scheduling,
most common heuristics are First-Fit (FF), Best-Fit (BF), and
Worst-Fit (WF). Note that Reasonable Allocation Decreasing
(RAD) algorithms are proven to provide optimal utilization
bound [16]. Hence we adapt such approach and thus the three
algorithms discussed above would have been called First-Fit
Decreasing (FFD), Best-Fit Decreasing (BFD), and Worst-Fit
Decreasing (WFD) partitioned algorithms.
Task Allocation. To schedule tasks in our proposed system
model in multiprocessor platforms, we present a slightly
different scheduling approach than the one for uniprocessor
in Sec. IV. Initially, all the tasks are grouped into different
clusters using the same LFF-Clustering algorithm presented
before. Then we schedule the clusters on different processors
by using different RAD partitioned heuristics. Note that, for
every cluster, there is an additional utilization cost ∆m which
is also needed to be allocated in case any task of the cluster
exceeds its LO-criticality WCET. For every processor, we need
to allocate a server which has a utilization equal to the sum
of additional utilization cost ∆m of all the clusters allocated
in that processor. For example, while considering scheduling
three clusters on two processors, if the Clusters 1 and 2
are allocated on Processor 1 and the Cluster 3 is allocated
on Processor 2, then we also need to allocate a server with
utilization (∆1 + ∆2) to Processor 1, and another server with
utilization ∆3 to Processor 2. In short, while applying the
partitioned heuristic, we need to accommodate the demand
of server utilization as well. Specifically, the LO-criticality
tasks are considered for allocation once all the HI-criticality
clusters and their ∆s are allocated, using the same partitioning
techniques used for the HI tasks.

A. Schedulability Analysis
The schedulability of the task set is determined in two

different steps. First, we have to check whether the tasks can be
properly allocated to the available processors. Upon successful
allocation, we need to check whether the correctness of each
uni-processor MC task system can be guaranteed in run-
time even under worse conditions. In each step, there is
a possibility that either only HI tasks or all the tasks are
allocated/schedulable. Based on the allocation, the task sets
can be strongly allocated or weakly allocated. If all the HI-task
clusters, ∆s, and LO-tasks are allocated then we call it strongly
allocated task set. If only the clusters and ∆s are allocated
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properly but not the LO-tasks then we call it weakly allocated
task set. If neither, then the task sets cannot be considered
for further schedulability test. Upon successful allocation, we
need to check the schedulability of the allocated task set on
all the processors. The schedulability test is done by following
the similar technique used for the uniprocessor scheduling.

Before going into the schedulability conditions, it is neces-
sary to introduce the parameter α and β. α is the utilization
factor of a task set, i.e., the maximum utilization among all
tasks. β is the maximum number of tasks of α which fit into
one processor under EDF scheduling. β can be expressed as
a function of α

β = b1/αc (8)

Lopez et al. [16] proved that for multiprocessor partitioned
scheduling using EDF, FFD, BFD, and WFD algorithms
provide the optimal upper bound, which is the following:

Lemma 2. [16] Let U(N,α) denote the utilization bound
to schedule N tasks using RAD algorithms on m processors
and α represent the utilization factor for the task set, then
U(N,α) = βN+1

β+1 when m > βN .

Task Allocation Conditions. For the HI-tasks we need to
allocate each cluster with its ∆m in the same processor as
in the partitioned scheduling, a task is always needed to
be executed on the same processor which it was initially
allocated. Lets assume there are M clusters with utilization
UC1, UC2, . . . , UCM with the corresponding delta values as
∆1,∆2, . . . ,∆M . As each cluster is to be allocated to a
processor with its corresponding ∆, let’s define HI mode
utilization factor αh and overall utilization factor αs below:

αh = max
i∈1,2,...,M

(UCi + ∆i); αs = max(αh, αl); (9)

where αl is the utilization factor for the LO-tasks.
Furthermore, corresponding β values can be defined:

βh = b1/αhc; βs = b1/αsc (10)

Theorem 3. All the HI-criticality clusters along with their
server allocation (∆) and all the LO-criticality tasks can be
allocated (i.e., strongly allocated task-set) to K processors if
the following two condition holds,

K > βs(M + n); Us ≤
βs(M + n) + 1

βs + 1
; (11)

where Us is the sum of the utilization of all clusters, their
∆s and LO-criticality tasks.

Proof. Here, each cluster and LO-criticality tasks can be seen
as a single entity with specific utilization demand. The total
number of entity here is (M + n). Thus according to Lemma
2, the maximum utilization bound can be βs(M+n)+1

βs+1 . So for
a successful allocation, the system utilization Us must be no
greater than the utilization bound.

Theorem 4. All the HI-criticality clusters along with their
server allocation (∆) can be allocated (i.e., weakly allocated

task-set) to K processor if the following two condition holds,

K > βhM ; U =
βhM + 1

βh + 1
; (12)

Proof. The proof is very similar to Theorem 3 (omitted).

Partition Approach and Its Correctness. Upon successful
allocation (either strongly or weakly allocated), the schedula-
bility of the task set can be determined by running the pMCMP
(probabilistic Mixed-Criticality on MultiProcessor) algorithm
(presented in Algorithm 3). pMCMP algorithm basically use
pMC algorithm presented in Sec. IV on all the processors to
check the schedulability. The result of pMCMP can be strongly
schedulable, weakly schedulable, or non-determined. If a task
set is only weakly allocated on the available processors, the
task set can never be considered as strongly schedulable.

Algorithm 3: pMCMP algorithm
Data: Allocation of HI-criticality ∆is and LO-criticality task-set

τi on each processor κi

Result: The schedulability of the task set
if ∀κi, pMC returns strongly-schedulable then

return strongly-schedulable;
else if ∀κi, pMC returns weakly-schedulable then

return weakly-schedulable;
else

return non-determined;
end

Theorem 5. Algorithm pMCMP is correct. I.e., if pMCMP
returns strongly probabilistic schedulable, the probability of
any task missing its deadline is no greater than FS; while if
pMCMP returns weakly probabilistic schedulable, the prob-
ability of any HI-criticality task missing its deadline is no
greater than FS , and no deadline is missed when all jobs
finish upon execution of their LO-WCETs.

Proof. After a successful allocation, each processor has a
specific set of ∆’s and LO-criticality tasks assigned for
scheduling. Let UC1, UC2, . . . , UCM denote the number of
clusters assigned to K processors (note that there are total M
number of clusters). Hence, each processor assignment can be
seen as a subset problem of uniprocessor scheduling presented
in [1].

For an arbitrary processor i, similar to the proof of Eqn.
5.2 [1], the failure probability of processor i is no greater that
(UCi×FS)/M . As the tasks are independent, the total failure
probability of the system is no greater than

∑M
i=1(UCi ×

FS)/M = FS .

VI. CONSIDERING FAILURE DEPENDENCY

In previous sections, we have considered only independent
tasks, i.e., the failure of a task τi is independent to whether
another task fails or not. In other words, whether a HI task
fails to complete within its LO-WCET budget does not affect
the completion of other HI tasks. On the contrary, most
existing work in MC scheduling assumed that all HI tasks
may exceed their LO-WCET budgets at the same time. That
means failure probabilities of all HI tasks are dependent on
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each other, which is rather a pessimistic assumption in certain
scenarios. However, in practical systems, not every failure
probability is independent. It is possible that while most of the
HI tasks are independent, a certain amount of task is directly
dependent to each other with respect to their probability of
exceeding LO-WCET, i.e., once a HI task exceeds the LO-
WCET, other dependent tasks may also exceed their LO-
WCET budgets, regardless of their own failure probability.
Techniques such as fault tree analysis [17], [18] can be used
to analyse tasks for failure dependency. With the dependency
information provided as input, we propose a covariance matrix
representation and propose a graph-coloring based partitioning
approach to handle such a scenario.

A. Covariance Matrix

We introduce a covariance matrix to represent the depen-
dencies between each pair of tasks regarding their potential
failures to complete before LO-WCETs. In Table I, a sample
covariance matrix is shown for eight HI-criticality tasks. Here
the covariance matrix is binary, where for each item, 0 repre-
sents the independence between two tasks while 1 represents
that there is dependency on failure probability between two
tasks. Note that, 1 does not mean fully dependant, while
is a safe (although pessimistic) measurement in terms of
schedulability guarantees. As a result, if there is a dependency
between two tasks, we assume that upon exceeding the LO-
WCET budget of one task, the other dependent task/s will also
exceed their LO-WCET budget simultaneously.

TABLE I: Covariance matrix of a set of eight tasks.

τ2 τ3 τ4 τ5 τ6 τ7 τ8
τ1 0 0 0 1 0 0 0
τ2 - 1 0 0 1 0 0
τ3 - - 0 0 1 1 0
τ4 - - - 0 0 0 0
τ5 - - - - 0 0 1
τ6 - - - - - 0 0
τ7 - - - - - - 0

Remark 2. Failure dependency is not statistical dependence.

Definition 5. (Failure-dependent tasks) When scheduling a
pair of tasks on the same processor, if one of those tasks
exceeds its LO-WCET and, the other one’s failure likelihood
becomes larger than the given value, or the other way around,
then two tasks are considered failure-dependent.

In other words, it is safe to assume that both of the
tasks exceed their LO-WCET simultaneously. Take the task
set shown in Table I as an example, τ2 and τ3 are failure
dependent but τ1 and τ2 are not. Note that two tasks are
failure-dependent only if those are scheduled on the same
processor. Upon scheduling on different processors, those tasks
can be executed independently since we conduct partitioned
scheduling and assume isolation between processors.

B. Task Isolation using Graph Model

Similar to the clustering problem without covariance, find-
ing the optimal clustering for the new problem is also NP-
Hard. Thus, we propose a heuristic to find an efficient solution

to the problem. From the covariance matrix, we can visualize
a task set as a graph problem. We can assume the tasks as
a node of the graph and the failure dependencies as edges
between the nodes, i.e., if there is a 1 between two tasks, we
can consider an edge between those two nodes (tasks). Note
that, if the graph is fully connected, the problem will become a
traditional MC scheduling problem as in our strategy, we will
need to create a cluster for each task. In practical scenarios,
the graph is assumed to be a disconnected graph as there can
be both independent and failure dependent tasks in a system.
Hence there will be multiple islands in the graph which consist
of interdependent tasks.

Definition 6. (Transitive failure-dependency.) If two tasks are
not directly dependent but have a common failure-dependent
task, then we call the failure-dependency between the first two
tasks transitive failure-dependency.

For example, τ1 and τ8 in Table I are not directly failure-
dependent, but they both are dependent with τ5. Hence, if we
partition these three tasks into a same processor, they may
exceed their LO-WCET budgets simultaneously. However, if
we schedule τ5 in a separate processor, τ1 and τ8 will have
no failure-dependency and can act as independent task pairs.

Upon transforming the covariance matrix into a graph, we
apply our clustering heuristics. In the aforementioned LFF-
Clustering algorithm we sorted all the tasks in descending
order based on their additional utilization δi value and we keep
adding the tasks one by one to clusters until the Lemma 1 is
not violated. While scheduling the task set including failure-
dependent tasks, we isolate the tasks of each island into m
(number of processors) number of groups in a way such that
there are no failure-dependent tasks in any group. By doing
that, we ensure that no two inter-dependent tasks are grouped
into a single processor.

C. Isolating Tasks of Each Island

Once we convert the task set into a graph with different
islands, m number of groups of independent tasks are created.
One can visualize this problem as a m-coloring graph problem,
where the nodes of a graph are colored with at most m
number of colors with no two nodes of same color adjacent
to each other (i.e., there is no edge between them). If we can
properly color the graph with m or less number of colors
then we can easily allocate nodes with the same color into
the same processor. Unfortunately, the m-coloring problem is
an NP-Complete problem [19]. As a result, we will need an
approximate algorithm to solve such problems. Furthermore,
it may not always be possible to color the subgraph in each
island with m colors by using the approximate algorithm (even
by using an optimal algorithm). Hence, in this subsection
we propose a modified approximate algorithm to color each
subgraph with m colors. To accomplish this goal, we adapt
a modified greedy coloring algorithm. As our base greedy
coloring algorithm, we use the Welsh Powell Algorithm [20]
(also known as Largest-First (LF) coloring algorithm).

In LF coloring, node with the highest degree9 will be
colored first, and then the adjacent nodes will be colored and

9degree of a node is the number of edges connected to the node.
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corresponding edges are deleted. By doing this, we remove
the dependencies of other nodes with the colored nodes. At
any step, if the sum of the utilizations exceeds one, we stop
coloring for that particular color and leave that node for
the next coloring iteration. However, when we already use
m − 1 colors and only one color is left to use, we need to
contract (merge) the remaining failure-dependent tasks. When
at the last processor, there are still some nodes which are
connected (failure-dependent), we contract those nodes in a
single node and use the uLO

i and δi of the node as the sum
of the corresponding values of all the connected nodes. The
steps of the coloring technique are shown in Algorithm 4 and
further demonstrated in Example VI.1.

Algorithm 4: m-coloring algorithm
Data: G = {V,E}, m
Result: m− colored graph
Sort all nodes Vis in non-increasing order or their degrees;
for i← 1 to m do

/* All nodes are colored */
if ∀Vi is colored then

return;
end
/* If at last processor, there exists

some connected nodes */
if (i == m) and (∃Ei) then

forall Connected subgraph do
Vnew ← {connected nodes};
Vnew.u

LO
i ← {connected nodes}.uLO

i ;
Vnew.δi ← {connected nodes}.δi;

end
else

Color the nodes following LF [20] Algorithm;
end

end

Example VI.1. In Figure 1, the tasks of one island is shown.
Here, we need to allocate the tasks on two processors, i.e.,
we have to color the graph with 2 colors. To do this, we first
take the node with the highest degree (τ4 with degree 4) and
color it with green. Then we color the non-adjacent nodes of
τ4 (i.e., τ1, τ2, and τ8 with green and remove the edges of
those nodes. We can no longer use green in this graph. Now
we have one processor (color) left but there are still two tasks
τ6 and τ7, which are failure-dependent to each other. So, we
merge these two tasks and all the nodes become independent.
Finally, we color all the nodes with blue (τ3, τ5, and τ6+7).

6 7

43 5
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2

8

6 7

43 5

1
2

8

6+7

43 5

1
2

8

Fig. 1: Graph coloring with m = 2.

D. Task Allocation and Scheduling

Given a task set, we first run Depth-First-Search (DFS) over
the covariance matrix and convert them to different number
of islands. Then we use Algorithm 4 to color the nodes of

each island with at most m number of distinct colors. Then
the nodes in each island are sorted in descending order with
respect to their δi values and the islands themselves are then
sorted in descending order based on max(δi) values. HI-
criticality tasks are allocated by following rules:

(i) Assign tasks of each color of each island to a distinct
processor with the WF heuristics on processor capacity.

(ii) While assigning a task to a processor, we create a cluster
following the LFF-Clustering algorithm. First, we keep adding
the same colored tasks in an island to the existing task/s
assigned to that processor. If we cannot assign the new task to
an existing cluster, we create a new cluster. Once all nodes of
the same color are allocated, we allocate the next color tasks
to a different processor.

(iii) Every time we add a new task to a processor, we update
the ∆ value of the processor.

(iv) Once all islands with multiple tasks are assigned, we
assign the remaining single-task islands by following the WF
partitioning heuristic.

If all the tasks are allocated, the task set becomes strongly
allocated, while only the allocation of HI-criticality tasks
results in a weakly allocation. Similar to the multiprocessor
case with no failure dependent tasks, successful allocation does
not imply schedulability of the allocated task sets. If a task set
is not strongly allocated, then the task set cannot be strongly
schedulable, because of the lack of guarantees to the LO-tasks.
Upon successful allocation, either strong or weak, we run the
pMCMP algorithm to check the schedulability of the task set.
Algorithm 5 details the task allocation procedure.

Algorithm 5: Task Allocation Algorithm with Covariance
Data: FS , {fi}nHI

i=1 , {uLO
i }ni=1 {δi}ni=1, covariance matrix

Result: Task allocation result
Run DFS on covariance matrix and get islands {Ij}lj=1;
Color the nodes of each island using Algorithm 4;
Sort ∀τi ∈ ∀Ij in descending order w.r.to δi;
Sort ∀Ii based on max(δi) ∈ Ii;
K = {κ1, κ2, . . . , κK};
forall multi-task islands Ii do

allocated = φ;
forall ∀τj ∈ Ii do

allocate τj into κk ∈ {K − allocated} following WF
and update ∆k;
allocated = allocated ∪ κk

end
end
if all LO tasks are allocated using WF then

return strongly − allocated;
end
return weakly − allocated;

VII. SCHEDULABILITY EXPERIMENTS

In this section, we present extensive experimental evalua-
tions to show the performance of our proposed algorithms.
We present our results in two different categories. First, we
present the schedulability result for uniprocessor platforms to
show the efficiency of our algorithm. We performed simulation
for different constraints and also compared with other state-
of-the-art MC scheduler. For the next part, we present the
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Fig. 2: Schedulability ratio comparison of EDF-VD and pMC,
where HI utilization varies from 0.9 to 1 uniformly.
schedulability performance on multiprocessor platforms. We
have performed a number of experiments by varying different
important factors to observe the efficiency of our algorithm.

A. Results for UniProcessor Platforms

We have conducted schedulability tests on randomly-
generated task systems, comparing our proposed method with
existing one. The objective was to demonstrate the benefits
of our model: by adding a probability estimation fi to each
task, our algorithm may successfully schedule (return proba-
bilistically correct or partial probabilistically correct) many
task sets that are unschedulable according to existing MC-
scheduling algorithms; e.g., the EDF-VD algorithm [21].

Since this is the first work that combines pWCET and
schedulability with mixed-criticality, it is hard to find a fair
base line to compare with. The reason EDF-VD is selected
here since (i) it is a widely accepted MC scheduling strategy;
(ii) it is the most general algorithm in the whole VD family;
and (iii) HI-criticality tasks are treated as a whole in both
algorithms – EDF-VD sets virtual deadline according to a
common factor, while we make use of a HI-criticality server.
We need to point out that EDF-VD assumes unknown fi for
each task (not simply 0 or 1), and thus our algorithm has
privilege naturally.

We use the algorithm UUniFast [22] to generate task
sets for various values of cumulative LO utilization
(u(LO) =

∑n
i=1 ci(LO)/Ti) and HI utilization (u(HI) =∑

i|χi=HI ci(HI)/Ti). The parameter u(LO) is ranged from 0
to 1, while u(HI) is ranged from 0 to 1.5, each with step 0.01.

Each task set contains 20 tasks, each of which is assigned
LO or HI criticality with equal probability. LO-criticality
utilizations are assigned according to UUniFast; given an
expected HI utilization u(HI), we inflate the LO-criticality
utilizations of the HI-criticality tasks using random factors
chosen to ensure that the cumulative HI utilization of the task
set equals the desired value with high probability.

Among the 626, 200 valid task sets that we generated, EDF-
VD succeeds to schedule 306, 299 (48.9%) of them, and the
proposed pMC reports probabilistic schedulable for a total
of 438787 sets (70.1%), and only 121, 426 sets (19.4%) are
reported unknown. Even when focused only upon systems for
which HI-criticality utilization is less than 1, EDF-VD fails to
schedule 18.0%, while pMC returns unknown for only 8.4%
of the sets. Although EDF-VD and pMC do not dominate
each other, pMC generally significantly outperforms EDF-VD,
particularly upon task-sets with large HI-utilization. Due to
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Fig. 3: Comparison of additional utilization ∆ calculated by
LFF-clustering normalized by the precise value
space constraints, the detailed schedulability comparison with
EDF-VD algorithm is omitted in this paper, but is available in
the conference version of this work.[1]

To show the robustness of our algorithm with respect to dif-
ferent fi distributions, we focus on task sets with HI utilization
between 0.9 and 1. Fig. 2 reports the ratios of schedulable
(i.e., weakly probabilistic schedulable) sets over different
LO utilizations. With the additional probability information,
the schedulable ratio is significantly improved for heavy tasks
comparing to EDF-VD [21]. The introduced parameter fi
is assigned to tasks in different ways; i.e., all sharing a
same value, following uniform or log-uniform distribution
(fi = 10x, where x is uniformly chosen). Generally speaking,
smaller average f leads to higher ratio of acceptance, and there
is no significant difference between different distributions of
fi with the same average, which indicates that our algorithm
is robust to different combinations of output measurement
probabilities from probabilistic timing analysis tools.

The boxplot in Figure 3 shows the total additional utilization
resulting from LFF-Clustering normalized by the precise value
calculated using exhaustive search. Due to high complexity
for calculating precise values, 100 task sets under each nHI
setting is considered. The mean (orange line) is close to 1
under each setting, meaning over 75% of the task sets were
precisely clustered. However, the outliers get closer to 1 as
nHI increases—LFF-Clustering is particularly beneficial when
there are large number of HI-tasks and calculating precise
clustering becomes prohibitively expensive.

B. Results for Multiprocessor Platforms

Workload Generation. To conduct the experiments, we have
generated MC tasks based on the following parameters.
• m : The number of processor cores.
• Ua : The average utilization for the task set. The aver-

age is calculated by averaging the LO and HI-criticality
utilization of the task set.

• PHI = 0.5: Probability of a task to be a HI-criticality one.
• R = 4: Denotes the maximum ratio of uHI

i to uLO
i . uHI

i is
generated uniformly from [uLO

i , R× uLO
i ].

• FS : The system-wide permitted failure probability, de-
fault set as 10−6for our experiments.

We performed the simulation for average utilization ranging
from 0.05m to 2m with increasing at step size 0.05m. For
every average utilization, we generate 100 task sets which
consist of 20 tasks each. Note that, for most of the exper-
iments, we have measured the performance with respect to
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average utilization as we wanted to show the improved quality
of service for generated MC task sets.

At first, for a specific average utilization, we use UUniFast
algorithm [23] to generate a lognormal distribution of Ua for
all the tasks in a task set. The values of uLO

i is uniformly
generated from [

2×ua
i

R+1 , u
a
i ] so that the value of uHI

i is always
in the range [uLO

i , R× uLO
i ].

Evaluation Results. We execute a set of MC tasks under our
proposed algorithm by varying different parameters. Simula-
tion results for various scenarios are presented in Figures 4
and 5. We perform the following simulations:

The schedulability performance of pMCMP is shown in Fig.
4. Fig. 4(a) shows the acceptance ratio (ratio of successfully
scheduled task sets over total number of task sets) with respect
to average utilization Ua, while the Fig. 4(b) shows the
acceptance ratio with respect to uLO

i . In both figures, we
show the acceptance ratio for both strongly schedulable and
weakly schedulable task sets. In the Fig. 4(b), we can see
that a good number of task sets is schedulable when the
average utilization of the task set is one or even higher as
the average utilization is calculated based on both uLO

i and uHI
i

but pMCMP doesn’t need to allocate full HI-WCET budget. To
understand the schedulability with respect to uLO

i , we further
performed the experiment presented in Fig. 4(b) where the
uLO
i is generated following the lognormal distribution using

the UUniFast algorithm [23] algorithm.
Fig. 4(c) presents the acceptance ratio for all three heuris-

tics (FF, BF, and WF) discussed in Section V. The results
match the discussion that all RAD algorithms share the same
utilization bound while task partitioning. We use only strongly
schedulable task set to calculate the acceptance ratio from this
experiment as only the strongly schedulable task sets provide
the graceful degradation to LO-criticality tasks.

Fig. 5 first presents the percentage of successful strongly
schedulable task set under different number of processors
(Fig. 5(a)) and different number of fi values (Fig. 4(b)).
As expected, the performance of schedulability decreases with
the increase of the number of the processors by following the
performance of the partition heuristics. On the other hand,
with the lower fi values, we get better acceptance ratio as the
algorithm can create more clusters and thus needs to allocate
a smaller ∆. We also evaluated the effect of the density of the
covariance matrix on the acceptance ratio, calculated as the
density of the undirected graph interpreted from the covariance
matrix. The number of edges of the covariance graph (1
in covariance matrix) are randomly generated based on the
density of edge. The simulation result is presented in Fig. 5(c).
Under lower densities, our algorithms performed surprisingly
well. With the increase of density, the possibility of merging
also increases and the acceptance ratio decreases.

VIII. RELATED WORKS

There is a gap between the current conservative deter-
ministic analysis and the richer models which include the
probabilistic information about the WCET estimates. Besides
the resource under-utilization issue due to over-pessimism, LO-
critical tasks do not receive guarantees in HI-critical modes.

Graceful degradation techniques and imprecise computation
have been proposed to provide guarantees to the LO-critical
tasks as well. Specifically, reduced utilization budget [24]
to scale budgets in HI-mode as well as precise computation
techniques such as providing asymptotic rate guarantees [25],
guaranteed completion rate [26] and QoS guarantees for LO-
critical tasks [27]. While these approaches address the under-
provision of resources to LO-critical tasks, they do not leverage
the information from the WCET estimates.
Real-Time Models with Probabilities. In order to formally
describe the uncertainty of the WCET estimations and over-
come the over-pessimism, many attempts in introducing prob-
ability to real-time system model and analysis have been
made. Edgar and Burns [28] made a major step forward in
introducing the concept of probabilistic confidence to the task
and the system model. Their work targets the estimation of
probabilistic WCETs (pWCETs) from test data for individual
tasks, while providing a suitable lower bound for the overall
confidence level of a system. Since then, on one hand much
work has been done to provide better WCET estimations
and a predicted probability of any execution exceeding such
estimation alongside the usage of extreme value theory (EVT),
e.g., [6] [29] [7]. In static probabilistic timing analysis, random
replacement caches are applied to compute exact probabilistic
WCETs, and probabilistic WCET estimations with preemp-
tions, [30]. More recently, researchers have initiated some
pWCET estimation studies [31] [32] in the presence of
permanent faults and disabling of hardware elements. On the
other hand, there is only one piece of work which proposes
probabilistic execution time (pET) estimation [33] based upon
a tree-based technique. The pET of a task describes the
probability that the execution time of the job is equal to a given
value, while the pWCET of a task describes the probability
that the WCET of that task does not exceed a given value.
Schedulability with Probabilities. Based upon the estimated
pWCET and pET parameters (often as distributions with
multiple values and associated probabilities), studies aim to
provide estimations that the probability of missing a deadline
of the given system is small enough for safety requirements;
e.g., of the same order of magnitude as other dependability
estimations. Tia et al. [34] focus on unbalanced heavy loaded
system (with maximum utilization larger than 1 and much
smaller average utilization) and provide two methods for prob-
abilistic schedulability guarantees. Lehoczky [35] proposes the
first schedulability analysis of task systems with probabilistic
execution times. This work is further extended to specific
schedulers, such as earliest deadline first (EDF, [36]) in [37]
and under fixed-priority policy in [38]. [13] provides a very
general analysis for probabilistic systems with pWCET esti-
mations for tasks. In addition to WCET estimations, statistical
guarantees are performed upon the minimum inter-arrival time
(MIT) estimation as well [39] [14]. Schedulability analysis
based on pETs (instead of pWCETs) is also done in [40]
for limited priority level case (quantized EDF), and in [41]
an associated schedulability analysis on multiprocessors is
presented. Statistical response-time analysis, e.g., [42], can be
further done to real-time systems based upon those probabilis-
tic schedulability analysis. Unfortunately, to the best of our
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Fig. 4: Acceptance ratio for pMCMP in an 4-core platform under different utilizations and different partition heuristics.
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Fig. 5: Acceptance ratio for pMCMP upon a quad-core platform.

knowledge, most existing studies have only shown probabilis-
tic schedulability analysis (e.g., estimating the likelihood for
a system to miss any deadline) or probabilistic response time
analysis to existing algorithms such as EDF and fixed-priority
scheduling, instead of incorporating probabilistic information
into the scheduling strategy. In other words, current research
has not addressed the possibility of making smarter scheduling
decisions with probabilistic models from existing powerful
probabilistic timing analysis (PTA) tools (e.g., [43]) that
provide WCET bounds and specified confidences10.

Mixed-Criticality Probabilistic Scheduling. Few recent
works have applied probabilistic models to mixed-criticality
scheduling. In [46], the probabilistic models are applied to
LO-criticality modes and a scheduling algorithm is developed
to leverage probabilities into schedulability analysis. In partic-
ular, it is quantified how LO-criticality jobs behave whenever
HI-criticality jobs overrun their optimistic LO-criticality reser-
vation. In [47], [48], the probabilistic models are applied into
classical mixed-critical scheduling policies for fixed-priority
task scheduling. These works have proven the advantages in
resource utilization from the use of flexible probabilistic worst-
case representations. [49] introduces a new probabilistic model
for mixed-criticality systems; safety metrics are defined, and
an analysis is developed to quantify safety levels according
to the considered criticality level. [50] discusses the accuracy
and the flexibility of probabilistic models as advantages for
mixed-criticality schedulability analysis in efficient resource
usage. [51] depicts a survey of recent probabilistic scheduling
approaches, with a dedicated section of the above introduced
mixed-criticality scheduling approaches.

10To our best knowledge, there is only one paper presenting scheduling al-
gorithms for probabilistic WCETs of tasks described by random variables [44],
which extends the optimality of Audsley’s approach [45] in fixed-priority
scheduling to the case WCETs are described by distribution functions.

IX. CONCLUSION

This paper presented some efforts into scheduling MC
systems that account for probabilistic information. Existing
MC task models are generalized with an additional param-
eter specifying the distribution information of the WCET.
We require that it is a priori determined how likely jobs
may exceed their LO-WCETs. We proposed a novel EDF-
based scheduling algorithm, which exploits the probabilistic
information to make mode-switching and LO-task-dropping
decisions. Given a system failure probability threshold, the
goal is to derive more precise schedulability analysis, which
may deem a system that is infeasible under the traditional
MC model as feasible, and will not drop any task unless it
is probabilistically necessary. Experimental results show the
advantages of the model and the proposed scheduling schemes.

The provided solution requires a server with period of 1—
applying the idea of adaptive servers (with dynamic periods
or budgets) may avoid many preemptions. So far we only
considered systems with two criticality levels. Probabilistic
correctness for multiple probability thresholds per task needs
to be defined, and the scheduling problem is worth studying.

REFERENCES

[1] Z. Guo, L. Santinelli, and K. Yang, “EDF schedulability analysis on
mixed-criticality systems with permitted failure probability,” in Proceed-
ings - IEEE 21st International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 2015, 2015.

[2] J. Souyris, E. Pavec, G. Himbert, V. Jegu, and G. Borios, “Computing
the worst case execution time of an avionics program by abstract inter-
pretation,” in the 5th International Workshop on Worst-Case Execution
Time Analysis (WCET’05), 2005.

[3] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The worst-
case execution-time problemoverview of methods and survey of tools,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 7,
no. 3, pp. 1–53, 2008.

[4] A. Burns and R. Davis, “Mixed-criticality systems: A review,” 2018,
http://www-users.cs.york.ac.uk/ burns/review.pdf.



14

[5] F. Cazorla, E. Quinones, T. Vardanega, L. Cucu-Grosjean, B. Triquet,
G. Bernat, E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli,
L. Kosmidis, C. Lo, and D. Maxim, “PROARTIS: Probabilistically
analysable real-time systems,” ACM Transactions on Embedded Com-
puting Systems (TECS), vol. 12, no. 2, 2013.

[6] J. Hansen, S. Hissam, and G. Moreno, “Statistical-based WCET estima-
tion and validation,” in the 9th International Workshop on Worst-Case
Execution Time Analysis (WCET’09), 2009.

[7] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quinones, and F. Cazorla,
“Measurement-based probabilistic timing analysis for multi-path pro-
grams,” in the 24th Euromicro Conference on Real-Time Systems
(ECRTS’12), 2012.

[8] R. F. S. 167, Software considerations in airborne systems and equipment
certification, RTCA document DO-178C. RTCA, Incorporated, 1992.

[9] L. Cucu-Grosjean, “Independence - a misunderstood property of and for
probabilistic real-time systems,” in N. Audsley and S. Baruah, editors,
Real-Time Systems: the past, the present and the future, 2013.

[10] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in the 28th IEEE Real-
Time Systems Symposium (RTSS’07), 2007.

[11] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart, “On the sus-
tainability of the extreme value theory for WCET estimation,” in the
14th International Workshop on Worst-Case Execution Time Analysis
(WCET’14), 2014.

[12] A. Melani, E. Noulard, and L. Santinelli, “Learning from probabili-
ties: Dependences within real-time systems,” in the 8th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA’13), 2013.

[13] J. Dı́az, D. Garcia, C. Lee, L. Bello, J. López, and O. Mirabella,
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