
Precise Scheduling Mixed-Criticality Gang Tasks
with Reserved Processors

Tianning She
Department of Computer Science

Texas State University
San Marcos, TX, USA

t s374@txstate.edu

Zhishan Guo
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
zguo32@ncsu.edu

Kecheng Yang
Department of Computer Science

Texas State University
San Marcos, TX, USA

yangk@txstate.edu

Abstract—To mitigate the analytic pessimism that is often
necessary to provide the worst-case guarantees for real-time
systems, mixed-criticality (MC) scheduling has been proposed,
where a task parameter may be associated with multiple esti-
mates corresponding to multiple system runtime modes. While
a large body of work on MC scheduling is directed at dropping
or degrading low-critical tasks at the mode switch, a recent
model, called precise MC scheduling, aims at preserving the
full execution of all tasks instead. In precise MC scheduling,
the additional workload due to high-critical tasks at the mode
switch should be dealt with by increasing the capability of the
processing platform. In this paper, we investigate the problem
of precise MC scheduling of gang tasks, which may require
simultaneously occupying multiple processors to commence any
execution. In particular, we focus on the global earliest-deadline-
first with virtual deadlines (GEDF-VD) scheduling. We derive
a sufficient schedulability test for precise scheduling MC gang
tasks by GEDF-VD. By the schedulability test, we also present
an analysis of how many processors can be safely reserved in a
given system.

Index Terms—mixed-criticality tasks, precise scheduling, gang
tasks, virtual deadlines.

I. INTRODUCTION

In order to provide the worst-case guarantees for real-time
systems, task parameters, such as the execution time, for
schedulability analysis are usually estimated with significant
pessimism, which results in less efficient runtime performance.
Mixed-criticality (MC) scheduling has been proposed to mit-
igate such pessimism, where the worst-case execution time
(WCET) of a task may be associated with multiple estimates
corresponding to multiple system runtime modes.

In particular, the research attention in MC scheduling has
often focused on the two-mode setting, where a mode switch
is triggered by a high-critical task overrunning its smaller esti-
mate. In the majority of existing work on MC scheduling, once
a mode switch is triggered by such one or more high-critical
tasks, the low-critical tasks are (fully or partially) sacrificed in
order to accommodate the additional workload by those high-
critical tasks. More recently, a new direction, called precise
MC scheduling, has been proposed and investigated [8]. In the
precise MC scheduling paradigm, after a mode switch, low-
critical tasks continue to execute up to their WCET estimates
as they do before the mode switch. In the meanwhile, the
additional workload by the high-critical tasks are supposed to

be covered by increasing the executing platform capacity, e.g.,
boosting the speed of the processor [8].

Besides processor speed, increasing the number of available
processors on a multiprocessor platform is another natural
way for increasing capacity. In other words, in the normal
mode, a certain number of processors are reserved and only
the remaining number of processors are deemed available
for the real-time tasks of our interest. Upon a mode switch,
these reserved processors become available and dedicated to
the real-time tasks so that the executing platform capacity
is boosted from the real-time tasks’ point of view. Such
reserved processors in the normal mode could serve for several
different purposes, such as to enter a sleep state for power and
energy benefits, to be devoted to non-real-time tasks for spatial
separation between real-time and non-real-time tasks (the latter
will be dropped or deprioritized upon a mode switch), etc.,
depending on the scenarios and needs of the system.

In this precise MC scheduling scheme with reserved proces-
sors, it is the number of processors that varies. Compared to
traditional sequential tasks, parallel tasks are naturally more
tuned to this particular system parameter. In this paper, we fo-
cus on one particular kind of parallel tasks, namely the (rigid)
gang task model, where a task may require simultaneously
occupying multiple processor to commence any execution.
The real-time scheduling of gang tasks have received some
attention [24, 16, 17, 14]. It has also been studied in the context
of MC scheduling [9] but only in the conventional sense (i.e.,
dropping tasks upon a mode switch).
Contributions. In this paper, we present the first study on the
precise MC scheduling of gang tasks. With a certain number of
reserved processors that are hidden from the real-time tasks
in the normal mode but are able to fully dedicate to real-
time tasks upon a mode switch, we formally define a specific
scheduling problem in this direction. We then devise a virtual-
deadline based scheduling algorithm to address this problem,
and present a schedulability test for this algorithm. By the
schedulability test, we also present an analysis of how many
processors can be safely reserved in a given system.
Organization. In the rest of this paper, we introduce our
system model and problem statement (Sec. II), present a
common deadline-based scheduling algorithm for general gang
tasks and its variant by virtual deadlines for MC gang tasks



(Sec. III), provide a proof and analysis for our schedulability
test (Sec. IV), briefly survey related work (Sec. V), and
conclude (Sec. VI).

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the sporadic gang task model, which differs
from the conventional sporadic task model by allowing a single
task to simultaneously occupy multiple processors for execu-
tion. Furthermore, the allowed parallelism can be categorized
as follows [17]: a job (invocation of a task) is

• rigid if the number of processors assigned to this job is
specified externally to the scheduler a priori, and does
not change throughout its execution;

• moldable if the number of processors assigned to this
job is determined by the scheduler, and does not change
throughout its execution

• malleable if the number of processors assigned to this
job can be changed by the scheduler during the job’s
execution.

In this paper, we focus on the rigid parallelism model.
Specifically, we consider a system consisting of n implicit-

deadline sporadic MC gang tasks T = {τ1, τ2, · · · , τn}, where
each task τi has a rigid parallelism of mi processors. Each
task τi is invoked recurrently with a minimum separation of
Ti time units. Each invocation is called a job of τi, and we
use τi,j to denote the jth job of τi. Ti is called the period
of τi, and we restrict our attention to implicit deadlines. In
other words, Ti is also the relative deadline for each task τi,
and every job of τi has an absolute deadline Ti time units
after its release. The WCET of each task τi is estimated a
two criticality levels: a low-criticality (L-) estimate CL

i and
a high-criticality (H-) estimate CH

i , where it is assumed that
∀i, 0 < CL

i ≤ CH
i ≤ Ti. Furthermore, if CL

i = CH
i for task τi

so that τi cannot trigger a mode switch as to be described next,
then we say τi is a LO-task; by contrast, if CL

i < CH
i for task

τi so that τi could trigger a mode switch as to be described
next, then we say τi is a HI-task. We denote the set of LO-
tasks (HI-tasks, respectively) by TLO (THI, respectively). We
also refer to a job of a LO-task (HI-task, respectively) as LO-
job (HI-job, respectively) for short. In summary, an implicit-
deadline MC sporadic gang task τi is specified by a 4-tuple
(CL

i , C
H
i ,mi, Ti).

Reserving processors and mode switch. We consider a mul-
tiprocessor platform consisting of MH identical processors,
each of which has a normalized speed 1.0. In the runtime, if
the L-estimates are respected, i.e., all jobs are finished within
their L-WCETs, then we say the system is in L-mode; if the L-
estimates are exceeded, i.e., some jobs need to execute beyond
their L-WCETs and up to their H-WCETs, then we say the sys-
tem is in H-mode. Note that the H-estimates are assumed to be
always respected. In other words, any job that has cumulatively
executed for its H-WCET, i.e., CH

i , yet still not completed, is
considered as erroneous and would be terminated immediately.
That is, only HI-tasks, for which CL

i < CH
i , could trigger a

mode switch. The system begins with L-mode and the amount
of execution completed for each job is being monitored during

runtime. If any job has cumulatively executed for its L-WCET,
i.e., CL

i , but still requires further execution, then the system
is immediately notified and switched to H-mode. The system
can recover to L-mode once all processors become idle. We
require that only ML, where ML < MH , processors are used
to actively execute tasks in T in L-mode, while the remaining
Mδ = (MH − ML) processors are reserved. Nonetheless,
once the system is switched to H-mode, all MH processors
are devoted to execute tasks in T .

Note that, in contrast to the majority of existing works on
MC scheduling, in this work no task is entirely or partially
dropped upon a mode switch, and every job must meet its
absolute deadline in any system mode. The difference between
the two WCET estimates upon mode switch, i.e., CH

i − CL
i ,

is compensated by the additional Mδ active processors.
In this paper, we assume that the preemption and migration

overheads, e.g., due to memory interference, are negligible. Or,
equivalently, we assume these overheads are pessimistically
taken into account in the WCET estimates.

Moreover, we denote the utilization of a task τi in L- and
H-modes, respectively, by

uL
i =

CL
i ·mi

Ti
and uH

i =
CH

i ·mi

Ti
.

Since CL
i = CH

i holds for every LO-task, it also holds uL
i =

uH
i for such task. We further denote the total utilization of the

set of LO-tasks and the set of HI-tasks in L- and H-modes,
respectively, by

ULO =
∑

τi∈TLO

uL
i =

∑
τi∈TLO

uH
i ,

UL
HI =

∑
τi∈THI

uL
i , and UH

HI =
∑

τi∈THI

uH
i .

We further denote the total utilization of all tasks in L- and
H-modes, respectively, by

UL =
∑
i

uL
i = ULO+UL

HI and UH =
∑
i

uH
i = ULO+UH

HI .

Problem Statement. We address the problem of scheduling
the MC rigid Gang tasks on MH unit-speed processors to
meet all deadlines in all scenarios with the potential of
reserving Mδ processors, where M δ = MH − ML > 0.
We say the system is precise-MC schedulable if all deadlines
are guaranteed to be met and the following constraints are
respected.

• Tasks in τ only execute on ML processors if all jobs
finish within CL

i time units of execution;
• Tasks in τ may execute on all the MH processors if a

any job (of a HI-task) executes for more than CL
i time

units (yet finishes within CH
i time units of execution).

III. SCHEDULING MC GANG TASKS

In this section, we propose an earliest-deadline-first (EDF)
based scheduling algorithm to address the precise MC schedul-
ing problem of gang tasks, which has been formalized in the
prior section.



Algorithm 1: Selecting Jobs to Schedule under GEDF
input : Ready(t), which is the ready job set at time t
output: Sched(t), which is the scheduled job set at time t

Sched(t)← ∅
for each τi,j ∈ Ready(t) in deadline increasing order do

if
∑

τk,ℓ∈Sched(t) mk ≤M −mi then

Sched(t)← Sched(t) ∪ {τi,j}
end

end

A. GEDF Scheduling for Gang Tasks

We consider the preemptive global EDF (GEDF) schedul-
ing algorithm for ordinary (non-MC) gang tasks as follows1:

Definition 1. Under GEDF scheduling, the priority of each
job is determined by its deadline — the earlier the deadline,
the higher the priority. We also assume deadline ties are broken
arbitrarily but consistently, and therefore there is no priority
ties while deadline ties may exist. Letting Ready(t) denote
the set of ready jobs at an arbitrary time instant t, the set
of jobs Sched(t) being scheduled at time t is determined by
Algorithm 1. mk is the degree of parallelism of τk, which has
a job in Sched(t). Please note that, in practice, Algorithm 1
does not need to be evaluated at every time instant but only
needs to be invoked when a job is completed and when a new
job is released.

Please note that the GEDF scheduling cannot be defined by
simply considering the summation of parallelism of all ready
jobs with higher priorities, but rather it needs to go through
Algorithm 1. This is because some higher-priority (but not
the highest) ready jobs may not be scheduled due to lack of
available processors while some lower-priority ones with less
parallelism may actually be scheduled.

Furthermore, an important parameter ∆i for a gang task τi
under GEDF scheduling was introduced in [14] and is defined
as follows.

Definition 2. Let ∆i denote the maximum possible number of
idle processors at any time during τi’s non-executing intervals
in which τi has pending jobs but does not execute. In other
words, if τi is not being executing but has pending jobs, the
number of idle processors is at most ∆i.

Clearly, (mi − 1) would be a safe upperbound on ∆i.
Nonetheless, a dynamic programming algorithm has been
introduced in [14] to calculate ∆i in a more accurate manner.
This ∆i identification algorithm runs in polynomial time with
a time complexity of O(M2 ·n), where M is the total number
of available processors and n is the number of gang tasks.

With pre-calculating the ∆i parameter for every task prior to
runtime for any given (non-MC) gang task system, a sufficient
schedulability test has been proven in [14] as follows.

1This formal description of GEDF for gang tasks was introduced in [15].

Theorem 1 (Theorem 2 in [14]). A (non-MC) gang task sys-
tem, where each task is specified by (Ci,mi, Ti), is schedulable
on M identical processors by GEDF, if

∀i, USUM ≤ (M −∆i)(1−
ui

mi
) + ui (1)

where
ui =

Ci

Ti
and USUM =

∑
i

ui.

B. Algorithm GEDF-VD for MC Gang Tasks

With the prior work on GEDF scheduling of non-MC gang
tasks as discussed above, we introduce a virtual-deadline-
based scheduling algorithm, GEDF-VD, to address the precise
MC scheduling problem considered in this paper.

Under GEDF-VD, a system wide constant x is selected such
that 0 < x < 1. Each task is associated to a relative virtual
deadline of x · Ti, in addition to the relative actual deadline
Ti. That is, every job of task τi has a virtual deadline at x ·Ti

time units after its arrival time and has an actual deadline at
Ti time units after its arrival. Note that, because under precise
MC scheduling LO-tasks are not dropped in the H-mode, the
virtual-deadline setting does also apply to LO-tasks as well as
HI-tasks. Then, in the runtime, GEDF is applied to schedule
all tasks by taking virtual deadlines as deadlines in the L-
mode and taking actual deadlines as deadlines in the H-mode,
respectively.

Recall that for non-MC gang task set, we have a ∆i param-
eter that can be obtained before runtime. The ∆i identification
algorithm from [14] needs to take the required parallelism mi

for every task and the total number of available processors M
as inputs. In the problem considered in this paper, although
mi remains the same in the L- and H-modes for every task τi,
the total number of available processors does differ in the two
modes, being ML and MH in L- and H-modes, respectively.
Therefore, we need to apply the ∆i identification algorithm
twice, and then for each task τi, we obtain ∆L

i and ∆H
i for

L- and H-modes, respectively.
Having ∆L

i and ∆H
i for every task, we claim the following

sufficient schedulability test for GEDF-VD and this test is to
be proven next in Sec. IV.A.

A set of precise MC gang tasks with implicit deadlines
are schedulable by GEDF-VD using at most ML pro-
cessors in the L-mode and using at most MH processors
in the H-mode, if

KL +KH ≤ 1,

where

KL = max
i

{
miU

L + (ML −∆L
i −mi)u

L
i

mi · (ML −∆L
i )

}
KH = max

i

{
miU

H + (MH −∆H
i −mi)u

H
i

mi · (MH −∆H
i )

}
,

so that scaling factor x for setting virtual deadlines in
GEDF-VD can be (arbitrarily) chosen from the range

[KL, 1−KH ].



IV. PRECISE-MC SCHEDULABILITY ANALYSIS

In this section, we first prove the correctness of the schedu-
lability presented in the prior section, with given ML and
MH (and therefore given ∆L

i and ∆H
i ). Then, we provide a

method to obtain a safe lower bound on ML that guarantees
the schedulability for given task system and given MH .

A. Schedulability Test

To derive the schedulability test, we consider the schedula-
bility in L- and H-modes, respectively, in the following two
lemmas. We first derive a sufficient schedulability condition
for L-mode (Lem. 1). Then, assuming the schedulability in
L-mode, we derive a sufficient schedulability condition for H-
mode (Lem. 2). They together result in Thm. 2.

Lemma 1. Under GEDF-VD scheduling, all (LO- and HI-)
tasks must meet their virtual deadlines in L-mode, if

∀i, x ≥ miU
L + (ML −∆L

i −mi)u
L
i

mi · (ML −∆L
i )

.

Proof. In L-mode, tasks are scheduled by their virtual dead-
lines. By treating the relative virtual deadline as both the
relative deadline and the period, every task τi in L-mode can
be viewed as a (sporadic, implicit-deadline) non-MC gang task
specified as (CL

i ,mi, xTi). Under this view, the utilization of
each task τi is

CL
i

xTi
=

uL
i

x
,

and the total utilization is∑
i

CL
i

xTi
=

1

x
·
∑
i

CL
i

Ti
=

UL

x
.

Therefore, by Thm. 1, these non-MC gang tasks must meet
their deadlines under GEDF, i.e., original MC-gang tasks must
meet their virtual deadlines in L-mode, if

∀i, U
L

x
≤ (ML −∆L

i )(1−
uL
i

x

mi
) +

uL
i

x
(2)

Given the facts that 0 < x < 1, mi > 0, and ∆L
i < ML,

(2) ⇔∀i, U
L

x
≤ ML −∆L

i − (
ML −∆L

i

mi
− 1) · u

L
i

x

⇔∀i, miU
L + (ML −∆L

i −mi)u
L
i

mix
≤ ML −∆L

i

⇔∀i, x ≥ miU
L + (ML −∆L

i −mi)u
L
i

mi · (ML −∆L
i )

.

Thus, the lemma follows.

Lemma 2. Under GEDF-VD scheduling, assuming all virtual
deadlines are met in L-mode, all (LO- and HI-) tasks must meet
their actual deadlines in H-mode, if

∀i, x ≤ 1− miU
H + (MH −∆H

i −mi)u
H
i

mi · (MH −∆H
i )

.

Proof. By assuming all virtual deadlines are met in L-mode,
it follows that the first job that reaches its virtual deadline but

has not completed must trigger a mode switch. As a result,
any job of τi that is released in L-mode has not completed by
the mode switch must have its actual deadline (as well as next
job release of τi) at least (1−x)Ti time units after the mode-
switch time instant. In the meanwhile, every job of τi cannot
execute for more than CH

i time units in any circumstance
and all subsequent releases in H-mode must separate by Ti >
(1 − x)Ti time units, according to the task model. So, by
treating any unfinished job at the mode switch as a new job
release at the mode-switch time instant, every task τi in L-
mode can be viewed as a (sporadic, implicit-deadline) non-
MC gang task specified as (CH

i ,mi, (1 − x)Ti). Under this
view, the utilization of each task τi is

CH
i

(1− x)Ti
=

uH
i

1− x
,

and the total utilization is∑
i

CH
i

(1− x)Ti
=

1

1− x
·
∑
i

CH
i

Ti
=

UH

1− x
.

Therefore, by Thm. 1, these non-MC gang tasks must meet
their deadlines under GEDF, i.e., original MC-gang tasks must
meet their actual deadlines in H-mode, if

∀i, UH

1− x
≤ (ML −∆L

i )(1−
uH
i

1−x

mi
) +

uH
i

1− x
(3)

Given the facts that 0 < x < 1, mi > 0, and ∆H
i < MH ,

(3) ⇔∀i, UH

1− x
≤ MH −∆H

i − (
MH −∆H

i

mi
− 1) · uH

i

1− x

⇔∀i, miU
H + (MH −∆H

i −mi)u
H
i

mi(1− x)
≤ MH −∆H

i

⇔∀i, 1− x ≥ miU
H + (MH −∆H

i −mi)u
H
i

mi · (MH −∆H
i )

⇔∀i, x ≤ 1− miU
H + (MH −∆H

i −mi)u
H
i

mi · (MH −∆H
i )

.

Thus, the lemma follows.

Theorem 2. An MC gang task system is precise-MC schedu-
lable under GEDF-VD on MH processors with M δ = (MH −
ML) processors reserved in L-mode, if

KL +KH ≤ 1,

where

KL = max
i

{
miU

L + (ML −∆L
i −mi)u

L
i

mi · (ML −∆L
i )

}

KH = max
i

{
miU

H + (MH −∆H
i −mi)u

H
i

mi · (MH −∆H
i )

}
.

Proof. KL + KH ≤ 1 implies that [KL, 1 − KH ] is not an
empty set. Also, it is evident that both KL > 0 and KH >



0, so [KL, 1 − KH ] ⊂ (0, 1). Therefore, a valid x can be
(arbitrarily) selected from [KL, 1−KH ]. Note that

x ≥ KL ⇒ ∀i, x ≥ miU
L + (ML −∆L

i −mi)u
L
i

mi · (ML −∆L
i )

and

x ≤ 1−KH ⇒ ∀i, x ≤ 1− miU
H + (MH −∆H

i −mi)u
H
i

mi · (MH −∆H
i )

.

By Lem. 1 and Lem. 2, the theorem follows.

B. A Safe Lower Bound on ML for Schedulability
We have already established a schedulability test for a given

task system with given ML and given MH . Nonetheless, the
value of ML may not always be fixed in a prior but its proper
setting may be a question for the system designer, where the
system workload specification (T ) and the platform maximum
capacity (MH ) are provided.

Under such a setting, KH can still be obtained a priori, as
T and MH (and therefore, ∆H

i ) are given. Nonetheless, to
evaluate the schedulability condition, i.e., KL ≤ 1 − KH , it
is not only ML that varies— each ∆L

i could also be different
under different ML, and it is not a closed-form representation
by ML. One way to find an ML that guarantees schedulability
is to enumerate all possible values of ML and to apply the
schedulability test for each case. Alternatively, the following
theorem directly provides a safe lower bound on ML that
guarantees the schedulability for certain systems.

Theorem 3. For any MC gang task system where

∀i, (1−KH)mi > ui, (4)

it must be precise-MC schedulable under GEDF-VD, if

ML ≥ max
i

{
mi(U

L − uL
i )

(1−KH)mi − uL
i

+mi − 1

}
. (5)

Proof. Our goal is to show that the lower bound on ML

specified in this theorem is sufficient to imply KL+KH ≤ 1,
which is the schedulability test.

From (5), it directly follows that

∀i,ML ≥ mi(U
L − uL

i )

(1−KH)mi − uL
i

+mi − 1

⇒∀i,ML − (mi − 1) ≥ mi(U
L − uL

i )

(1−KH)mi − uL
i

(6)

While every ∆L
i may vary as ML varies, we note that

∀i,∆L
i ≤ mi − 1 holds by definition in any case. Therefore,

regardless the specific value of ML, we always have

(6) ⇒ ∀i,ML −∆i ≥
mi(U

L − ui)

(1−KH)mi − uL
i

by (4)⇒ ∀i, (1−KH)mi ≥
mi(U

L − uL
i )

ML −∆i
+ uL

i

⇒ ∀i, (1−KH) ≥ miU
L + (ML −∆L

i −mi)u
L
i

mi · (ML −∆L
i )

⇒ (1−KH) ≥ KL,

where the last step is by the definition of KL and directly
implies KL+KH ≤ 1. The theorem follows.

V. RELATED WORK

Since it was introduced by Vestal [34], MC tasks and their
scheduling have attracted a huge amount of interest in the
real-time systems research community. (Please see [12] for
a comprehensive survey on this topic.) Initially, most works
were directed to scenarios where all low-critical tasks are
completely dropped if any high-critical task behaves its worst
case. More recently, this over-sacrificing was criticized, and
gradual degradation of low-critical tasks was investigated. To
provide degraded service, the imprecise MC model [11] was
proposed, where the execution of low-critical tasks is reduced
but not dropped even in the worst case. Several subsequent
works [3, 11, 20, 22, 23, 27] explored various definitions
of this execution reduction. To eliminate such reduction, the
problem of precise MC scheduling was proposed and inves-
tigated on varying-speed uniprocessors [8, 35] and multipro-
cessors [33]. Such varying-speed processors are equipped with
a capacity of dynamic voltage and frequency scaling (DVFS)
for the purpose of energy efficiency [21]. However, DVFS is
not effective in reducing static/leakage power consumption.
Compared to DVFS, dynamic power management (DPM) and
deep sleep modes can lead to significant energy conserva-
tion resulted from the power-down of a number of system
components [5, 4]. [32] proposed precise MC scheduling of
sequential tasks on multiprocessors that a part of processors in
the system can be turned into sleep modes in typical scenarios
while fully exploited under worst-case scenarios.

Besides sequential tasks, the problem of scheduling real-
time parallel tasks has been investigated. Several works focus
on parallel task models that are related to the gang task model,
including periodic multi-thread task models [29, 31, 13], the
synchronous task model [1], and DAG task models [10, 25,
19, 7, 18]. In these models, Parallel threads of a task can
be independently considered and scheduled. By contrast, they
must simultaneously occupy a set of processors to execute
under the gang task model [17, 14, 24]. Goossens et al.
considered the rigid gang task model in [16], and Berten et
al. proposed the moldable gang scheduling in [6].

Upon MC scheduling, few works have been proposed for
parallel task models. Liu et al. [28] proposed the MC schedul-
ing of synchronous task model, while the MC scheduling for
DAG task models is investigated in [2] and [26]. Rambo et
al. [30] proposed a replica-aware co-scheduling approach for
mixed-critical systems. For the MC gang task scheduling, [9]
presented an approach combining Global Earliest Deadline
First (GEDF) and Earliest Deadline First with Virtual Deadline
(EDF-VD). Unlike these works, we consider precise MC
scheduling of the gang task model that provides full service
for low-critical gang tasks.

VI. CONCLUSION

In many conventional MC scheduling problems, LO-tasks
may be dropped or degraded when a mode switch to H-mode
is triggered. In this work, we investigated the precise MC
scheduling, where LO-tasks preserve their execution estimates
in H-mode. Upon a mode switch to H-mode, a certain number



of processors that are reserved in L-mode now become fully
available and dedicated to the real-time tasks. Our focus in
this paper was on rigid gang tasks, each of which may require
multiple processors to commence any execution. We presented
our scheduling algorithm EDF-VD for the problem of precise
scheduling MC gang tasks and provided a schedulability
test for EDF-VD as well as a proof for its correctness. In
addition, we also analyzed a safe lower bound on the number
of non-reserved processors in L-mode for guaranteeing the
schedulability of a given system. This, from the other hand,
implies how many processors can be safely reserved in L-mode
without jeopardizing the schedulability.

ACKNOWLEDGMENT

This work is supported in part by NSF grants CCF-2028481,
CNS-2104181, a start-up grant from the North Carolina State
University, and start-up and REP grants from Texas State
University.

REFERENCES

[1] Björn Andersson and Dionisio de Niz. Analyzing global-EDF for
multiprocessor scheduling of parallel tasks. In International Conference
On Principles Of Distributed Systems, pages 16–30. Springer, 2012.

[2] Sanjoy Baruah. The federated scheduling of systems of mixed-criticality
sporadic dag tasks. In 2016 IEEE Real-Time Systems Symposium (RTSS),
pages 227–236. IEEE, 2016.

[3] Sanjoy Baruah, Alan Burns, and Zhishan Guo. Scheduling mixed-
criticality systems to guarantee some service under all non-erroneous
behaviors. In 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pages 131–138. IEEE, 2016.

[4] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A survey
of design techniques for system-level dynamic power management.
IEEE transactions on very large scale integration (VLSI) systems,
8(3):299–316, 2000.

[5] Luca Benini, Alessandro Bogliolo, Giuseppe A Paleologo, and Giovanni
De Micheli. Policy optimization for dynamic power management. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 18(6):813–833, 1999.

[6] Vandy Berten, Pierre Courbin, and Joël Goossens. Gang fixed priority
scheduling of periodic moldable real-time tasks. In 5th junior researcher
workshop on real-time computing, pages 9–12. Citeseer, 2011.

[7] Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan,
and Haoyi Xiong. Energy-efficient real-time scheduling of DAG tasks.
ACM Transactions on Embedded Computing Systems, 17(5):84, 2018.

[8] Ashikahmed Bhuiyan, Sai Sruti, Zhishan Guo, and Kecheng Yang.
Precise scheduling of mixed-criticality tasks by varying processor speed.
In Proceedings of the 27th International Conference on Real-Time
Networks and Systems, pages 123–132, 2019.

[9] Ashikahmed Bhuiyan, Kecheng Yang, Samsil Arefin, Abusayeed Saiful-
lah, Nan Guan, and Zhishan Guo. Mixed-criticality multicore scheduling
of real-time gang task systems. In 2019 IEEE Real-Time Systems
Symposium (RTSS), pages 469–480. IEEE, 2019.

[10] Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and
Andreas Wiese. Feasibility analysis in the sporadic DAG task model. In
2013 25th Euromicro conference on real-time systems, pages 225–233.
IEEE, 2013.

[11] Alan Burns and Sanjoy Baruah. Towards a more practical model for
mixed criticality systems. In 1st WMC, 2013.

[12] Alan Burns and Robert Davis. Mixed criticality systems-a review. Dept.
of Computer Science, University of York, Tech. Rep, pages 1–81, 2019.

[13] Pierre Courbin, Irina Lupu, and Joël Goossens. Scheduling of hard real-
time multi-phase multi-thread (mpmt) periodic tasks. Real-time systems,
49(2):239–266, 2013.

[14] Zheng Dong and Cong Liu. Analysis techniques for supporting hard
real-time sporadic gang task systems. Real-Time Systems, 55(3):641–
666, 2019.

[15] Zheng Dong, Kecheng Yang, Nathan Fisher, and Cong Liu. Tardiness
bounds for sporadic gang tasks under preemptive global edf scheduling.

IEEE Transactions on Parallel and Distributed Systems, 32(12):2867–
2879, 2021.

[16] Joël Goossens and Vandy Berten. Gang ftp scheduling of periodic and
parallel rigid real-time tasks. arXiv preprint arXiv:1006.2617, 2010.

[17] Joël Goossens and Pascal Richard. Optimal scheduling of periodic gang
tasks. Leibniz transactions on embedded systems, 3(1):04–1, 2016.

[18] Zhishan Guo, Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed
Saifullah, and Nan Guan. Energy-efficient real-time scheduling of
DAGs on clustered multi-core platforms. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 156–
168. IEEE, 2019.

[19] Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan,
and Haoyi Xiong. Energy-efficient multi-core scheduling for real-time
DAG tasks. In 29th Euromicro conference on real-time systems (ECRTS
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[20] Zhishan Guo, Kecheng Yang, Sudharsan Vaidhun, Samsil Arefin, Sajal K
Das, and Haoyi Xiong. Uniprocessor mixed-criticality scheduling with
graceful degradation by completion rate. In 2018 IEEE Real-Time
Systems Symposium (RTSS), pages 373–383. IEEE, 2018.

[21] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar
Thiele. Energy efficient DVFS scheduling for mixed-criticality systems.
In Proceedings of the 14th International Conference on Embedded
Software, ACM, page 11. ACM, 2014.

[22] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar
Thiele. Run and be safe: Mixed-criticality scheduling with temporary
processor speedup. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2015, pages 1329–1334. IEEE, 2015.

[23] Mathieu Jan, Lilia Zaourar, and Maurice Pitel. Maximizing the execution
rate of low criticality tasks in mixed criticality system. 1st WMC, 2013.

[24] Shinpei Kato and Yutaka Ishikawa. Gang EDF scheduling of parallel
task systems. In 2009 30th IEEE Real-Time Systems Symposium, pages
459–468. IEEE, 2009.

[25] Jing Li, Jian-Jia Chen, Kunal Agrawal, Chenyang Lu, Christopher D
Gill, and Abusayeed Saifullah. Analysis of federated and global
scheduling for parallel real-time tasks. In ECRTS, volume 14, pages
85–96, 2014.

[26] Jing Li, David Ferry, Shaurya Ahuja, Kunal Agrawal, Christopher Gill,
and Chenyang Lu. Mixed-criticality federated scheduling for parallel
real-time tasks. Real-time systems, 53(5):760–811, 2017.

[27] Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor
Stefanov, and Wang Yi. Edf-vd scheduling of mixed-criticality systems
with degraded quality guarantees. In 2016 IEEE Real-Time Systems
Symposium (RTSS), pages 35–46. IEEE, 2016.

[28] Guangdong Liu, Ying Lu, Shige Wang, and Zonghua Gu. Partitioned
multiprocessor scheduling of mixed-criticality parallel jobs. In 2014
IEEE 20th International Conference on Embedded and Real-Time Com-
puting Systems and Applications, pages 1–10. IEEE, 2014.

[29] Geoffrey Nelissen, Vandy Berten, Joël Goossens, and Dragomir Milo-
jevic. Techniques optimizing the number of processors to schedule
multi-threaded tasks. In 2012 24th Euromicro Conference on Real-Time
Systems, pages 321–330. IEEE, 2012.

[30] Eberle A Rambo and Rolf Ernst. Replica-aware co-scheduling for
mixed-criticality. In 29th Euromicro Conference on Real-Time Sys-
tems (ECRTS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[31] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and
Christopher Gill. Multi-core real-time scheduling for generalized parallel
task models. Real-Time Systems, 49(4):404–435, 2013.

[32] Tianning She, Zhishan Guo, Qijun Gu, and Kecheng Yang. Reserving
processors by precise scheduling of mixed-criticality tasks. In 2021
IEEE 27th International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA), pages 103–108. IEEE, 2021.

[33] Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal K Das, Zhishan Guo,
and Kecheng Yang. Precise scheduling of mixed-criticality tasks on
varying-speed multiprocessors. In Proceedings of the 29th International
Conference on Real-Time Networks and Systems, 2021.

[34] Steve Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In 28th IEEE International
Real-Time Systems Symposium (RTSS), pages 239–243. IEEE, 2007.

[35] Kecheng Yang, Ashikahmed Bhuiyan, and Zhishan Guo. F2VD: Fluid
rates to virtual deadlines for precise mixed-criticality scheduling on a
varying-speed processor. In 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages 1–9. IEEE, 2020.


