
CS-2318 C++ to MIPS AL – Some Tips, Tricks, Traps and Observations Lee S. Koh

Introductory remarks.

Knowing C/C++ (as opposed to other high-level languages like Java) should put one in an advantageous
position when learning assembly language because assembly language is a low-level language and C/C++ has
features that put it at a lower level among the high-level languages. Prime examples of such features:

array and pointer, and the associated subscript operator ([]), address-of operator (&) and dereference
operator (*).

bitwise operators (~, &, |, ^, << and >>); these, as opposed to !, && and ||, are akin to MIPS instructions.

To enjoy the advantage, however, one must have mastered the said features when learning C/C++.

Observations on why some past students failed to enjoy (or fully enjoy) the advantage:

Not quite mastering the features involved (in prior classes).

 » Prior knowledge of bitwise operations not expected make up via 005a NotesOnBitwiseOperations.

2 gray areas (excluding bitwise operations for reason indicated above) students tend to have difficulty:

 » For a non-pointer variable appearing in an expression lvalue versus rvalue.
 Examples (x and a[5] are of type int): x = x + 2 and a[5] = a[5] + 2
 » For a pointer appearing (individually or in tandem with *) in an expression indirection (or lack

thereof) coupled with lvalue versus rvalue, potentially also involving pointer arithmetic.
 Understanding pointer semantics, for e.g. (xPtr is a pointer of type int*):
 xPtr = xPtr + 2
 *xPtr = *xPtr + 2

 *xPtr = *(xPtr + 2)

 Using pointers (pointer hopping) to traverse/process arrays, or rewriting in equivalent pointer form.
 Mapping pointer-based (as opposed to index-based) C++ code into MIPS AL is simpler since a

pointer maps directly to a register (but it is not the case with an indexed variable like a[i]).

Using pointers to effect passing by reference, or rewriting in equivalent pass by address form.

Pass by reference works as a convenient (but also confusing?) abstraction of C's pass by address.

 Being lower level, the less abstract pass by address fits the bill for MIPS AL; reference type
simply doesn’t exist in MIPS AL.

 Quick review of select gray-area items.
 lvalue versus rvalue for non-pointer variable (for simplicity, variable x of type int referenced below).
 Ask and decide which 1 of 2 situations applies (makes sense):
 Need for x to be memory location.
 Need for x to be value contained in memory location.
 Continuing with x = x + 2 and a[5] = a[5] + 2 examples above:
 LHS x and a[5] need to be memory location named x and a[5], respectively.
 RHS x and a[5] need to be value contained in memory location named x and a[5], respectively.
 lvalue versus rvalue for pointer (for simplicity, pointer xPtr of type int* referenced below).
 Ask and decide which 1 of 2 situations applies (makes sense):
 For xPtr appearing not in tandem with *.
 » Need for xPtr to be memory location.
 » Need for xPtr to be value contained in memory location.

lk04
Rectangle

lk04
Rectangle

For xPtr appearing in tandem with *.

 » Need for *xPtr to be "memory location pointed at by xPtr".
 » Need for *xPtr to be value contained in "memory location pointed at by xPtr".
 Continuing with xPtr = xPtr + 2 example above:

LHS xPtr needs to be memory location named xPtr.

RHS xPtr needs to be value contained in memory location named xPtr.

 Continuing with *xPtr = *xPtr + 2 example above:

LHS *xPtr needs to be "memory location pointed at by xPtr".

RHS *xPtr needs to be value contained in "memory location pointed at by xPtr".

 Continuing with *xPtr = *(xPtr + 2) example above:
 LHS *xPtr needs to be "memory location pointed at by xPtr".
 RHS *(xPtr + 2) needs to be value contained in "memory location pointed at by (xPtr + 2)".

 Using pointers to traverse/process array, an example:
 Via index and [] operator (index-based, for comparison):
 for (int i = 0; i < 300; ++i)

 {
 if (i < 100)
 a2[i] = (a1[i] + a1[i + 1]) / 2;
 else if (i < 200)
 a2[i] = (a1[i – 1] + a1[i] + a1[i + 1]) / 3;
 else
 a2[i] = (a1[i - 1] + a1[i]) / 2;
 }

 Via pointers and * operator (pointer-based):
 int* a1HopPtr = &a1[0]; // SAME AS: int* a1HopPtr = a1;

 int* a1EndPtr1 = &a1[100]; // SAME AS: int* a1EndPtr1 = a1 + 100;
 int* a1EndPtr2 = &a1[200]; // SAME AS: int* a1EndPtr2 = a1 + 200;
 int* a1EndPtr3 = &a1[300]; // SAME AS: int* a1EndPtr3 = a1 + 300;
 int* a2HopPtr = &a2[0]; // SAME AS: int* a2HopPtr = a2;
 while (a1HopPtr < a1EndPtr3)
 {
 if (a1HopPtr < a1EndPtr1)
 *a2HopPtr = (*a1HopPtr + *(a1HopPtr + 1)) / 2;
 else if (a1HopPtr < a1EndPtr2)
 a2HopPtr = (((a1HopPtr – 1) + *a1HopPtr + *(a1HopPtr + 1)) / 3;
 else
 a2HopPtr = ((a1HopPtr – 1) + *a1HopPtr) / 2;
 ++a1HopPtr;
 ++a2HopPtr;
 }

lk04
Rectangle

Using pointers to effect passing by reference, an example:

Via pass by reference (for comparison):

How Swap is called: Swap(i1, i2);

How Swap is implemented: void Swap(int& i1Ref, int& i2Ref)
 {
 int temp = i1Ref;
 i1Ref = i2Ref;
 i2Ref = temp;
 }

Via pass by address:

How Swap is called: Swap(&i1, &i2);

How Swap is implemented: void Swap(int* i1Ptr, int* i2Ptr)
 {
 int temp = *i1Ptr;
 *i1Ptr = *i2Ptr;
 *i2Ptr = temp;
 }

 How concepts relate to MIPS AL:
 Operation (e.g.: assignment, input) involving lvalue store instruction needed.
 Operation (e.g.: arithmetic/logical, output) involving rvalue load instruction needed.
 Continuing with x = x + 2 example above:
 la $t0, x # $t0 has address of x

lw $t1, 0($t0) # $t1 has "current value of x" (RHS x as rvalue)
addi $t1, $t1, 2 # $t1 now has "current value of x" + 2
sw $t1, 0($t0) # x gets its prior value + 2 (LHS x as lvalue)

 Continuing with a[5] = a[5] + 2 example above:
 la $t0, a # $t0 has address of a

lw $t1, 20($t0) # $t1 has "current value of a[5]" (RHS a[5] as rvalue)
addi $t1, $t1, 2 # $t1 now has "current value of a[5]" + 2
sw $t1, 20($t0) # a[5] gets its prior value + 2 (LHS a[5] as lvalue)

 Examples involving pointers:
 Notes on C++ variables involved and MIPS register usage:

 $a0 as a0Ptr (a pointer containing address of a "4-byte-int")
 $a1 as a1Ptr (a pointer containing base address of an array of "4-byte-int"s)
 $a2 as a2Ptr (a pointer containing base address of another array of "4-byte-int"s)
 $v0 as v0 (a "4-byte-int")
 $a3, $t0, $v1 (temporary holders for "4-byte-int" or address)

 a0Ptr = a1Ptr + 2

 addi $a0, $a1, 8 # no pointer (only "simple") arithmetic in assembly

 *a0Ptr = v0 + 2

 addi $t0, $v0, 2 # $t0 has v0 + 2
sw $t0, 0($a0) # *a0Ptr as lvalue

 *a0Ptr = *a0Ptr + 2

 lw $v1, 0($a0) # $v1 gets *a0Ptr (RHS *a0Ptr as rvalue)
addi $v1, $v1, 2 # $v1 now has *a0Ptr + 2
sw $v1, 0($a0) # *a0Ptr gets *a0Ptr + 2 (LHS *a0Ptr as lvalue)

 *(a1Ptr - 1) = *(a1Ptr + 2)

 lw $t0, 8($a1) # $t0 has *(a1Ptr + 2) as rvalue
sw $t0, -4($a1) # *(a1Ptr - 1) as lvalue gets *(a1Ptr + 2)

lk04
Rectangle

 ++(*a0Ptr) (has same effect as *a0Ptr = *a0Ptr + 1, so translate it as such)
 lw $v1, 0($a0) # $v1 has *a0Ptr as rvalue

addi $v1, $v1, 1 # $v1 now has "current value of *a0Ptr" + 1
sw $v1, 0($a0) # *a0Ptr as lvalue gets "current value of *a0Ptr" + 1

 *(a2Ptr + *a0Ptr) = *(a1Ptr + v0)

 sll $t0, $v0, 2 # $t0 has 4 * v0
add $t0, $t0, $a1 # $t0 now has a1Ptr + v0 (pointer arithmetically)
lw $v1, 0($t0) # $v1 has *(a1Ptr + v0) as rvalue
lw $a3, 0($a0) # $a3 has *a0Ptr as rvalue
sll $a3, $a3, 2 # $a3 now has 4 * (*a0Ptr)
add $a3, $a3, $a2 # $a3 now has a2Ptr + *a0Ptr (pointer arithmetically)
sw $v1, 0($a3) # *(a2Ptr + *a0Ptr) as lvalue gets *(a1Ptr + v0)

Storage.

In C++, for portability, only main memory (RAM) is available for use as storage and we may use:

Named storage with static lifetime allocated at compile time (e.g.: global or static local variable).

Named storage with automatic lifetime allocated at compile time (e.g.: automatic local variable).

 Unnamed storage with "new-till-delete" lifetime allocated at runtime (e.g.: dynamic array).
 Each storage may be scalar (e.g.: char or int variable) or composite (e.g.: array).
 Each storage has type (char, int, etc.) and mutability (variable or constant) associated with it.
 In MIPS AL, both registers and main memory are available for use as storage:
 Neither type nor mutability is associated with any storage (i.e., all storage is untyped).
 Can use a register or any part of (allocated) main memory to store an integer, a character, an address. etc.

 » Implicit type of storage is interpreted according to the instruction that uses it.
 » Assembler does not keep track of any type information for data (referenced by variables/addresses).
 A key consequence of this is that there is no pointer arithmetic (i.e., only "simple" arithmetic) in AL

(since type-dependent "per-item storage requirement" is needed to do pointer arithmetic).
 Programmer's responsibility to maintain any intended immutability of storage.
 » Except Register 0 ($0 or $zero) – it is hardwired to always contain 0 (even after being written to).

No operand of any instruction can be main memory storage.

 May only be register or immediate value (constant embedded in instruction).
 MIPS ISA load-store architecture only load and store instructions access main memory.
 » Operands of load and store instructions still have to be register or immediate value.
 Want to use register for scalar storage (including pointer) as far as possible (for speed).
 Unless storage needs to be passed by address – a register has no address (and it's visible to all anyways).
 Due to limited number of registers:
 » May have to use main memory for some (less frequently accessed) scalar storage.
 » Can also spill register – save register's content to main memory (so register is free to be used for

another purpose) and restore register's content from main memory later when needed.
 Want to use main memory for an array.
 Array is typically big and its elements are sequentially (contiguously) addressable storage locations.
 Want to traverse array (access each element) via a computable target address (can't do so with registers).
 Put array with static lifetime (e.g., global array) in data segment and put array with automatic lifetime

(e.g., non-static local array) in stack segment.

Have to be mindful of memory alignment when using main memory storage.

lk04
Rectangle

