
NOTE: The entries are not necessarily mutually exclusive (i.e. , they may overlap or conflict one another).
In case of conflict, strike an appropriate compromise.
Risking telling the obvious, situations quoted are just select illustrative examples.

 Don't "make the soup too salty"
 Don't include "using namespace std;" in header files
 Don't introduce "flexibility-reducing" newline in an outputting function

 Least privilege -- enable/enpower/reveal/... only what's necessary, not anything more
(part of "Do keep on the defensive")
 Don't unnecessarily pass by reference
 Use pass-by-value or pass-by-const-reference (instead of pass by reference) if no side effect (on the original) is intended

 Don't do the same thing more than once
 Don't keep making an identical function call (i.e. , one that returns the same value every time) over and over in a loop

 Rather make the function call outside the loop and capture the return value in a local variable (which is then used in the loop)
 Minimize # of operations in the repetitive part of a loop construct if doing so won't sacrifice other desirables (clarity, safety, …)

 (shifting elements of array data with used items when removing a key-matching item)
for (i = 0; i < used; ++i) for (i = 0; i < used; ++i)
{ {

if (a[i] == key) if (a[i] == key)
{ {

for (j = i + 1; j < used; ++j) for (j = i; j < used - 1; ++j)
a[j - 1] = a[j]; a[j] = a[j + 1];

break; break;
} }

} }
 Don't "throw away old TV before new TV is in hand"

 When resizing a dynamic array, don't free up "old" array before the "new" array is in place
 Don't be inconsistent (contradictory) between design intent and language feature usage

 Appropriately include "const" if a member function is meant to be an accessor
 Use pass-by-value or pass-by-const-reference (instead of pass by reference) if no side effect (on the original) is intended

 Don't expose/baffle client to/with implementation detail -- be client-oriented
 Don't include known-only-to-implementor detail in error-reporting messages
 Begin item numbering with 1 instead of 0 when crafting user interface

 Don't sacrifice efficiency unless there's something else more desirable to be gained
 Use pre -version of ++ or -- (instead of the post -version) when either version will give the same outcome
 Use pass-by-const-reference (instead of pass-by-value) when size of object involved is big
 Use initializer /initialization list (instead of in-body assignments) wherever possible when implementing constructor
 Code as compactly as possible if doing so won't sacrifice other desirables (clarity, safety, …)

 (for a Container class where used tracks the # of items)
bool Container::empty() const bool Container::empty() const
{ {

return used == 0; bool answer;
} if (used == 0) answer = true;

else answer = false;
return answer;

}
 Do look for simpler/clearer & more direct/efficient alternative(s) if the one at hand seems unnecessarily complex/awkward

 Avoid the more costly repeatedly swap when all that's needed is to repeatedly shift
 (shifting elements of array data with used items when removing a key-matching item found at index keyIndex)

for (i = keyIndex + 1; i < used; ++i) for (i = keyIndex; i < used - 1; ++i)
{ {

data[i - 1] = data[i]; hold = data[i];
} data[i] = data[i + 1];

data[i + 1] = hold;
}

 Avoid confusingly expressing underlying logic, inviting 1-off error , and incurring extra computations
 (shifting elements of array data with used items when removing a key-matching item found at index keyIndex)

for (i = keyIndex + 1; i < used; ++i) count = used - keyIndex - 1;
{ for (i = 0; i < count; ++i)

data[i - 1] = data[i]; {
} data[keyIndex + i] = data[keyIndex + i + 1];

}
 Do keep on the defensive

(block ways that others may abuse/misuse, take safer ways ourselves to avoid falling victim to our own shortcomings)
 if (10 == i) {...} is safer than if (i == 10) {...}
 Trap error conditions wherever possible and expedient

 Do constantly apply common sense and check if things make sense.

CS‐2308, CS‐3358 Lee S KohSome Recommended Programming Principles/Practices/Habits/. . .

vs

vs

vs

vs

