
NOTE: The entries are not necessarily mutually exclusive (i.e. , they may overlap or conflict one another).
In case of conflict, strike an appropriate compromise.
Risking telling the obvious, situations quoted are just select illustrative examples.

 Don't "make the soup too salty"
 Don't include "using namespace std;" in header files
 Don't introduce "flexibility-reducing" newline in an outputting function

 Least privilege -- enable/enpower/reveal/... only what's necessary, not anything more
(part of "Do keep on the defensive")
 Don't unnecessarily pass by reference
 Use pass-by-value or pass-by-const-reference (instead of pass by reference) if no side effect (on the original) is intended

 Don't do the same thing more than once
 Don't keep making an identical function call (i.e. , one that returns the same value every time) over and over in a loop

 Rather make the function call outside the loop and capture the return value in a local variable (which is then used in the loop)
 Minimize # of operations in the repetitive part of a loop construct if doing so won't sacrifice other desirables (clarity, safety, …)

 (shifting elements of array data with used items when removing a key-matching item)
for (i = 0; i < used; ++i) for (i = 0; i < used; ++i)
{ {

if (a[i] == key) if (a[i] == key)
{ {

for (j = i + 1; j < used; ++j) for (j = i; j < used - 1; ++j)
a[j - 1] = a[j]; a[j] = a[j + 1];

break; break;
} }

} }
 Don't "throw away old TV before new TV is in hand"

 When resizing a dynamic array, don't free up "old" array before the "new" array is in place
 Don't be inconsistent (contradictory) between design intent and language feature usage

 Appropriately include "const" if a member function is meant to be an accessor
 Use pass-by-value or pass-by-const-reference (instead of pass by reference) if no side effect (on the original) is intended

 Don't expose/baffle client to/with implementation detail -- be client-oriented
 Don't include known-only-to-implementor detail in error-reporting messages
 Begin item numbering with 1 instead of 0 when crafting user interface

 Don't sacrifice efficiency unless there's something else more desirable to be gained
 Use pre -version of ++ or -- (instead of the post -version) when either version will give the same outcome
 Use pass-by-const-reference (instead of pass-by-value) when size of object involved is big
 Use initializer /initialization list (instead of in-body assignments) wherever possible when implementing constructor
 Code as compactly as possible if doing so won't sacrifice other desirables (clarity, safety, …)

 (for a Container class where used tracks the # of items)
bool Container::empty() const bool Container::empty() const
{ {

return used == 0; bool answer;
} if (used == 0) answer = true;

else answer = false;
return answer;

}
 Do look for simpler/clearer & more direct/efficient alternative(s) if the one at hand seems unnecessarily complex/awkward

 Avoid the more costly repeatedly swap when all that's needed is to repeatedly shift
 (shifting elements of array data with used items when removing a key-matching item found at index keyIndex)

for (i = keyIndex + 1; i < used; ++i) for (i = keyIndex; i < used - 1; ++i)
{ {

data[i - 1] = data[i]; hold = data[i];
} data[i] = data[i + 1];

data[i + 1] = hold;
}

 Avoid confusingly expressing underlying logic, inviting 1-off error , and incurring extra computations
 (shifting elements of array data with used items when removing a key-matching item found at index keyIndex)

for (i = keyIndex + 1; i < used; ++i) count = used - keyIndex - 1;
{ for (i = 0; i < count; ++i)

data[i - 1] = data[i]; {
} data[keyIndex + i] = data[keyIndex + i + 1];

}
 Do keep on the defensive

(block ways that others may abuse/misuse, take safer ways ourselves to avoid falling victim to our own shortcomings)
 if (10 == i) {...} is safer than if (i == 10) {...}
 Trap error conditions wherever possible and expedient

 Do constantly apply common sense and check if things make sense.

CS‐2308, CS‐3358 Lee S KohSome Recommended Programming Principles/Practices/Habits/. . .

vs

vs

vs

vs

