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Abstract
The amount of scientific data being produced, transferred,
and processed increases rapidly. Whereas GPUs have made
faster processing possible, storage limitations and slow data
transfers remain key bottlenecks. Data compression can help,
but only if it does not create a new bottleneck. This paper
presents four new lossless compression algorithms for single-
and double-precision data that compress well and are fast
even though they are fully compatible between CPUs and
GPUs. Averaged over many SDRBench inputs, our imple-
mentations outperform most of the 18 compressors from the
literature we compare to in compression ratio, compression
throughput, and decompression throughput. Moreover, they
outperform all of them in either throughput or compression
ratio on the two CPUs and two GPUs we used for evaluation.
For example, on an RTX 4090 GPU, our fastest code com-
presses and decompresses at over 500 GB/s while delivering
one of the highest compression ratios.

CCS Concepts: • Information systems → Compression
strategies; • Computing methodologies → Massively
parallel algorithms.

Keywords: Data Compression; Lossless Compression; Floating-
point Data; CPU and GPU Parallelization
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1 Introduction
The amount of data being produced, transferred, and stored
by scientific simulations (e.g., climate and cosmology) and
instruments (e.g., particle accelerators and coherent light
sources) is increasing rapidly and already often burdens or
exceeds the available I/O bandwidth and storage capacity.
For example, it is estimated that the Velociprobe beam line at
APS will produce over 150 PB of raw data per year [15]. Data
compression can reduce the needed amount of storage and
its associated cost, but only if the compression ratio is suf-
ficiently high. The data acquisition rate of the LCLS-II [24]
light source will reach up to 250 GB/s [10]. Again, data com-
pression can help, but only if the compression throughput is
high enough for real-time operation. Interconnection speeds
are also getting faster. For example, the most recent version
of NVLink can achieve throughputs of up to 900 GB/s, and
the latest PCIe bus specification supports up to 242 GB/s.
Only few compressors can keep up with these throughputs,
especially since they must operate at 𝑋 times higher speeds,
where 𝑋 is the compression ratio, before the interconnect
becomes the bottleneck.

Data can be compressed losslessly or lossily. Lossless com-
pression yields lower compression ratios but recreates the
original data exactly during decompression. It is indispens-
able in domains where preserving precision and accuracy is
critical, such as in certain computational-physics, climate-
modeling, and fluid-dynamics simulations, where lossy com-
pression could introduce errors that affect the validity of
the scientific findings. Other examples include engineering
applications, where lossy compression might compromise
the integrity of the designs, financial modeling and analy-
sis, where lossy compression could lead to monetary losses,
and medical imaging, where lossy compression might intro-
duce artifacts that compromise diagnostic accuracy. In these
and other domains, lossless compression is unavoidable for
efficient storage, transmission, and processing of data.
Since scientific data is often generated and compressed

on one system and decompressed and analyzed on another,
it is important to support compatible compression and de-
compression across CPUs and GPUs. Yet, most current com-
pressors only support either CPUs or GPUs. To make things
worse, almost all compressors that compress well only de-
liver low speeds, and almost all compressors that compress
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and decompress quickly only deliver low compression ratios.
Hence, the key challenge in lossless floating-point compres-
sion is achieving a high compression ratio and a high speed at
the same time on both CPUs and GPUs.

To this end, we created four new lossless compression al-
gorithms that we specifically designed to compress scientific
floating-point data well and fast on CPUs and GPUs. We call
them SPratio, SPspeed, DPratio, and DPspeed. The two “SP”
algorithms target single-precision data whereas the two “DP”
algorithms target double-precision data. They support two
modes: the “ratio” mode focuses more on compression ratio,
and the “speed” mode focuses more on throughput. Note
that all 4 algorithms deliver a higher speed and a higher com-
pression ratio than most of the prior work. The two modes
simply give users a choice to obtain even better results.
We designed these algorithms by experimenting with a

large number of combinations of data transformations until
we found some that met our needs. We only considered
transformations that we could efficiently implement on CPUs
and GPUs to ensure a high throughput. Then we enhanced
some of the transformations to boost the compression ratio.
This approach led to the SPspeed, SPratio, and DPspeed
algorithms. As it did not yield a satisfactory solution for
DPratio, we created novel transformations specifically for
the DPratio algorithm that deliver record compression ratios
on GPUs while still running relatively quickly.

This paper makes the following main contributions.

• It introduces 4 new lossless compression algorithms
that yield high compression ratios on single- and double-
precision floating-point data.

• It describes compatible parallel CPU and GPU im-
plementations of each algorithm that deliver high-
throughput compression and decompression.

• It presents an extensive performance comparison of
19 compressors on 90 single- and 20 double-precision
inputs from different scientific domains.

• It describes innovative new parallelizable data trans-
formations and enhancements to previously known
transformations that boost the compression ratio.

Our CPU and GPU compressors will be open-sourced on
GitHub once the anonymization phase is over.
The rest of this paper is organized as follows. Section 2

summarizes the related work from which we draw ideas and
to which we compare our algorithms. Section 3 explains the
design, operation, and parallelization of our implementations.
Section 4 details the experimental methodology. Section 5
presents, analyzes, and compares the compression ratios and
speeds. Section 6 summarizes our work.

2 Related Work
Since we target lossless compression of floating-point data,
we focus this section on such compressors. Some are special-
purpose compressors designed for floating-point values. Oth-
ers are general-purpose compressors designed to achieve
high compression ratios across different data types. We com-
pare our approach to compressors from both categories. We
also compare to both CPU and GPU compressors. While the
underlying algorithms are often compatible with both a CPU
and GPU, we only use the implementations provided by the
authors. Additionally, algorithms designed for the CPU are
often much less performant when implemented on the GPU,
and vice-versa.

2.1 Lossless floating-point compressors
FPzip [26] is a library that supports both lossy and loss-
less compression of scientific data. It exploits floating-point
data coherency to predict values in the input, computes the
residuals, stores the data as integers, and uses a fast entropy
encoder to achieve not only high compression ratios but also
fast compression and decompression.
ZFP [25] is designed for compressing multi-dimensional

arrays of floating-point or integer values, supporting random-
access reads and writes in constant time. Users can operate
on these arrays normally since the compression is transpar-
ent. This is achieved through a software-defined cache where
each value is compressed before storing it and decompressed
upon loading it. ZFP exploits spatial correlation for effective
compression. It is implemented on both CPUs and GPUs, but
only the CPU version includes lossless compression.
FPC [8] is a CPU-based lossless compressor for double-

precision data. It uses two hash tables to predict later values
based on earlier values, selects the more accurate prediction,
computes the difference between the predicted and the actual
value, and compresses the result by replacing any leading
zero bytes by a 3-bit value representing their count. A 1-bit
value is also emitted to specify which of the two predictions
was used. pFPC [9] is the parallel version of FPC. It is imple-
mented using Pthreads and employs the same compression
approach as FPC except it chunks up the data and applies
the FPC algorithm in parallel to each chunk.
SPDP [11] is another CPU-based lossless compressor. It

supports both single- and double-precision floating-point
data. This compressor performs difference coding, byte shuf-
fling, and Lempel-Ziv (LZ) coding [23]. Our algorithms do
not utilize LZ because LZ is difficult to parallelize efficiently,
especially for GPUs. However, we also make use of difference
coding and byte shuffling. There is no GPU implementation
of SPDP.
GFC [30] is a GPU-based lossless compressor for double-

precision floating-point data. It computes the difference se-
quence, negates any negative differences, and encodes the
sign bit together with a 3-bit count of the leading zero bytes
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in a nibble before removing those leading zero bytes. GFC
compresses chunks of data in parallel. To achieve additional
parallelism, the difference sequence is computed using values
that appear at least 32 elements earlier in the input.
MPC [37] is a GPU algorithm for losslessly compressing

single- and double-precision data. It is based on data transfor-
mations from other compression algorithms that are chained
together and parallelized. MPC uses delta encoding and bit
transposition (shuffling) to create many zero values, which
are recorded in a bitmap and then eliminated from the value
sequence. There is no CPU implementation of MPC.

nvCOMP [2] is a CUDA library that contains several par-
allel lossless compressors. Some of these compressors are
specifically designed for compressing floating-point data,
including Bitcomp, a novel algorithm designed by NVIDIA,
and Asymmetric Numeral Systems (ANS) compression, an
entropy coder that encodes symbols from the input data
stream into a stream of bits using a reversible mapping [14].

Ndzip [21] is a lossless floating-point compressor for both
CPUs and GPUs. It is based on high-throughput data trans-
formations such as Lorenzo coding [19] and bit transposition.
Ndzip supports both single- and double-precision data. Like
our compressors, it is available in serial C++ code, parallel
OpenMP code for CPUs, and parallel CUDA code for GPUs.
NDzip is the only tested compressor other than ours that
offers CPU and GPU compatibility. However, it requires the
user to provide the dimensionality of the input data, which
our algorithms do not need.

2.2 Lossless general-purpose compressors
Gzip [1] is a lossless CPU compressor. It is based on LZ77
and Huffman coding. Bzip2 [32] is another lossless general-
purpose compressor for CPUs that tends to compress better
than Gzip but is slower. It is based on the Burrows-Wheeler
Transform (BWT), run-length encoding (RLE) [27], and Huff-
man coding.

As mentioned, we compare our implementations to com-
pressors from the nvCOMP library, some of which are gen-
eral purpose, including Cascaded, which uses RLE, delta
encoding, and bit packing [36]. nvCOMP also contains other
general-purpose compressors such as Deflate [13], which is
a combination of Huffman and LZ77, and Gdeflate, which is
a novel algorithm based on Deflate with more efficient GPU
decompression. It further contains SNAPPY, a compressor
similar to LZ4.

We also evaluate Zstandard [12], a parallel CPU compres-
sor that is based on LZ77 [23], ANS, and Huffman [18] coding.
Furthermore, we compare our GPU compressor to the GPU
implementation of Zstandard in nvCOMP.

2.3 Lossless graph compression
Compression of in-memory graph data structures has been
studied as a way to improve the performance of graph algo-
rithms [5, 33]. MPLG, which is a GPU implementation of this

idea, is fast enough to make real-time decompression pos-
sible [3]. It consists of a lossless compression algorithm for
eliminating leading zero bits, making it a fast entropy coder
that is GPU friendly. We mention it here because we use a
modified version of MPLG as the final data transformation
in some of our algorithms.

3 Approach
Our SPspeed and SPratio algorithms process single-precision
floating-point values as 32-bit integers, and our DPspeed and
DPratio algorithms process double-precision floating-point
values as 64-bit integers to guarantee lossless operation. Note
that they do not convert (e.g., round) the floating-point values
to integers. Instead, they treat the IEEE 754 floating-point
word as an integer word, i.e., they load the values bit-for-
bit into an integer variable and then process the data using
integer operations only as is done by many other lossless
floating-point compressors [7, 16, 17, 35].
Figure 1 lists the stages of our four new compression al-

gorithms. For decompression, the inverses of the stages are
invoked in reverse order. The following subsections explain
the data transformations performed by each stage as well as
how they are implemented and parallelized.

DIFFMS MPLG

DIFFMS MPLG

DIFFMS BIT

FCM DIFFMS RAZE RARE

RZE

SPspeed

DPspeed

SPratio

DPratio

Figure 1. The stages (transformations) of our 4 algorithms

We designed these algorithms with the help of the LC
framework [4], which can automatically synthesize data
compressors. We used it to generate over 100,000 algorithms,
the best of which we then analyzed. This analysis led to
the creation of the DIFFMS, RZE, FCM, RARE, and RAZE
transformations described below to boost the compression
ratio while maintaining a high throughput.

Our four algorithms target scientific data that is relatively
smooth. The values can be positive, negative, or a mix of
positive and negative. For smooth data, that is, inputs where
the differences between consecutive values are small in mag-
nitude, the DIFFMS and FCM stages transform the input
into a sequence of small positive values with many leading
zeros. The purpose of the remaining stages is to maximally
compress such sequences. Hence, we do not expect our al-
gorithms to compress non-smooth data particularly well.
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However, the wide range of scientific inputs we use for eval-
uation (see Section 4) tend to be quite smooth, normal, and
centered around zero [38].
Except for FCM, all stages in all four algorithms operate

on chunks of 16 kilobytes. We choose this size so that we
can fit two chunk buffers in the GPU’s shared memory and
the CPU’s L1 data cache. Each chunk is independent and
can be compressed/decompressed in parallel. To cap the
worst-case expansion, the compressor emits the original
data for any chunk that it cannot compress and marks it
as such. On the CPU, we dynamically assign the chunks to
the threads to maximize the load balance. On the GPU, we
dynamically assign the chunks to the thread blocks, which
not only balances the load but also enables the use of fast
shared memory (a software-controlled L1 data cache) and
allows for further parallelization within a thread block.

3.1 SPspeed and DPspeed
Since SPspeed and DPspeed target a high compression and
decompression throughput, the underlying algorithms con-
sists of just two fast data transformations.

TheDIFFMS transformation computes the difference (mod-
ulo 232 in SPspeed and 264 in DPspeed) between each integer
value and the preceding value in the input and records the
result in magnitude-sign format. Scientific datasets often
contain values within a narrow range of each other, mean-
ing their exponents are similar, which are stored in some
of the most-significant bits. Computing the integer differ-
ence turns these exponents into values that cluster around
zero. Since the differences can be positive or negative, the
resulting values might contain many leading ‘0’ bits or many
leading ‘1’ bits. This is why we change the format from
two’s-complement to magnitude-sign representation, which
converts values with leading ‘0’ bits and values with leading
‘1’ bits into values with only leading zeros.

Figure 2 illustrates this transformation on the example of
three 32-bit single-precision values. The most significant bit
of each input value is the sign bit and the next 8 bits denote
the exponent. The first element in a chunk is preserved as-is
(i.e., as if 0 was its preceding value). Recall that we treat each
value as a 32-bit integer. As outlined in Figure 2, the first step
of this transformation produces a positive and two negative
values, the latter of which contain many leading ‘1’ bits. The
second step changes the leading ones to zeros while retaining
the leading zeros of the first value as shown at the bottom of
Figure 2. This is accomplished with the following reversible
transformation: (𝑑𝑎𝑡𝑎 << 1)^(𝑑𝑎𝑡𝑎 >> 31), where the right
shift is a signed shift that replicates the sign bit. Note that the
sign bit is stored in the least significant position. DPspeed
works similarly but on 64-bit values.

The goal of the first stage is to create values that hope-
fully contain many leading ‘0’ bits. This enables us to use
a modified version of MPLG [3], a high-speed lossless algo-
rithm for eliminating leading zeros, as the second and final

transformation in SPspeed and DPspeed. MPLG first finds
the maximum value in each data chunk, counts the num-
ber of leading ‘0’ bits in the maximum, and then eliminates
that many bits from all values in the chunk. To improve
the compression ratio, we enhanced MPLG as follows. If the
maximum has no leading zeros, which renders MPLG ineffec-
tive, we apply another two’s-complement to magnitude-sign
conversion to the values in the chunk. Note that this conver-
sion is meaningless in the sense that the data is no longer
in two’s-complement format. We simply use the conversion
because it is a fast and reversible transformation that often
manages to produce a few leading zeros where there were
none before, thus boosting the effectiveness of MPLG. Again,
this is done at 32-bit granularity in SPspeed and at 64-bit
granularity in DPspeed.

Figure 3 illustrates the operation of MPLG on three 32-bit
values.The first value is the maximum. Since it has 12 leading
zeros, MPLG eliminates the 12 leading bits from each value,
which are highlighted in red. The resulting 20-bit values are
then concatenated, as shown at the bottom of Figure 3.
There are more leading ‘0’ bits that could be eliminated

from the second and third values. However, MPLG keeps the
number of eliminated bits fixed to make independent and
parallel decompression of each value possible. As a partial
remedy, we divide each 16 kB data chunk into 32 512-byte
subchunks. This enables us to efficiently process each sub-
chunk by a warp and improves the compression ratio by
allowing the MPLG stage to use a different number of lead-
ing zeros for each subchunk.
SPspeed and DPspeed parallelization: The OpenMP

CPU implementation of SP/DPspeed is parallelized across
the data chunks. The encoder works as follows. Each run-
ning thread request the next available chunk from the work-
list, performs the two transformations on it, outputs the
compressed size, busy-waits for the write position from the
thread processing the prior chunk, adds the compressed size
to this position, sends the result to the thread processing the
next chunk, and then writes the compressed output to the
received write position. The decoder works as follows. It first
computes the prefix sum over the compressed chunk sizes,
yielding the aforementioned write positions (which are now
read positions). Then, each thread independently processes
a compressed chunk at a time, running the inverse of the
two transformations in the opposite order to recreate the
original data. No write positions need to be communicated
as the decompressed chunk sizes are known a priori.

The CUDA GPU implementations of SP/DPspeed are par-
allelized in the same way except the chunks are assigned
to the thread blocks rather than the individual threads. We
use Merrill and Garland’s variable look-back strategy [28] to
quickly communicate the write position to the next thread
block. To also exploit parallelism within each thread block,
we further parallelized the two stages as follows. In the en-
coder, the DIFFMS transformation is embarrassingly parallel.
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00111110100010000000000000011001 00111110100010000000000000011110 00111110100010000000000000011101

00111110100010000000000000011001 00000000000000000000000000000101 11111111111111111111111111111111

01111101000100000000000000110010 00000000000000000000000000001010 00000000000000000000000000000001

Difference Coding

Two's Complement to Magnitude Sign

Figure 2. DIFFMS’s difference coding and two’s-complement to magnitude-sign conversion (actual magnitude is the sum of
the represented magnitude and the sign); the sign bits are shown in bold print, the initial exponent bits are highlighted in red

00000000000010110101011000111010 00000000000000110000000000110111 00000000000000100110101101000011

10110101011000111010 001100000000 00110111 00100110101101000011

20 Bits20 Bits

20 Bits 20 Bits

20 Bits

4 Bits20 Bits

    001100

Num. Lead

Figure 3. MPLG elimination of common leading zero bits

For the second transformation, we use an augmented ver-
sion of the MPLG code [3]. In the decoder, we also use a
modified version of the existing MPLG code. The difference
decoding needed in the DIFFMS stage is implemented us-
ing a block-level parallel prefix sum that utilizes warp-level
primitives and shared memory to achieve a high through-
put. Note that both the encoder and the decoder keep all
chunk data in shared memory between transformations to
minimize accesses to the relatively slow main memory.

3.2 SPratio and DPratio
The SP/DPratio algorithms target a high compression ratio.
To achieve this, they use more and slower stages that, taken
together, generally compress better. Unlike the SP/DPspeed
algorithms discussed above, which implement the same trans-
formation but at different granularities, SPratio employs a
different algorithm than DPratio.
SPratio: SPratio starts with DIFFMS, that is, the same

transformation as SPspeed. It computes the difference be-
tween consecutive values and records them in magnitude-
sign format. However, SPratio replaces the MPLG stage by
two different stages to boost the compression ratio.

SPratio’s second transformation, called BIT, performs a bit
transposition (or bit shuffle). It groups the first bit of every
value together, then all the second bits, and so on. Figure 4
illustrates this process on the example of three 32-bit values.
Note that it continues the example from Figure 2.

As discussed, the DIFFMS transformation aims at produc-
ing values with many leading zero bits. Transposing the bits

of these values places the most significant bits next to each
other, often producing long runs of zero values, which are
typically followed by gradually more random values that
stem from the less significant bits.

We designed the third and last transformation in SPratio,
which we call Repeated Zero Elimination (RZE), to compress
such sequences well. RZE generates a bitmap in which each
bit corresponds to a byte in the input. A cleared bit indicates
that the corresponding byte is zero. Otherwise, the bit is set.
All zero bytes are then removed from the input. Hence, the
compressed output consists of the bitmap and the non-zero
bytes from the input. The number of non-zero bytes depends
on the data, but the size of the bitmap is fixed and represents
a significant overhead.

Fortunately, the bitmap tends to be quite compressible as
it typically starts with mostly ‘0’ bits and ends with mostly ‘1’
bits. Hence, we enhanced the transformation by employing
a similar algorithm to repeatedly compress the bitmap. The
only difference is that this algorithm identifies repeating
bytes rather than zero bytes. In this way, the original bitmap
of 16384 bits is reduced to 2048, then 256, and ultimately 32
bits. Only the final 32 bits and the non-repeating bytes from
the larger bitmaps are emitted. Compressing the bitmap in
this manner often substantially boosts the compression ratio.

Figure 5 illustrates how RZE works using the result from
Figure 4 as input. Since RZE operates at byte granularity (to
increase the chance of finding zero values), the middle por-
tion of Figure 5 shows the same data as the top but separated
into bytes. The numbers above the bytes indicate their index.
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Bit Shuffling

00010010010010010000010000000000 01000000000000000000000000000000 00000000000000110100010000110001

01111101000100000000000000110010 00000000000000000000000000101010 00000000000000000000000000000001

Figure 4. Bit transposition (shuffling) in the BIT stage; for inputs with more values, the resulting sequences of bits with the
same color will be correspondingly longer

00010010010010010000010000000000 01000000000000000000000000000000 00000000000000110100010000110001

00010010 01001001 00000000 0000000000000100 0000000001000000 00000000 00000000 00000011 0011000101000100

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 0 1 0 0 0 0 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12

00010010 0000010001001001

1 2 3

01000000

5

00000011 0011000101000100

10 11 12

Figure 5. Repeated zero elimination (the repeated bitmap compression is not shown as it is ineffective on this small example)

RZE sets the bits in the bitmap according to whether the cor-
responding byte with the same index is zero. It then outputs
all non-zero bytes followed by the compressed bitmap.

SPratio parallelization: Our OpenMP and CUDA imple-
mentations of SPratio are parallelized as described above
for SPspeed. The only difference is how we internally paral-
lelized the two new transformations for the GPU.

The BIT stage is parallelized in both the encoder and the
decoder by grouping 32 values together to match the 32
bits in each value. Each group is assigned to a warp, which
conveniently consists of 32 threads. We take advantage of
fast CUDA shuffle operations to exchange data between the
threads in a warp (without accessing memory) to implement
the bit transposition in 𝑙𝑜𝑔2 (32) = 5 steps. The 64-bit version
operates similarly but assigns 2 values to each warp thread.

The RZE encoder assigns multiples of 8 consecutive bytes
to each thread. The threads then check if the bytes are zero
and set the needed bits in the bitmap. For performance rea-
sons, they do this 8 bits at a time. Moreover, each thread
counts the number of non-zero bytes assigned to it. Then, all
threads compute a block-wide parallel prefix sum on these
counts. Finally, they output their non-zero bytes at the loca-
tion determined by the prefix sum. Similar steps are executed
repeatedly to compress the bitmap.
The RZE decoder operates analogously. It first decom-

presses the bitmap. Then, it assigns multiples of 8 consecu-
tive (decompressed) bytes to each thread. The threads first
count the number of non-zero bytes based on the bits in the
bitmap. Next, they perform a prefix sum to determine the
location where the non-zero bytes are stored. Finally, they
recreate the original byte values, using a zero value if the
bitmap contains a ‘0’. Otherwise, they obtain the non-zero
byte from the compressed input and output it. Similar steps
are used to decompress the bitmap.

As is done for the other data transformations, the encoder
and decoder keep all data in shared memory within and be-
tween transformations to minimize main-memory accesses.

DPratio: DPratio employs a different algorithm than SPra-
tio because using the same algorithm at 64-bit granularity
yields unsatisfactory compression ratios. This discrepancy
arises due to the generally higher randomness in the man-
tissa bits of double-precision data. As floating-point values
undergo arithmetic operations in, for example, a simulation
code, their bits tend to become more random [8], especially
those far away from the (floating) binary point. Double-
precision numbers, with their larger mantissas, therefore
often exhibit more randomness in their least-significant bits.
Since random bits cannot be compressed, we developed a
new algorithm for compressing double-precision data.

Our evaluation of other compressors for double-precision
data showed that FPC [8] delivers high compression ratios
without using a complex algorithm. However, it employs two
hash tables per thread, which is untenable on GPUs. As an
alternative, we devised the related “Finite Context Method”
(FCM) transformation for use in the first stage of DPratio.

As outlined in Figure 6, FCM starts by creating an array
of pairs, where each pair corresponds to a value from the
input. The first element of each pair is a hash of the three
prior input values. The second element is simply the index
(location) of the input value. Next, FCM sorts these pairs.
Finally, it creates two scalar arrays (colored in Figure 6) that
are populated as follows based on the sorted pairs.

For each pair, it checks whether one of the preceding four
pairs in sorted order has the same hash and refers to the
same floating-point value. If it does, we call it a match. Note
that, due to the sorting, pairs with the same hash will be next
to each other. Moreover, because the second element of each
pair is the index, preceding pairs with the same hash always
refer to earlier locations in the input. If there is no match,
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Figure 6. Visual representation of the FCM transformation:
pairs with simplified hashes and indices are sorted to identify
prior occurrence of the same value

the corresponding value in the first scalar array is set to the
double-precision value from the input and the value in the
second scalar array is set to zero. In contrast, if a match is
found, the value in the first scalar array is set to zero and
the value in the second scalar array is set to the distance to
the matched value. This can be done independently for each
input value (i.e., pair). Note that the two scalar arrays reflect
the order of the original input values and not the sorted order
of the pairs. The two arrays together require twice the size
of the input, that is, this stage doubles the amount of data.
However, the two arrays tend to be more compressible than
the original data as half of their entries are zero and some of
the double values have been converted to integer distances.

The second stage of DPratio is DIFFMS (i.e., it is identical
to the first stage of DPspeed). It computes the difference
sequence over the two arrays produced by the FCM stage
and outputs the result in magnitude-sign format.

The third stage utilizes a new transformation we invented
that is based on the aforementioned RZE transformation.
However, as the word size of this stage is larger, the bitmap
contains fewer bits and only requires 3 iterations to be com-
pressed. Since double-precision values tend to have rather
random bits in the least-signification positions, which are
incompressible, we created the Repeated Adaptive Zero Elim-
ination (RAZE) transformation, where the adaptive part is
the key innovation. It treats the upper bits of each double
separately from the lower bits and only applies RZE to the
top 𝑘 bits while always keeping the bottom 64 − 𝑘 bits as
shown in Figure 7. Importantly, RAZE automatically finds
the optimal 𝑘 value for each chunk, meaning it adapts to
the data. This can be done without trying all 64 possibilities.
Instead, RAZE creates a histogram of the leading-zero-bit
counts of all values in the chunk. Then it computes the prefix
sum over the 64 histogram bins. This yields useful counts
because every value with𝑚 leading zero bits is also a value
with𝑚 − 1,𝑚 − 2, etc. leading zeros. For each chunk, RAZE
computes what the compressed size would be for each of
the 64 counts, selects the 𝑘 that minimizes the size, and then
applies the RZE transformation to just the top 𝑘 bits of each
value.

0000000000000000000000000000000000000000000101001110001110111101

Apply RZE Keep

Optimal k

Histogram Analysis

Figure 7. RARE and RAZE: find optimal 𝑘 and apply RZE
transformation to only the top 𝑘 bits

The fourth stage of DPratio uses our new Repeated Adap-
tive Repetition Elimination (RARE) transformation, which is
similar to RAZE except it does not check whether the top 𝑘
bits are all zero but rather whether they are the same as in
the prior value. Otherwise, RARE operates like RAZE. We
included this stage to boost the compression ratio as the
third stage eliminates zero bits but tends to produce values
with identical bit patterns in the most-significant bits.

DPratio parallelization: The FCM encoder is easy to
parallelize. All needed array elements can be computed in
an embarrassingly parallel fashion. For the sorting, we use
the CUB library that is included with CUDA. The decoder
is parallelized as follows. For each array element, the corre-
sponding thread reads the distance array at that index. If the
distance is non-zero, the thread subtracts the distance from
the index and tries again. It iterates until a zero distance is
found. Then, the thread uses the resulting index to read from
the value array and writes the result to the output array at
the original index. Next, it executes a memory fence. Finally,
it updates the non-zero distance at the original index to zero
if needed. This indicates to the other threads that the current
value is available for reading, i.e., their searches can stop at
the current position. Whereas this approach sounds like it
might be slow, it is actually a parallel implementation of the
“find” operation in union-find [34] and, therefore, very fast in
practice. In other words, the threads tend to not iterate often
because other threads shorten the “chains” continuously.

The second stage is identical to the first stage of DPspeed
and, therefore, parallelized in the same way.

The third and fourth stages are parallelized like RZE, i.e.,
the last stage of SPratio. The main difference is that the com-
pressor first has to create the histogram, which it does in
parallel by atomically incrementing the bins. Since we record
the resulting 𝑘 value in the compressed data, the decompres-
sor can just read it and does not need the histogram.

4 Experimental Methodology
We evaluate the performance of ours and the 18 lossless
compressors listed in Table 1. Among them, ANS, Bitcomp,
FPC, FPzip, GFC, MPC, Ndzip, pFPC, SPDP, and ZFP are
specifically designed for compressing floating-point data.
In contrast, Bzip2, Cascaded, Deflate, Gdeflate, Gzip, LZ4,
Snappy, and Zstandard are general-purpose compressors
intended to effectively compress various types of data.
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Ndzip stands out as the only compressor, aside from ours,
that provides compatibility across CPUs and GPUs. Zstan-
dard also offers implementations for CPUs (in the lzbench-
mark [20] suite) and GPUs (in nvCOMP), but they originate
from separate sources and are incompatible.

Table 1. Lossless compressors used in comparison

Device Compressor Datatype Version Source

CPU + GPU Ndzip FP32 & FP64 1.0 [21] [22]
ZSTD General 2.6 [2] [20]

GPU

ANS FP32 & FP64 2.6 [2]
Bitcomp FP32 & FP64 2.6 [2]
Cascaded General 2.6 [2]
Deflate General 2.6 [2]
Gdeflate General 2.6 [2]
GFC FP64 2.2 [30]
LZ4 General 2.6 [2]
MPC FP32 & FP64 1.2 [37]

Snappy General 2.6 [2]

CPU

Bzip2 General 1.0.8 [32]
FPC FP64 1.1 [8]
FPzip FP32 & FP64 1.3 [26]
Gzip General 1.1 [1]
pFPC FP64 1.0 [9]
SPDP FP32 & FP64 1.1 [11]
ZFP FP32 & FP64 1.0 [25]

We present results for two systems, both of which run Fe-
dora 37. The first system is based on an AMD Ryzen Thread-
ripper 2950X CPU with 16 hyperthreaded cores and has 48
GB of main memory. The GPU in this system is an NVIDIA
GeForce RTX 4090 (Lovelace architecture) with 24 GB of
global memory and 16,384 processing elements in 128 stream-
ing multiprocessors (SMs). The second system is based on
dual Intel Xeon Gold 6226R CPUs with 16 hyperthreaded
cores each and has 64 GB of main memory. The GPU in this
system is an NVIDIA A100 (Ampere architecture) with 40
GB of global memory and 6912 processing elements in 108
SMs. The GPU driver version is 525.85.05 on both systems.
We compiled our CPU codes using g++ version 12.2.1

with the −𝑂3 −𝑚𝑎𝑟𝑐ℎ = 𝑛𝑎𝑡𝑖𝑣𝑒 −𝑓 𝑜𝑝𝑒𝑛𝑚𝑝 flags. For our
GPU codes, we used nvcc version 12.0 with the −𝑂3 and
−𝑎𝑟𝑐ℎ = 𝑠𝑚_80 flags for the A100 and the −𝑂3 and −𝑎𝑟𝑐ℎ =

𝑠𝑚_89 flags for the RTX 4090. For the other compressor, we
followed the instructions for compilation provided by the
authors but adjusted the compute capabilities to our GPUs.

For the single-precision inputs, we used the Scientific Data
Reduction (SDR) benchmark suite [31, 38]. This state-of-
the-art suite was designed specifically for data compression
research and contains a comprehensive set of real-world
datasets from many scientific domains. To keep the experi-
ments reasonable, we omitted some files. For CESM-ATM,
we only use the 3D inputs because they contain the same
data as the 2D inputs. For EXAALT, we only use the Copper
dataset. For Hurricane ISABEL, we only use the raw (i.e.,
not cleared) data. Additionally, we excluded files that are

not compatible with all tested compressors because they are
either too large or in a proprietary file format. In total, we
tested each code on 90 single-precision files from 7 scien-
tific domains, including climate, molecular-dynamics, and
cosmology simulations.
Given the small number of double-precision files in the

SDR benchmark suite, we supplement the datasets with 13
additional files [6]. In total, we tested each code on 20 double-
precision files from five scientific domains, including instru-
ment data, simulation results, and MPI messages.
We compute the geometric-mean compression ratio, the

geometric-mean compression throughput, and the geometric-
mean decompression throughput for each of those 7 single-
precision and 5 double-precision datasets and report the
geometric-mean of all geometric-means for each compressor.
We do this so as not to over-weigh the datasets that contain
more files than others.
For compressors that support multiple levels, including

CPU-Zstandard, Bzip2, Gzip, and SPDP,we evaluate all modes
and present results for the fastest and best-compressing
modes. Note that MPC requires the tuple size of the input,
and FPzip, ZFP, and Ndzip need the dimensions of the input
to work properly. We provided this information for all runs.

We measure the compression ratio by dividing the initial
file size by the compressed size, and the compression and
decompression throughput by diving the initial file size by
the compression or decompression time. This time does not
include reading/writing the data from/to secondary storage.
To eliminate outliers, we use the median runtime of five
identical runs for computing the throughputs. In all cases, a
higher ratio or throughput indicates better performance.

Studying only the compression ratio or only the through-
put does not fully describe the quality of a compression
algorithm because, in many cases, a high compression ratio
comes at the cost of a low throughput and vice versa. This
is why we present the results in form of scatter plots show-
ing either both the compression ratio and the compression
throughput or both the compression ratio and the decom-
pression throughput. In each such plot, we highlight the
Pareto front [29]. All compressors that lie on this front are
optimal in the sense that there is no other compressor that
is both faster and compresses more.

5 Results
In this section, we compare the compression ratio, compres-
sion throughput, and decompression throughput of our 4
new algorithms to 11 lossless GPU and 9 lossless CPU com-
pressors on 2 CPUs and 2 GPUs. We first present results for
single-precision and then for double-precision data.

5.1 Single-Precision Data
GPU results: Figures 8 and 9 present the performance re-
sults of SPratio and SPspeed on the RTX 4090. In both figures,
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the y-axis lists the compression ratio. The x-axis shows the
compression throughput in Figure 8 and the decompression
throughput in Figure 9. Each data point reflects the perfor-
mance of a compressor along the two dimensions. For exam-
ple, Figure 8 shows that SPspeed reaches a geometric-mean
compression ratio of 1.41 and a geometric-mean compression
throughput of 518 GB/s on the 90 SDRbench inputs.
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Figure 8. RTX 4090 compression ratio vs. compression
throughput, including Pareto front, on single-precision data
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Figure 9. RTX 4090 compression ratio vs. decompression
throughput, including Pareto front, on single-precision data

In both figures, the Pareto front includes SPratio, SPspeed,
and Bitcomp-i0, indicating that these 3 algorithms outper-
form the others either in compression ratio, throughput, or

both. Specifically, SPratio delivers the highest compression
ratio whereas SPspeed delivers the highest throughput.
Since the throughputs are GPU dependent, we repeated

the experiments on an A100 GPU that is based on an older
architecture. Figures 10 and 11 show the results.
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Figure 10. A100 compression ratio vs. compression through-
put, including Pareto front, on single-precision data
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Figure 11. A100 compression ratio vs. decompression
throughput, including Pareto front, on single-precision data

The Pareto front includes SPspeed in Figure 11 and SPra-
tio in both figures, highlighting the good performance of
our algorithms on both GPUs. Bitcomp-b0’s decompressor
and Bitcomp-b1’s compressor and decompressor run faster
on the A100 than on the RTX 4090. All other compressors
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and decompressors are faster on the newer GPU. Bitcomp-b
appears to be particularly optimized for the A100, which has
more shared memory and supports more threads per SM. In
contrast, we optimized our compressors and decompressors
for newer GPUs, which is why they deliver substantially
higher throughputs on the RTX 4090.

Note that the nvCOMP compressors (including all versions
of Bitcomp) produce multiple separately-stored compressed
data chunks that are not concatenated. Skipping this impor-
tant step, which is generally needed in applications that use
compression, gives them a significant speed advantage over
the non-nvCOMP compressors, including ours. Moreover,
all nvCOMP and most of the other compressors we com-
pare to in this subsection only work on GPUs, meaning their
compressed data cannot be used on a CPU. In contrast, SP-
speed, SPratio, and Ndzip support both types of devices and
concatenate the compressed data into a contiguous memory
block. Despite these extra features, our codes are among the
fastest and compress more than the other GPU compressors.

CPU results: This subsection compares the performance
of the CPU version of SPratio and SPspeed to 9 other lossless
CPU compressors. Figures 12 and 13 show the results for
the AMD Ryzen. Note that the x-axes of these charts use a
logarithmic scale due to the vast difference in throughput
between the various compressors.
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Figure 12. Ryzen compression ratio vs. compression
throughput, including Pareto front, on single-precision data

The CPU versions of SPspeed and SPratio reach much
higher compression and decompression throughputs than
any of the other studied algorithms. Since the x-axis is loga-
rithmic, the seemingly small benefit in throughput is actually
quite large. Moreover, SPratio provides a higher compres-
sion ratio than the other algorithms except for FPzip, which
yields by far the best compression ratio. Hence, the only
compressors on the Pareto front are FPzip and both of our
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Figure 13. Ryzen compression ratio vs. decompression
throughput, including Pareto front, on single-precision data

codes. SPspeed compresses 75 times faster and decompresses
55 times faster than FPzip.
We repeated the CPU experiments on a second system

from a different vendor that is based on an Intel Xeon. The
results are not shown as they are qualitatively very similar
to those from the Ryzen system. The main difference is that
the throughputs are generally higher since the Xeon system
contains two sockets with twice as many cores as the Ryzen
system. Again, SPspeed and SPratio dominate the compres-
sion and decompression throughput. Together with FPzip,
they are the only compressors on the Pareto front.

5.2 Double-Precision Data
GPU results: This section presents and discusses the double-
precision performance of the GPU compressors. Figures 14
and 15 illustrate the RTX 4090 results.

DPratio stands out with a much higher compression ratio
than the other tested GPU codes. This is mainly due to our
new FCM transformation, which makes it possible to find
repeating values in a GPU-friendly way even when they are
far apart. However, this comes at the cost of a low throughput.
Nevertheless, DPratio is on the Pareto front, which it shares
with DPspeed. Bitcomp is also on the compression Pareto
front but only achieves a compression ratio of 1.04, which is
not particularly useful. As mentioned, Bitcomp’s throughput
is somewhat inflated because it does not concatenate the
compressed data into a contiguous block of memory.

In Figure 15, which focuses on the compression ratio and
decompression throughput, only DPratio andDPspeed are on
the Pareto front, highlighting their good performance. Note
that DPratio’s decompression throughput is much higher
than its compression throughput because no sorting is re-
quired in the FCM decoder. These results also show that
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Figure 14. RTX 4090 compression ratio vs. compression
throughput, including Pareto front, on double-precision data
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Figure 15. RTX 4090 compression ratio vs. decompression
throughput, including Pareto front, on double-precision data

the union-find approach (see the end of Section 3.2) is quite
fast even on a GPU. Both of our algorithms provide a use-
ful balance between compression ratio and decompression
throughput, which is not the case for several other evalu-
ated compressors. Moreover, as mentioned, most of the other
GPU compressor’s results cannot be used on a CPU. Only
our codes and Ndzip provide full CPU/GPU compatibility.
Again, we repeated the same study on a second GPU for

a more comprehensive assessment. Figures 16 and 17 show
the results on the A100.

Both figures exhibit similar patterns. DPspeed and DPratio
are both on the Pareto front alongside Bitcomp and ANS.
Again, some of the Bitcomp versions are faster on the A100
than on the RTX 4090. All other codes, including ours, are
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Figure 16. A100 compression ratio vs. compression through-
put, including Pareto front on double-precision data
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Figure 17. A100 compression ratio vs. decompression
throughput, including Pareto front on double-precision data

faster on the RTX 4090. Since no sorting is involved, DPra-
tio’s decompression throughput is much higher than its com-
pression throughput. In general, the trends for the double-
precision results are similar to those for the single-precision
results discussed earlier.

CPU results: DPratio and DPspeed also include CPU ver-
sions. Figures 18 and 19 show the results on the Ryzen. The
x-axes use a logarithmic scale to capture the large differences
in throughput between the various compressors.

DPspeed has the highest throughput by a substantial mar-
gin (note the logarithmic x-axes). For example, it compresses
and decompresses roughly 10 times faster than pFPC, which
achieves a similar compression ratio.
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Figure 18. Ryzen compression ratio vs. compression
throughput, including Pareto front, on double-precision data
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Figure 19. Ryzen compression ratio vs. decompression
throughput, including Pareto front, on double-precision data

Although DPratio delivers a high compression ratio, the
CPU version of Zstandard at its highest compression level
reaches an even higher ratio albeit at a lower throughput.
Due to the sorting in the FCM stage, DPratio’s compression
throughput is over an order of magnitude lower than its
decompression throughput. This is why, on the compression
side, the fastest version of Zstandard is also on the Pareto
front. Recall that this implementation is from a different
source than the GPU version and is incompatible with it.
Despite the sorting, DPratio is not among the slowest

compressors. Moreover, it is the second fastest decompressor
(after DPspeed), highlighting the speed of the union-find

approach. Overall, DPratio provides a nice balance between
throughput and compression ratio on the CPU.

We repeated the same study on the Xeon CPU. As before,
the results exhibit very similar trends to those observed on
the Ryzen CPU, with both DPspeed and DPratio appearing
on the Pareto front along with Zstandard. Hence, we do not
show figures for these results.

6 Summary and Conclusion
We introduce SPratio, SPspeed, DPratio, and DPspeed, 4 loss-
less compression algorithms tailored to single- and double-
precision floating-point data. SP/DPratio prioritize a higher
compression ratio whereas SP/DPspeed focus on maximizing
compression and decompression throughput. Both modes
deliver relatively high compression ratios and throughputs.
The four algorithms are based on new combinations of

data transformations, some of which we have enhanced and
some of which we have created. SPspeed and DPspeed are
based on 2 fast data transformations: delta encoding with
representation change and MPLG, an efficient approach for
eliminating leading zero bits. SPratio encompasses 3 data
transformations: delta encoding with representation change,
bit shuffling, and repeated zero elimination. The “repetition”
is an enhancement we designed to boost the compression
ratio. DPratio comprises 4 data transformations: FCM, delta
encoding with representation change, RAZE, and RARE.
FCM, RAZE, and RARE are new transformations we cre-

ated. FCM builds pairs of hashed values and indices, sorts
them, and then uses the result to encode the data in a for-
mat that is easier to compress. RAZE eliminates leading zero
bits adaptively, while RARE eliminates common leading bits
adaptively. Both of them optimally split the words into lower
and upper pieces, where only the upper pieces undergo the
leading zero or leading common-bits elimination. This is
particularly useful on double-precision values, which tend to
have rather random bits in the least-significant bit positions.
We selected these transformations because they yield a

high compression ratio and can be implemented in parallel
on CPUs and GPUs. In fact, all four of our algorithms have
compatible CPU and GPU implementations, meaning users
can compress their data on a CPU or a GPU and decompress
the result on either a CPU or a GPU.

We compare the compression ratio, compression through-
put, and decompression throughput of our four algorithms to
11 lossless GPU compressors and 9 lossless CPU compressors
on 90 single-precision floating-point files from the SDRbench
suite and 20 double-precision files. Our measurements on
two GPUs from different generations and two CPUs from
different vendors show that, with one exception, SP/DPratio
and SP/DPspeed are always on the Pareto front.

SPratio delivers the highest compression ratio on the GPUs
and the second highest ratio on the CPUs behind FPzip,
which is over 55 times slower. Similarly, DPratio reaches



Efficient Lossless Compression of Scientific Floating-Point Data on CPUs and GPUs ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

by far the highest compression ratio on the GPUs and the
second highest ratio on the CPUs behind Zstandard-best,
which is several times slower. SPspeed yields the highest
throughputs by large margin on the CPUs, is the fastest on
one of our GPUs, and is faster than most compressors on the
other GPU. Likewise, DPspeed is the fastest compressor and
decompressor on the CPUs and faster than most GPU codes.
Both of our GPU codes are outperformed in throughput
(but not in compression ratio) in some cases by ANS and
Bitcomp, both of which do not concatenate the compressed
data chunks into a contiguous block of memory, which our
compressors and all other non-nvCOMP compressors do.
Our implementations outperform Ndzip, the only other

studied algorithm that provides CPU/GPU compatibility, in
compression ratio and speed in most cases and on average.
Overall, our algorithms are well-suited for environments
where both a high throughput and a high compression ratio
are needed, since they deliver up to 500 GB/s of compression
and decompression throughput on an RTX 4090 GPU in
combination with some of the highest compression ratios.
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A Artifact Appendix
A.1 Abstract
This artifact contains the code and script to generate compression-
ratio and throughput results for the 4 algorithms the paper
introduces. The results should be similar to the numbers
shown in Figures 8 through 19 for SPratio, SPspeed, DPratio,
and DPspeed, that is, the compression ratios should match
exactly but the compression and decompression throughputs
are system dependent.

A.2 Artifact check-list (meta-information)
• Algorithm: SPratio, SPspeed, DPratio, and DPspeed
• Compilation: g++ and nvcc
• Data set: SDRBench
• Hardware: CPU and GPU
• Execution: Parallel
• Metrics: Compression ratio and throughput
• Output: Compression ratio vs. throughput scatter plots
• How much disk space required (approximately)?: 100
GB

• How much time is needed to prepare workflow (ap-
proximately)?: 180 minutes to download inputs

• How much time is needed to complete experiments
(approximately)?: 100 minutes for the GPU and 200
minutes for the CPU

• Publicly available?: Yes
• Code licenses (if publicly available)?: BSD 3-Clause
License

• Workflowautomation frameworkused?: Python scripts
• Archived (provideDOI)?:https://doi.org/10.5281/zenodo.
14061031

A.3 Description
A.3.1 How to access. The artifact can be found at https:
//github.com/burtscher/FPcompress.

A.3.2 Hardware dependencies. The hardware required
for this artifact is an x86multi-core CPU and a CUDA-capable
GPU. We used a 32-core Intel Xeon Gold 6226R CPU @ 2.9
GHz with hyperthreading enabled to run the CPU codes. To
run the GPU codes, we used an NVIDIA RTX 4090. Using
similar hardware should result in throughputs similar to
those reported in the paper.

A.3.3 Software dependencies. The required software in-
cludes:

• The computational artifact from https://github.com/
burtscher/FPcompress

• GCC 7.5.0 or higher
• OpenMP 3.1 or higher
• CUDA 11.0 or higher
• Python v3.4 or higher
• Matplotlib v3.6 or higher

A.3.4 Data sets. The data sets used in the artifact are
downloaded as part of the installation process and can be
found at https://sdrbench.github.io.

A.4 Installation
To install the artifact

• Clone the repository from https://github.com/burtscher/
FPcompress

• Run ‘./compile.py’ to compile SPratio, SPspeed, DPra-
tio, and DPspeed

A.5 Experiment workflow
• Clone the repository from https://github.com/burtscher/
FPcompress

• Run ‘./get_inputs_double.py’ and ‘./get_inputs_single.py’
to download and set up the inputs used by the artifact

• Run ‘./compile.py’ to compile SPratio, SPspeed, DPra-
tio, and DPspeed

• Run ‘./run_experiments_double.py’ and ‘./run_experiments_single.py’
to produce the intermediate experimental results

• Run ‘./chart_double.py’ and ‘./chart_single.py’ to gen-
erate compression and decompression charts that look
like Figures 8 through 19 but without the results for
the third-party codes.

• View the charts, which can be found in the current di-
rectory under ‘double_charts.png’ and ‘single_charts.png’

A.6 Evaluation and expected results
The evaluation of the results is accomplished by compar-
ing the figures generated using this artifact to the SPratio,
SPspeed, DPratio, and DPspeed results listed in Figures 8
through 19. The absolute values of the throughputs and the
relative positions may be different based on the CPU and
GPU used, but the compression ratios should be the same.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
and-badging-current

• https://cTuning.org/ae
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