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Abstract

The most promising value predictors to date are the
finite context method predictor and a recent im-
provement thereof, the differential finite context
method predictor. Both predictors comprise two
levels and the index into the second level is a func-
tion of the content of the first level. This index func-
tion is crucial for good performance. However, our
research shows that the currently used select-fold-
shift-xor function performs poorly on range-limited
sequences of values. For example, it does not pre-
dict the results of byte loads well. The problem with
the current function is that it often cannot reach the
predictor’s entire second-level table. We propose an
improved index function that does not suffer from
this shortcoming. On the 15 SPECcpu2000 C pro-
grams, our new index function improves the average
load-value predictability by about 1% to 5% without
increase in predictor size. On byte loads, the im-
provement is over 6% for 4096-entry predictors.

1. Introduction and Motivation

Most high-end microprocessors contain branch pre-
dictors to hide the latency associated with determin-
ing the direction and/or the target of branch instruc-
tions. Some CPUs, such as the Alpha 21264, also
contain line, set, and dependence predictors to fur-
ther improve their performance [3]. We believe it is
likely that future CPUs will contain even more pre-
dictors. In particular, (load-) value predictors are
promising candidates to hide the latency of slow in-
structions and increase the available instruction-level
parallelism (ILP) by breaking dependencies.

One of the most promising value predictors to
date is the finite context method predictor (FCM) [6,
7]. The differential finite context method predictor
(DFCM) [2], a variation of the FCM, performs even
better because it retains and predicts differences
(strides) rather than absolute values. Both predictors
contain two tables. The information stored in the

first-level table is combined to form an index into
the second-level table, which provides the predicted
value.

This index calculation is crucial for good per-
formance in both predictors. Currently, most pro-
posed (D)FCMs use the select-fold-shift-xor function
[7]. However, our research shows that in certain
important cases this function performs poorly be-
cause it only utilizes a small fraction of the available
table space. For instance, Figure 1 shows the aver-
age predictability of the byte loads in the 8 SPEC-
cpu2000 C programs that execute a significant num-
ber of such loads. The results were obtained using
third-order predictors with 2048 lines in the first
level. The left-hand-side of the figure shows the
FCM predictability for varying second-level table
sizes and the right-hand-side the DFCM predictabil-
ity. Note that for better readability, some of the fig-
ures in this paper are not zero based.
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Figure 1: 2048-line, third-order (D)FCM predictability of
byte loads.

Figure 1 illustrates the two unexpected results that
prompted the work presented in this paper. First, the
FCM’s predictability is the same for all second-level
table sizes of 1024 entries or more. Second, there
are several cases where increasing the size of the
second level reduces the predictability of the DFCM



predictor. Note that this is not an artifact of the av-
eraging as each of the eight programs exhibits these
anomalies.

We tracked the problem down to the index func-
tion, which cannot reach more than 1024 entries in
the FCM and no more than 8192 entries in the
DFCM for byte loads (Section 4.1). Moreover, the
index function can reach all slots in a DFCM with a
2048- or 8192-entry second-level table, but only
1024 slots with 4096 entries, which explains the low
predictability with this table size.

In this paper, we propose an alternate index func-
tion that is just as easy to compute but maximizes
the utilization of the second-level table. The new
index function augments the old one with a rotate
component. This change does not negatively affect
the access time of the predictor because the bit rota-
tion can be done at the time of update (i.e., outside
of the critical path) and only amounts to a modifica-
tion of the wiring in a hardware implementation
since the rotate amount is constant. The new index
function performs much better on sequences of val-
ues of similar magnitude. For 4096-entry predictors,
it yields over 6% more predictability on byte loads.
When predicting all load instructions, the predict-
ability improvement grows from about 1% for small
predictors to over 5% for large predictors.

The remainder of this paper is organized as fol-
lows. Section 2 explains the operation of the (differ-
ential) finite context method predictor. Section 3
describes the evaluation methods. Section 4 presents
our new index function and studies its performance.
Section 5 concludes the paper with a summary.

2. The FCM and DFCM Predictors

Both the FCM and the DFCM predictors contain two
tables. The first-level table is indexed using PC val-
ues. Each line in the first level retains the most re-
cently produced values of the instructions that map
to that line. In the DFCM predictor, all values ex-
cept for the most recently produced value are stored
as differences (strides) rather than absolute values.
The number of values (or strides in case of a DFCM)
per line determines the order of the predictor. We
indicate a predictor’s order by appending the order
to the predictor’s name, e.g., a third-order FCM
would be an FCM3.

In both predictors, the information stored in the
first-level table is combined to form an index into
the second-level table, which provides the predicted

value. Figure 2 illustrates this process for a third-
order FCM predictor.

In the DFCM, the predicted value is itself a stride
and has to be added to the stored most recently pro-
duced value to yield the actual prediction. This
makes the DFCM better suited for predicting strided
sequences of values [2].
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Figure 2: Schematic of a third-order FCM predictor.

Most proposed implementations of (D)FCM pre-
dictors use the select-fold-shift-xor index function
[2, 4, 5]. The following example illustrates how to
compute this function for the three 64-bit values
val1, val2, and val3 from a line of an FCM3 with a
4096-entry second level. The symbol “⊕” repre-
sents XOR and the subscripts refer to bit positions.

hash(val) = val63..60 ⊕ val59..50 ⊕ val49..40 ⊕
val39..30 ⊕ val29..20 ⊕ val19..10 ⊕ val9..0

index(val1, val2, val3) = hash(val1) ⊕
hash(val2)<<1 ⊕ hash(val3)<<2

Each value from the selected line is broken down
into n-bit chunks. If the last chunk is shorter than n
bits, it is (conceptually) zero padded to n bits. The
chunks are then XORed to yield an n-bit hash value.
The three hash values are shifted by zero, one, and
two bits, respectively, and are then XORed again to
form an (n+2)-bit index. Hence, for a second-level
table with size entries, n = 1+log2(size)-order. In the
above example, n = 10.

During the prediction of an instruction, an index
is computed using the three values from the line se-
lected by the instruction’s PC. This index is then
used to access the second-level table, which provides
the predicted value.



During updates, the same index calculation is per-
formed, the corresponding second-level entry is
overwritten with the update value, and the update
value is shifted into the selected line of the first-level
table, whereby the oldest value in that line is lost.

One advantage of the select-fold-shift-xor func-
tion is that part of it (i.e., hash(val)) can be com-
puted before the information is inserted into the pre-
dictor. Since hash(val) always yields an n-bit result,
each line in the first level of the predictor only needs
to store order n-bit values rather than order 64-bit
values, which reduces the predictor size substantially
and speeds up the index computation.

3. Evaluation Methods

This study was performed on an Alpha 21264A-
based machine. All programs were compiled using
Compaq’s C compiler V6.3-025 on Tru64 UNIX
V5.1 and optimized with “-arch host -non_shared
-fast -O2” plus feedback optimization. We used
ATOM V2.75 [1, 9], a binary instrumentation tool-
kit, to evaluate the various predictor configurations.
ATOM captures the committed user-mode instruc-
tions of the instrumented applications and libraries.

The 15 SPECcpu2000 C programs served as our
benchmark suite. Four of them are floating-point in-
tensive (mesa, art, equake, and ammp). Table 1
summarizes relevant information about these pro-
grams. It shows the static number of load instruc-
tions in the binaries (in thousands), the number of
load instructions executed when running the train
inputs (in millions), and the percentage of the exe-
cuted load instructions that are byte loads (LDBU).

program static dynamic byte loads
gzip 11.0k 10,920M 22.5%
vpr 20.6k 6,151M 0.1%
gcc 157.2k 813M 0.0%
mcf 11.4k 2,218M 0.0%
crafty 22.8k 6,607M 12.9%
parser 22.6k 2,467M 11.2%
perlbmk 47.8k 18,686M 13.7%
gap 38.4k 2,009M 9.7%
vortex 47.7k 3,586M 0.4%
bzip2 11.1k 13,310M 52.0%
twolf 27.0k 2,734M 23.5%
mesa 38.2k 12,319M 29.8%
art 11.7k 819M 0.3%
equake 12.6k 9,164M 0.0%
ammp 17.2k 10,266M 0.4%

load instructions

Table 1: Information about the 15 benchmark programs.

Table 1 shows that each of the 15 programs con-
tains over ten thousand load sites and executes more
than 800 million load instructions. The eight pro-
grams in bold print execute over 9.5% byte loads.
Only these eight programs are used for the byte-load
studies in this paper since the remaining seven pro-
grams execute less than 0.5% byte loads.

To keep the simulation time reasonable, we use
the SPEC train inputs for running the programs. All
programs are executed to completion. Averages re-
fer to the arithmetic mean.

All integer and floating-point load instructions are
predicted unless otherwise indicated. Loads to the
zero registers (R31 and F31) as well as load-address
instructions (LDA and LDAH) are excluded from
our study since they are either NOPs, prefetches, or
load immediates.

4. Results

The following subsections describe the results. Sec-
tion 4.1 investigates how many table entries the in-
dex functions can reach. Section 4.2 describes our
new index function. Section 4.3 compares the per-
formance of the old and the new index functions on
byte loads and Section 4.4 on all loads.

4.1 Second-Level Table Reachability

The results from Figure 1 suggested to us that for
byte loads, the conventional FCM3 index function
might not be able to reach more than 1024 table en-
tries. To test this hypothesis, we counted the num-
ber of accessible entries using an exhaustive search.
Since we are investigating unsigned byte loads, each
of the three numbers in a line of the FCM3’s first
level can hold a value between 0 and 255. Hence,
there are 2563 or about 17 million possibilities.
Figure 3 plots the fraction of the second-level table
that is reachable with at least one combination of
three values for different table sizes.

Clearly, the conventional index function can only
access the entire second level if it is no larger than
1024 entries. With 2048 entries, only 50% of the
entries are reachable, with 4096 only 25%, and so
on. In absolute numbers, the conventional index
function cannot address more than 1024 entries for
byte loads, regardless of the actual table size (see
explanation below).

The lighter graph in Figure 3 shows the results for
our new index function, which is described in more



detail in the next section. It can access every table
entry up to a table size of 2563, which is the maxi-
mum given three 8-bit numbers (28*3 = 2563).
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Figure 3: Byte-load reachable fraction of the second-level
table of a FCM3 predictor.

Figure 4 is similar to Figure 3 except it is based
on a DFCM3. Because this predictor retains differ-
ences in its first-level table, the three numbers
(strides) in a given line can hold values in the range
of -255 to 255 for byte loads. Hence, there are 5113

(about 133 million) possible combinations that we
had to evaluate to obtain the results for Figure 4.
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Figure 4: Byte-load reachable fraction of the second-level
table of a DFCM3 predictor.

Figure 4 shows that the conventional index func-
tion cannot reach all elements in DFCM3 tables with
more than 8192 entries. Again, the new index func-
tion does not suffer from this problem. It can access
every table entry up to a table size of 5113. Note
that the second to last data point (corresponding to a
table size of 5123) is 99.4% and not 100%.

Interestingly, Figure 4 reveals cases where larger
tables result in fewer accessible entries than smaller
tables. In particular, tables with 4096, 65536,
131072, and 262144 entries result in only 1024 ac-
cessible entries. This anomaly occurs whenever the
numbers stored in the first level are broken down
into an even number of complete blocks before they
are XORed into a hash value (Section 2). For exam-
ple, with a 4096-entry DFCM3, each number is bro-
ken down into six 10-bit chunks and one 4-bit
chunk. Since the numbers in the first level are be-
tween -255 and 255, the two most significant bits in
the first (least significant) 10-bit chunk are always
identical. Furthermore, they are the same as all the
bits in all the other chunks. Since there is an even
number of complete chunks (full 10-bit length), the
two most significant bits of the XOR result (the hash
value) will always be zero. Because this happens
with all three values from the selected line, the two
most significant bits of the final 12-bit index will
also be zero. Hence, there are effectively only 10
useful bits, which is why the index function can only
reach 210 or 1024 entries. Similar reasoning shows
that all DFCM table sizes that result in an even
number of complete chunks and a partial chunk that
is no longer than 8 bits suffer from this problem, as
well as all table sizes (≥1024 entries) in the FCM.

Unfortunately, the problem is not restricted to
byte loads. Any sequence of range-limited values is
affected, including sequences of values that are not
clustered around zero such as code and data ad-
dresses.

4.2 Enhanced Index Function

The problem with the conventional select-fold-shift-
xor index function is that it does not provide enough
useful bits in the higher bit positions of the index for
range-limited values. Fortunately, this shortcoming
is not due to the lack of available bits but only be-
cause the conventional index function does not
spread the (useful) bits evenly when computing the
index. As a remedy, our approach rotates the hash
values in the first predictor level by 0*n/order,
1*n/order, …, (order-1)*n/order bits to obtain a
more even spread, where n = 1+log2(size)-order.
For any given (D)FCM predictor, the order and the
second-level table size (size) are fixed, meaning that
the rotate amounts are constants. Hence, they can be
hardwired into the predictor. A simple rewiring
would automatically rotate the hash values when



they are shifted into the next field during a predictor
update. Note that our new index function retains the
beneficial property of allowing the computation of
the hash values before they are inserted into the first-
level table.

The following example shows how to compute
the new index function for a third-order FCM with a
4096-entry second-level table (the function hash is
the same as before).

index(val1, val2, val3) = hash(val1) ⊕
rot(hash(val2),3)<<1 ⊕ rot(hash(val3),6)<<2

4.3 Performance on Byte Loads

Figure 5 shows the predictability of byte loads for
both the old and the new index function. The results
are averages over the 8 byte-load benchmark pro-
grams and were obtained using third-order (D)FCMs
with 2048 lines in the first level.
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Figure 5: Byte-load predictability of 2048-line (D)FCM3
predictors.

Figure 5 shows that the new index function out-
performs the old one for all investigated configura-
tions. Moreover, the predictability continuously im-
proves with increasing second-level table sizes.
There is no case where a larger table results in lower
performance than a smaller table.

4.4 Performance on All Loads

Thus far, our study has been limited to byte loads to
illustrate the problem with the conventional index
function. However, many load instructions do not
fetch range-limited values. Figure 6 demonstrates
that our new index function also outperforms the old

function when predicting every load. The results
were obtained using third-order predictors with infi-
nite first-level tables to exclude aliasing effects.
Note that the results in this subsection are averages
over all 15 SPECcpu2000 C programs.
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Figure 6: Load-value predictability of infinite-line (D)FCM3
predictors.

From Figure 6 we see that the new index function
delivers more predictability than the old one. The
performance of the new index function continuously
increases with larger table sizes, which is not the
case with the old index function for DFCM3. Fur-
thermore, the performance benefit over the old index
function grows with the table size as more and more
loads fall into the category of range-limited loads.
While the larger table sizes presented in Figure 6 are
probably beyond what is feasible in hardware, they
are certainly in the realm of software predictor im-
plementations [8].
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Figure 7: Infinite-line, 4096-entry (D)FCM load-value
predictability.



So far, we have only studied third-order (D)FCM
predictors. Figure 7 shows results for other orders
with infinite first-level and 4096-entry second-level
tables.

The advantage of the new index function is not
restricted to third-order (D)FCMs. In fact, it is most
pronounced for the best-performing second- and
third-order predictors. There is no difference in pre-
dictability for first-order predictors since the two in-
dex functions are identical in this case.

We now see a case where the old index function
outperforms the new one. The forth-order FCM fa-
vors the old index function for the given predictor
configuration, showing that the new index function
does not always yield better results.

However, Figure 8 shows that the new index
function provides a higher predictability than the old
one for implementable (D)FCM3 predictors with re-
alistic sizes, even when all loads are predicted.
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Figure 8: Load-value predictability of 2048-line (D)FCM3
predictors.

5. Summary and Conclusions

This paper proposes a simple change in the wiring of
the select-fold-shift-xor index function commonly
used in FCM and DFCM value predictors. This
change improves the table utilization without nega-
tively affecting the access time. The new index
function outperforms the old one in most cases, in
particular on sequences of range-limited values. For
example, 4096-entry, third-order (D)FCM predictors
yield over 6% more predictability on byte loads with
the new index function. When predicting all load in-
structions, the predictability improvement ranges
from about 1% for small predictors to over 5% for
large predictors with no additional hardware.

In future work we will study the new index func-
tion in connection with confidence estimation, inves-
tigate other rotate/shift combinations, and evaluate
the performance of the new index function on cycle-
accurate simulators.
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