
On the Energy-Efficiency of Speculative Hardware

Nana B. Sam
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853, USA

+1-607-255-7488

besema@csl.cornell.edu

Martin Burtscher
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853, USA

+1-607-254-6580

burtscher@csl.cornell.edu

ABSTRACT
Microprocessor trends are moving towards wider architectures
and more aggressive speculation. With the increasing transistor
budgets, energy consumption has become a critical design con-
straint. To address this problem, several researchers have pro-
posed and evaluated energy-efficient variants of speculation
mechanisms. However, such hardware is typically evaluated in
isolation and its impact on the energy consumption of the rest of
the processor, for example, due to wrong-path executions, is ig-
nored. Moreover, the available metrics that would provide a thor-
ough evaluation of an architectural optimization employ some-
what complicated formulas with hard-to-measure parameters.

In this paper, we introduce a simple method to accurately com-
pare the energy-efficiency of speculative architectures. Our met-
ric is based on runtime analysis of the entire processor chip and
thus captures the energy consumption due to the positive as well
as the negative activities that arise from the speculation activities.
We demonstrate the usefulness of our metric on the example of
value speculation, where we found some proposed value predic-
tors, including low-power designs, not to be energy-efficient.

Categories and Subject Descriptors
C.1.1 [Computer Systems Organization]: Processor Architec-
tures – pipeline processors.

General Terms
Design, Measurement, Performance.

Keywords
Energy-Efficiency, Energy-Performance Metric, Speculation.

1. INTRODUCTION
Today’s high-end microprocessors try to extract and exploit more
instruction-level parallelism than ever before. However, the tradi-
tional emphasis on performance often leads to designs that waste
energy. For instance, the rapid increase in the complexity and
speed of each new processor generation cannot be compensated
for by reducing the supply voltage. Consequently, organizational
choices and tradeoffs need to be made with energy in mind, and
designers are increasingly being challenged to come up with
novel ways to reduce energy while trying to meet all other con-
straints imposed on the design.

Most research on energy optimization or estimation has focused
on single components of the system, such as the on-chip memory,
the processor core or the branch predictor. While this approach is
good for optimizing individual units, it is even more important to
evaluate the impact of hardware and software optimizations on
the whole chip. After all, the introduction of new components
may cause interactions that change the power activity in the rest
of the system in significant ways, which is especially true for
speculative hardware.

Control speculation, data dependence speculation, hardware pre-
fetching, and other speculative mechanisms allow the processor to
make forward progress without waiting for long-latency opera-
tions to complete. However, even though speculation can greatly
improve performance, it also increases power dissipation and
possibly energy consumption. This increase is caused not only by
the speculative hardware, but also by useless activities in other
components that are performed by instructions that are later dis-
carded due to a misspeculation. A useless instruction contributes
to the dynamic power consumption through data path switching
activity until it is removed from the pipeline. Hence, when de-
signing an energy-efficient speculative optimization, it is neces-
sary to consider the impact of the speculation activities on the
whole chip.

This paper makes the following contributions. First, we introduce
a simple, processor-wide energy-efficiency metric that is based on
cycle-accurate energy estimation and static supply voltage scal-
ing. We developed this metric out of a need for an accurate en-
ergy-performance metric for speculative optimizations in one of
our research projects. The general relation derived by Zyuban et
al. [27] for the optimal balance between the architectural com-
plexity, hardware intensity and power supply was the closest for
our purposes. Unfortunately, it was difficult to accurately meas-
ure some of the formula’s parameters, such as the architectural
complexity. Our metric, on the other hand, has well-defined and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
CF’05, May 4–6, 2005, Ischia, Italy.
Copyright 2005 ACM 1-59593-018-3/05/0005…$5.00.

measurable parameters and has proven useful in our research. It
only needs the targeted supply and threshold voltages as well as
the expected average speedup and energy increase due to the new
speculative hardware to determine whether it is worthwhile add-
ing this hardware to the processor. Second, we use our metric to
examine the energy-efficiency of several architectural optimiza-
tions in the domain of value speculation. We chose this domain
because even though many different value predictors have been
proposed, to date none have been implemented in hardware.
Moreover, the analysis of the energy consumption of value specu-
lation is relatively new and to our knowledge, no prior study has
compared multiple predictors using an energy-efficiency metric
that includes the effect of speculation activities in the entire mi-
croprocessor. In fact, we were surprised to find that some sup-
posedly energy-efficient designs turned out not to be. While this
paper assumes an aggressive, dynamically scheduled, wide, su-
perscalar processor, we believe many of our findings apply to
other processors as well.

The rest of the paper is organized as follows. Section 2 discusses
energy-performance considerations in speculative architectures.
Section 3 describes our energy-efficiency metric. Section 4 pre-
sents the simulation framework. In Section 5, we discuss our
evaluations and results. Section 6 summarizes our conclusions.

2. SPECULATION AND ENERGY-
PERFORMANCE TRADEOFFS

2.1 Energy Consumption in Speculative
Architectures
The increasing density of on-die transistors has enabled designers
and researchers to explore novel ways to improve instruction
throughput. One strategy for using these transistors is to increase
execution resources and to use aggressive speculation techniques.
Examples include branch prediction, which removes control de-
pendencies, and memory dependency prediction, which removes
false dependencies between store and load instructions.

In the past years, value speculation has been proposed to elimi-
nate true data dependencies between instructions. Load instruc-
tions have been shown to fetch predictable sequences [8], [14]
and several predictors have been proposed including single-level
[8], [9], [14], [21], multi-level [11], [20], [26] and hybrid [7],
[16], [18], [25] predictors. Even though value speculation shows
potential for increasing the performance of future microproces-
sors, the extensive hardware budgets and high energy consump-
tion of many of these predictors cannot be ignored. To improve
the prediction accuracy, these structures are made as large as pos-
sible, which increases their energy consumption. Interestingly,
making them too small can also waste energy due to an increased
number of misspeculations. For example, branch mispredictions
are responsible for about 28% of the power dissipated in a typical
processor [1].

The power limitation of high-performance microprocessors is
already critical to their design [3], [10]. To address the energy
consumption problem some researchers have suggested value
predictors that take space and power limitations into consideration
[2], [7], [13], [16], [19].

Unfortunately, evaluations of these recommended energy-saving
techniques have only focused on the predictors themselves with-

out considering other sources of energy consumption introduced
by the speculation activities. Moreno et al. [15] observed that
recovery from mispredictions has a significant negative impact on
the energy consumption of the microprocessor. Figures 1 and 2
show the energy consumption of some of the major hardware
structures for a processor with and without value prediction, for
the two sample SPECcpu2000 programs gcc and mcf, respec-
tively. The simulation parameters used are specified in Section 4.
In both figures we see that adding value prediction to the proces-
sor significantly increases the energy consumption of the register
file, the result bus, the instruction window and the global clock.
Note that the energy consumption of the value prediction unit is
substantially less than the total increase in energy consumption of
the other units.

0

2

4

6

8

10

lvp
red

ren
am

e
bp

red lsq
reg

file alu

res
ult

bu
s

wind
ow

clo
ck

hardware structure

en
er

gy
 c

on
su

m
pt

io
n

(m
J) no value prediction

value prediction

Figure 1. Energy consumption of common hardware struc-
tures in microprocessors with and without value prediction

for gcc

0

1

2

3

4

5

lvp
red

ren
am

e
bp

red lsq
reg

file alu

res
ult

bu
s

wind
ow

clo
ck

hardware structure

en
er

gy
 c

on
su

m
pt

io
n

(m
J) no value prediction

value prediction

Figure 2. Energy consumption of common hardware struc-
tures in microprocessors with and without value prediction

for mcf

On average, across the ten SPECcpu2000 programs we used for
this study, we found that when value speculation was incorpo-
rated into the processor, the total increase in energy consumption
of the rename unit, register file, load/store queue, functional units,
result bus, instruction window, branch predictor, global clock and
caches was 3.95 times that of the value predictor. Thus, while it
is important to design energy-efficient processor units, it is even
more important that their evaluation involve the whole specula-
tive system.

2.2 Energy-Performance Tradeoffs and
Metrics
The tradeoff between performance and energy consumption has
received much attention in recent years. Designing energy-
efficient microprocessors requires consideration of the energy
consumption at early stages in the development where the oppor-
tunity for making energy-performance tradeoffs is the highest.
Several parameters are involved in a given architecture, and dif-
ferent combinations of architectural parameters result in design
points with different performance and energy efficiencies. A
reliable metric should make knowledgeable energy-performance
tradeoffs in this multi-dimensional space.

A number of energy-performance metrics have been proposed,
some of which have been used to compare different products on
the market. The ‘MIPS per Watt’ metric has been used to com-
pare low-end products and to trade-off throughput and energy
consumption [6]. It has also been employed to analyze high-
performance processors, whose energy at maximum speed ex-
ceeds the power-dissipation capabilities of the package. The en-
ergy-delay product has been shown to be a more reasonable met-
ric than ‘MIPS per Watt’ [12] for evaluating the energy efficiency
at the microarchitectural level [10]. Formulas placing more em-
phasis on performance by raising the exponent of ‘MIPS’ have
also been used to compare high-end server microprocessors [3].

To evaluate the energy efficiency of architectural features at early
design stages, Zyuban et al. [27] derived a metric that combines
relative changes in the architectural speed, dynamic instruction
count, average energy dissipated per executed instruction, and
maximum clocking rate of the processor that result from design
modifications at the architectural and microarchitectural levels.
Their formula subsumes previously used energy-performance
metrics [6], [10] as special cases of a more general equation.
Unfortunately, it is difficult to use this metric to evaluate signifi-
cant architectural changes, such as the addition of value specula-
tion to a processor, because some of the parameters are almost
impossible to obtain and it is unclear how to account for the un-
predictable behavior associated with speculation.

3. AN ENERGY-EFFICIENCY METRIC
FOR SPECULATIVE HARDWARE
It is practically impossible to determine the optimal design point
for an architecture because the optimality criteria depend on the
type of processor. There are configurations targeted at achieving
the maximum performance and others targeted at achieving the
minimum energy dissipation per instruction. Between these two
extremes are configurations with a reasonably high performance
and reasonably low energy. To better understand the energy-
performance tradeoff, it is helpful to define an energy-efficient
configuration as one that delivers the highest performance among
all the configurations consuming the same amount of energy. An
alternative definition is that it is the one that consumes the least
energy among all configurations that deliver the same perform-
ance. We consider these definitions equivalent since either one
suffices to define an energy-efficient configuration.

Since our focus is to analyze speculative architectures, we need a
metric that provides a dynamic processor-wide energy-
performance analysis. To measure the energy-efficiency of a
design, we start with an initial architectural configuration, which

we call CPUorig. We enhance CPUorig with the speculative optimi-
zation under investigation and call this configuration CPUenh. We
then measure the performance and the energy consumed by
CPUorig and CPUenh. We use SimpleScalar [5] as our basic cycle-
accurate simulation engine because of its wide adoption in the
microprocessor research community and because it models a typi-
cal modern microprocessor architecture. We integrate Wattch [4]
into this simulator to obtain detailed energy-consumption in-
formation.

We then perform a post-simulation analysis, which involves scal-
ing the supply voltage Vdd of CPUenh, which is treated as the inde-
pendent variable in the optimization process. To achieve the de-
sired energy and performance characteristics, we assume the sup-
ply voltage can be set to any value in the range for which the
technology is qualified. We define ∆T as the speedup of CPUenh,
and ∆E as the corresponding energy increase. Given the threshold
voltage Vth, let

∆E = 2
ddxV => x =

2
ddV
E∆

T∆
1

 =
2)(thdd

dd

VV
yV
−

 => y =
dd

dd

TV
VV th

∆
− 2)(

‘x’ is used to establish a direct relation between power and supply
voltage (the variable in our metric). This simple representation of
the well-known CMOS power dissipation equation allows us to
better demonstrate how we arrive at our final relation. Likewise,
the use of ‘y’ establishes a direct relation between the execution
time (delay) and the supply voltage. The relations can be ex-
panded to show that

 x = (pCfclk) + S

y = kC
where p is the switching probability, C is the load capacitance
(wiring and device capacitance), fclk is the clock frequency, and S
is a factor that expresses static power as a function of Vdd

2. k is a
proportionality constant specific to a given technology. We as-
sume the carrier velocity saturation to range between 1 and 2.

To equalize the energy consumption of CPUenh with that of
CPUorig, the supply voltage Ve of CPUenh has to be

 2
exV = 1 => Ve =

x
1

Similarly, to equalize the performance of CPUenh with that of
CPUorig, the supply voltage Vt of CPUenh has to be

2)(tht

t

VV
yV
−

 = 1 => Vt = Vth +
2
y

+
2

)4(2yyVth +

We define

 Enorm = xVt 2 and Tnorm =
2)(the

e

VV
yV
−

Then, the

normalized speedup = 11
−

normT

is the performance gain of CPUenh when the supply voltage is
scaled such that its energy consumption matches that of CPUorig,
and the

normalized energy savings =)1(normE−

is the energy saved by CPUenh when the supply voltage is scaled
such that its performance matches that of CPUorig. We define an
optimization as energy-efficient if the normalized speedup and the
normalized energy savings are positive.

We chose this method because after optimizing a processor, pro-
grams hopefully run faster than on the original processor. How-
ever, as we are not interested in increasing both the performance
and the energy consumption, we scale down the supply voltage
such that the average execution time on the enhanced CPU is the
same as the execution time of the original CPU. Since reducing
the supply voltage has a quadratic effect on the dynamic energy
consumption, the enhanced CPU (with voltage scaling) often has
lower energy consumption than the original CPU. A similar ap-
proach is used to obtain the speedup of the enhanced CPU given
the same energy budget as the original one. Note that we scale
only the supply voltage and not the threshold voltage.

The benefit of our approach is that all variables (supply voltage,
threshold voltage, the speedup and the change in energy con-
sumption) in the relation are well understood and easily obtained.
Furthermore, our approach provides a simple way to determine
the true energy-efficiency of an optimization. Finally, since we
use a cycle-accurate performance/energy simulation model, we
capture the positive as well as the negative impacts of speculation
activity on the performance and energy consumption of the whole
chip.

4. METHODOLOGY
We obtain cycle-accurate performance data with the SimpleSca-
lar/Alpha 3.0 tool set [5]. We integrated this simulator with the
Wattch power model [4] to obtain the energy data. Wattch pro-
vides switching capacitance modeling for structures like ALUs,
caches, arrays and buses in a processor. We incorporated value
prediction into the simulator.

4.1 Simulation Framework
Our baseline architecture is an 8-way superscalar, out-of-order
CPU with 20 pipeline stages, a 128-entry instruction window, a
64-entry load/store buffer, a 32-entry 8-way instruction TLB, a
64-entry 8-way data TLB, both with a 30-cycle miss penalty, a

64kB, 2-way 2-cycle L1 instruction cache, a 128kB, 2-way 3-
cycle L1 data cache, a unified 4MB, 4-way 20-cycle L2 cache, an
8k-entry hybrid gshare-bimodal branch predictor, six integer ALU
units, four floating-point adders and two floating-point
MULT/DIV units. There are two load/store units. The data cache
is write-back and non-blocking with two ports. The caches have a
block size of 64 bytes. All functional units except the divide unit
are pipelined to allow a new instruction to initiate execution each
cycle. It takes 300 cycles to access main memory. We enable ‘no
store alias’ dependence prediction to predict aliases between load
and store instructions [18].

We use Wattch’s linear scaling to obtain energy results for
0.13µm technology, Vdd = 1.3V and a clock speed of 2.0 GHz.
The Vth is 0.38V. The cache and predictor latencies are obtained
with Cacti 3.2 [22]. We estimate static power as 25% of dynamic
power.

4.2 The Predictors
We modeled a range of predictors, which are briefly described
below. All predictors, including hybrid components, have 1024
entries. The predictors include a bimodal confidence estimator
(CE) [14], [17], [18] with three-bit saturating counters with a
threshold of five, a penalty of three and an award of one. A pre-
diction is made only when the confidence is above the threshold
value. The CE value is increased by the award when the value is
predictable and decreased by the penalty when it is not. We use
the same CE configuration for all predictors. Predictions are
made after decode, the predictors are updated as soon as the true
load value is available, there are no speculative updates, and an
out-of-date prediction is made as long as there are pending up-
dates to the same predictor line.

We considered implementing one of the replay schemes used in
the Alpha 21264 and the Pentium 4. In the squashing replay
scheme used in the Alpha 21264, all dependent and independent
instructions issued after the load scheduling miss are invalidated
and replayed. The selective replay scheme used in the Pentium 4
reschedules only instructions dependent on misscheduled loads.
However, complexity may significantly increase for precise de-
pendence tracking. It was apparent to us that these replay
schemes were not practical for load-value speculation as instruc-
tions dependent on the misses need to be searched across all in-
flight instructions and it can take hundreds of cycles to discover
the misspeculation. Hence, we use the re-fetch misprediction
recovery scheme [8]. It is identical to that used for recovering
from branch mispredictions. As an energy-saving optimization,
we do not recover from wrong predictions that were overwritten
with the true load value before they were first used.

LV: The last value predictor [8], [14] predicts that a load instruc-
tion will load the same value it did the previous time it executed.

ST2D: The stride 2-delta predictor [21] remembers the last value
for each load but also maintains a stride, i.e., the difference be-
tween the last two loaded values. ST2D can predict sequences
with zero (like LV) or non-zero strides.

DFCM3: The third-order differential finite context method pre-
dictor [11] computes a hash value [17], [18], [20] out of the dif-
ference between the last three load values to index the predictor’s
second-level table. This table stores strides between consecutive

values that follow every seen sequence of three strides. After
observing a sequence of load values, DFCM3 can predict any load
that fetches the same sequence or a different sequence with the
same strides.

wp-LV: To reduce the energy consumption, Loh [13] replaced the
traditional predictor with multiple smaller tables and proposed a
data-width predictor to choose among the tables. We implement
Loh’s width-partitioned last-value predictor (wp-LV). Since our
base predictors have 1024 entries, we pick the configuration that
Loh compared to the traditional 1024-entry LV. Specifically, we
use a 4096-entry last width predictor, a 512-entry VPT8, a 256-
entry VPT16, a 1024-entry VPT33 and a 256-entry VPT64.

wp-ST2D, wp-DFCM3: We extended Loh’s energy-reducing
(width-partitioning) idea to ST2D (wp-ST2D) and DFCM3 (wp-
DFCM3).

LSD-hybrid: Hybrid predictors have been shown to be more
effective than unit predictors [18]. We combined LV, ST2D and
DFCM3 into a hybrid and the component with the highest confi-
dence makes the prediction.

shared-LSD-hybrid: Some predictors are in themselves exten-
sions of smaller predictors. For instance, the ST2D has an LV
component, and so does the DFCM3. To avoid replicating the
common components, it has been proposed to share tables in the
hybrid [7], [15], [16] to save space and power. We extend this
idea to the LSD-hybrid by sharing the LV table between all com-
ponents. Also, we maintain only one decoder for each predictor
level, i.e., we increase the size of each line to encompass the in-
formation required by all components to further reduce the energy
consumption.

wp-shared-LSD-hybrid: To minimize the energy of the shared-
LSD-hybrid, we replace the LV component with Loh’s wp-LV,
which is described above.

4.3 Benchmarks
Table 1 describes the ten C programs (six integer and four float-
ing-point) from the SPECcpu2000 benchmark suite [23] that we
use for our measurements. They were compiled on a DEC Alpha
21264A processor using the DEC C compiler under the OSF/1
v5.1 operating system using the “-O3 -arch host” optimization
flags. We employed the reference inputs provided with these
programs. We utilize SimPoint [24] to select a representative
subset (500 million instructions in length) of each benchmark
trace. Table 1 shows the number of instructions (in billions) that
are skipped before beginning the cycle-accurate simulations, the
number of simulated load instructions (in millions), the percent-
age of simulated instructions that are loads and the IPC on the
baseline CPU.

The following SPECcpu2000 programs are not used. Compiling
crafty, gap, parser and perlbmk with our optimization flags makes
the resulting binaries incompatible with the simulator, and simu-
lating vpr is very slow since we would have to ‘fast-forward’ over
1600 billion instructions. Also, we do not use the C++ and For-
tran programs because we do not have a good compiler for them.

Table 1. Information about the simulated segments of the
benchmark programs

skipped simulated %
insts (B) loads (M) loads

ammp 27.5 134.1 26.8 1.532
art 6.5 162.5 32.5 1.407
bzip2 19.5 145.9 29.2 1.314
equake 131.5 235.1 47.0 0.330
gcc 4.0 228.2 45.6 1.111
gzip 3.0 121.8 24.4 1.284
mcf 23.0 209.7 41.9 0.488
mesa 67.5 129.5 25.9 1.742
twolf 247.0 142.6 28.5 1.209
vortex 106.5 127.2 25.4 1.843
geo. mean 57.8 148.8 29.8 1.115

program base IPC

5. EXPERIMENTAL RESULTS
As discussed in the previous sections, to evaluate the energy-
performance benefit of a speculative design, it is necessary to take
the entire chip into account. In this section, we compare the en-
ergy-efficiency of frequently used load-value predictors from the
literature, including some energy-aware alternatives, using our
metric described in Section 3. We start with the initial configura-
tion described in Section 4 and evaluate the benefit of incorporat-
ing the different speculative optimizations to the processor. Note
that no prior processor-wide runtime energy-performance analysis
has been done for all of these load-value predictors and that some
of the presented predictors are our own extensions of previously
proposed predictors

5.1 Load-Value Predictors
In this sub-section we evaluate the LV, ST2D and DFCM3 pre-
dictors as well as Loh’s energy-aware width-partitioned wp-LV.
We also assess wp-ST2D and wp-DFCM3, our enhancement of
the ST2D and DFCM3, respectively, with Loh’s width-
partitioning scheme. These six predictors are described in detail
in Section 4.2.

We first examine the energy-efficiency of these six predictors for
gcc and bzip2, and then study the overall behavior and trend
across all the programs.

Figure 3 shows the IPCs of the processor with and without the
above-mentioned predictors for gcc. gcc is of particular interest
to us since it is one of the hardest programs to optimize in the
SPECcpu2000 benchmark suite. We see that ST2D outperforms
both LV and DFCM3. Context predictors such as DFCM3 have
been shown to be the best performing load-value predictors.
However, previous work has evaluated such predictors with large
predictor tables, i.e., larger than 1024 entries. In our study, we
found context predictors to be quite sensitive to the predictor size.
Using realistically sized tables (1024 entries in our case) makes
DFCM3 perform worse than its counterparts. This is because all
loads share the second-level table in DFCM3, which increases
aliasing and possibly negative interference.

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

ba
se LV

wp-L
V

ST2D

wp-S
T2D

DFCM3

wp-D
FCM3

IP
C

Figure 3. IPCs of a microprocessor with and without load-

value predictors for gcc

Figure 4 shows the corresponding energy consumption (relative to
the base CPU, which does not include any load-value predictor).
Here, we observe that the CPU with DFCM3 consumes signifi-
cantly less energy than those with LV and ST2D even though
DFCM3 is larger in overall size. The decision on whether to
make a prediction is determined by the confidence estimator asso-
ciated with each predictor entry. As fewer and fewer correct pre-
dictions are made, the confidence of the DFCM3 falls to such low
levels that relatively fewer predictions are made, which results in
less speculation activity and explains its low performance and
energy consumption.

We also find that although the CPUs with wp-LV and wp-ST2D
consume less energy than LV and ST2D, respectively, they do not
perform worse. On the other hand, extending the width-
partitioning technique to DFCM3 increases the chip’s energy
consumption without a significant change in performance.

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

ba
se LV

wp-L
V

ST2D

wp-S
T2D

DFCM3

wp-D
FCM3

ch
ip

-w
id

e
en

er
gy

 c
on

su
m

pt
io

n

Figure 4. Processor-wide energy consumption with load-value

predictors relative to the base CPU for gcc

To better see which of these designs are really energy-efficient,
we derive the speedup of each speculative optimization given the
same energy budget as the base processor, or alternatively the
energy savings of each optimization given the same performance
as the base processor. This process is described in Section 3.
We define an optimization as energy-efficient if the resulting
normalized speedup, or alternatively the normalized energy sav-
ings, is positive. In other words, a negative outcome indicates
that it is not worth including the optimization.

Table 2. Normalized speedup and energy savings for micro-
processors with load-value predictors for gcc
(Section 3 details our normalization process.)

normalized normalized
speedup energy savings

(%) (%)
LV -2.9 -3.2
wp-LV -1.5 -1.6
ST2D -2.9 -3.3
wp-ST2D -2.7 -3.0
DFCM3 -3.7 -4.2
wp-DFCM3 -4.7 -5.3

Surprisingly, we observe in Table 2 that for gcc none of the op-
timizations is energy-efficient despite the fact that no optimiza-
tion slowed down the CPU (Figure 3). Note that the normalized
speedup and normalized energy savings are derived from our
metric described in Section 3 and should not be confused with
Figure 3 or Figure 4.

We identified a couple of sources of inefficiency for gcc. Due to
the finite table size of load-value predictors, different loads can
map to the same predictor line, which often results in detrimental
aliasing. Figure 5 shows the degree of aliasing for gcc in a 1024-
entry predictor table. The minimum number of aliasing loads,
i.e., static loads that access the same line, is 19 and the maximum
is 55. 78 of the predictor entries have 37 aliasing loads.

0

10

20

30

40

50

60

70

80

19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

number of aliasing loads

sl
ot

s
w

ith
 s

am
e

nu
m

be
r o

f
al

ia
si

ng
 lo

ad
s

Figure 5. Aliasing static loads in 1024-entry table for gcc

Thus, gcc could benefit from an adaptive scheme that identifies
the critical and predictable loads, and limits prediction resources
to these, while keeping negative interferences to a minimum.
However, this was not the major problem with gcc, as we explain
next.

We find that, on average, almost 98% of the data cache accesses
were hits and only 3.9% of the L1 misses had to access main
memory. This means that no matter how accurate the value pre-
dictor is, the gains will be minimal for gcc. As can be observed in
Figure 6, for the six predictor configurations, less than 1% of the
loads are mispredicted. This is important because it is better not
to predict than to do so incorrectly due to high cost of mispredic-
tions for performance and especially for energy consumption. In
fact, we find that for gcc employing a perfect predictor provides
only 13% speedup.

0

20

40

60

80

LV
wp-L

V
ST2D

wp-S
T2D

DFCM3

wp-D
FCM3

pe
rc

en
t o

f t
ot

al
 lo

ad
s

misprediction
correct prediction
not predicted

Figure 6. Percent of total loads that are not predicted, cor-

rectly predicted and mispredicted for gcc

We also varied the number of pipeline stages in our simulations
(Table 3). This experiment shows that the pipeline length has a
minimal impact on gcc’s energy-efficiency. There appears to be a
slight improvement in energy-efficiency in the predictors espe-
cially for DFCM3, except for wp-DFCM3, as the number of
stages is reduced. We believe this trend can be attributed to the
decrease in the cost of mispredictions in a processor with a shorter
pipeline depth.

Table 3. Normalized speedup for varying pipeline depths for
gcc

10 15 20
stages stages stages

LV -2.6 -2.8 -2.9
wp-LV -1.3 -1.5 -1.5
ST2D -2.7 -2.9 -2.9
wp-ST2D -2.6 -2.7 -2.7
DFCM3 -1.7 -1.8 -3.7
wp-DFCM3 -4.6 -5.8 -2.7

A high prediction accuracy does not always translate into high
performance. This is due to the fact that a correct prediction is
useless if a dependent instruction does not consume the prediction
before the memory provides the result. Thus one of the factors
that influence the performance of a predictor is the load-to-use
latency, i.e., the time between the issue of a load to when a de-
pendent instruction is ready to execute.

Figure 7 shows the percent of total loads with a load-to-use la-
tency of less than 20 cycles, i.e., the time it takes to access the L2
cache. This graph shows that on average 51.7% of the loads will
potentially cause a stall if the L1 cache results in a miss. As is
shown, bzip2 has the highest potential for such stalls, and thus we
expect it to benefit significantly from value prediction. We evalu-
ate bzip2’s energy-efficiency next.

0

20

40

60

80

100

am
mp art

bz
ip2

eq
ua

ke gc
c

gz
ip mcf

mes
a

tw
olf

vo
rte

x

ge
o.

mea
n

pe
rc

en
t o

f t
ot

al
 lo

ad
s

(%
)

Figure 7. Percent of total loads with a load-to-use latency of

fewer than 20 cycles

Figures 8 and 9 show the IPCs and the corresponding energy con-
sumption, respectively, for bzip2. As expected, bzip2 appears to
benefit substantially from value prediction. Here, we observe that
the width-partitioned optimizations do not enhance the perform-
ance but reduce the energy consumption, and significantly so for
DFCM3.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

ba
se LV

wp-L
V

ST2D

wp-S
T2D

DFCM3

wp-D
FCM3

IP
C

Figure 8. IPCs of a microprocessor with and without load-
value prediction for bzip2

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

ba
se LV

wp-L
V

ST2D

wp-S
T2D

DFCM3

wp-D
FCM3

ch
ip

-w
id

e
en

er
gy

 c
on

su
m

pt
io

n

Figure 9. Processor-wide energy consumption with load-value

prediction relative to the base CPU for bzip2

When we evaluate the performance and energy savings using our
metric, we find that all six optimizations are energy-efficient for
bzip2. Note that unlike with gcc, wp-DFCM3 is more energy-
efficient than DFCM3. It is also interesting that the best design
for bzip2 is wp-LV (Table 4), which is one of the simpler predic-
tors.
We have presented the detailed analyses for gcc and bzip2 as
examples of programs on opposite ends of energy-efficiency
spectrum. We have presented a few possible sources of effi-
ciency/inefficiency, namely prediction accuracy, cache miss rate,
aliasing in predictor tables and the load-to-use latency. Given the
wide disparity in program behavior, it may be worthwhile to
adopt adaptive schemes to make value predictors more energy-
efficient. An effective scheme would be one that makes predic-
tions based on the energy-efficiency of a potential prediction.
This is left for future work.

Table 4. Normalized speedup and energy savings for micro-

processors with load-value predictors for bzip2

normalized normalized
speedup energy savings

(%) (%)
LV 23.0 19.3
wp-LV 24.7 20.5
ST2D 23.2 19.5
wp-ST2D 24.2 20.2
DFCM3 8.2 7.9
wp-DFCM3 14.3 13.1

Table 5 shows that DFCM3 and wp-DFCM3 are the only optimi-
zations that are not energy-efficient across all the programs. The
best predictor is wp-ST2D. Again, this is a fairly simple predictor
compared to DFCM3 and wp-DFCM3. Research has shown that
the most accurate load-value predictors tend to be large and com-
plex. However, our findings demonstrate that designers can ex-
pect better energy-efficiency from seemingly simple predictors
and future research in this field may need to focus on using sim-
pler predictors more effectively.

Table 5. Normalized speedup and energy savings for micro-
processors with load-value predictors across all programs

normalized normalized
speedup energy savings

(%) (%)
LV 0.9 0.9
wp-LV 0.9 1.0
ST2D 1.0 1.1
wp-ST2D 1.1 1.2
DFCM3 -1.9 -2.0
wp-DFCM3 -1.4 -1.6

5.2 Hybrid Load-Value Predictors
Different value predictors have been designed to exploit different
predictable sequences. To enhance predictability, hybrid predic-
tors combine dissociated predictors and employ a selection
mechanism. The selector is responsible for choosing the most
suitable component for predicting each load instruction. In the
LSD-hybrid (described in Section 4.2), a confidence estimator is
associated with each predictor and the component with the highest
confidence makes the prediction. We compare this predictor to a
space-saving version, i.e., one in which tables common to all
components are shared [7], [15], [16]. We call this the shared-
LSD-hybrid. We extend the width-partitioning technique to this
predictor to obtain the wp-shared-LSD-hybrid.

Table 6. Normalized speedup for microprocessors with hybrid

value predictors

shared- wp-shared-
LSD-hybrid LSD-hybrid

ammp -1.5 -0.9 -1.9
art -2.7 -2.2 -1.7
bzip2 20.9 21.8 8.8
equake 11.2 11.9 0.7
gcc -4.6 -4.0 -3.3
gzip -0.3 0.6 -1.3
mcf -8.4 -7.4 -3.6
mesa -2.9 -2.2 -1.3
twolf -10.0 -9.2 -7.6
vortex -5.3 -4.7 -2.9
geo. mean -0.7 0.0 -1.4

normalized speedup (%)

LSD-hybridprogram

Tables 6 and 7 show the normalized speedup and normalized
energy savings, respectively, for these three predictors and for the
programs we simulate. Sharing tables makes the LSD hybrid
more energy-efficient. This not unusual since this enhancement
does not change the speculation activity of the processor but de-
creases the size and therefore the energy consumption of the pre-
dictor. With the exception of ammp, bzip2, equake and gzip, wp-
shared-LSD-hybrid further improves the energy-efficiency of
shared-LSD-hybrid.

What we found astonishing is the fact that except for bzip2 and
equake, none of the programs benefit from adding any of the hy-
brid predictors to the processor. This is primarily due to the fact
that the added complexity increases the energy consumption of
the processor at a higher rate than it increases performance. This
observation further indicates that when energy consumption is
taken into consideration, complex predictors do not provide a
good energy-performance tradeoff.

Table 7. Normalized energy savings for microprocessors with
hybrid value predictors

shared- wp-shared-
LSD-hybrid LSD-hybrid

ammp -1.6 -1.0 -2.1
art -3.0 -2.4 -1.9
bzip2 17.8 18.5 8.4
equake 10.8 11.3 0.8
gcc -5.2 -4.5 -3.7
gzip -0.3 0.6 -1.4
mcf -9.9 -8.6 -4.0
mesa -3.3 -2.4 -1.4
twolf -11.9 -10.9 -9.0
vortex -6.0 -5.3 -3.2
geo. mean -0.8 0.0 -1.5

normalized energy savings (%)

LSD-hybridprogram

Note that we do not draw conclusions on the overall performance
of these predictors and their energy-saving variants. Our observa-
tions are within the confines of our architectural configuration
outlined in Section 4. It may well be possible to derive benefit
from these same predictors for a different processor. The purpose
of this study is to demonstrate how our metric can be used to
measure the energy-efficiency of a speculative optimization and
to answer the question ‘Is it worth it to add the speculative opti-
mization to the base processor?’ A natural progression of our
work is to evaluate what could be done to make the predictors
more energy-efficient. This is left for future work.

6. CONCLUSIONS
Aggressive speculation is increasingly being used to exploit the
growing transistor budgets. However, designers are being chal-
lenged to come up with novel ways to improve performance
within current power and energy constraints. Several speculative
hardware components have been optimized to reduce energy con-
sumption. However, many of these optimizations have not taken
into consideration the energy consumption introduced in other
parts of the chip due to useless speculation activities. To better
evaluate speculative architectures for their energy-efficiency, we
have described a simple metric that is based on a cycle-accurate
energy-performance analysis.

Unlike previously proposed metrics with hard-to-measure pa-
rameters, ours only relies on parameters that can easily be ob-
tained (the supply and threshold voltages) and that can be meas-
ured through simulation (the speedup and increase in energy con-
sumption of the optimization under investigation). We have illus-
trated the use of our metric on several value speculation optimiza-
tions and found that some designs that would have been consid-
ered energy-efficient are not. For instance, our metric revealed
that applying an energy-saving technique such as width-
partitioning to the DFCM3 predictor can hurt the energy effi-
ciency of the processor as a whole.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for useful feedback. This
work was supported in part by a grant from Intel Corporation.

8. REFERENCES
[1] J. Aragon, J. Gonzalez, A. Gonzalez. Power-Aware Control

Speculation through Selective Throttling. Ninth International
Symposium on High-Performance Computer Architecture,
2003, pp. 103-112.

[2] R. Bhargava, L. K. John. Latency and Energy Aware Value
Prediction for High-Frequency Processors. 16th Interna-
tional Conference on Supercomputing, 2002, pp. 45-56.

[3] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N.
Kudva, A. Buyuktosunoglu, J-D. Wellman, V. Zyuban, M.
Gupta, P.W. Cook. Power-Aware Microarchitecture: Design
and Modeling Challenges for Next-Generation Microproces-
sors. IEEE Micro, v.20 n.6, 2000, pp. 26-44.

[4] D. Brooks, V. Tiwari, M. Martonosi. Wattch: A Framework
for High-Performance Microprocessors. Seventh Interna-
tional Symposium on High-Performance Computer Architec-
ture, 2001, pp. 171-1 2.

[5] D. Burger, T. M. Austin. The SimpleScalar Tool Set, ver-
sion 2.0. ACM SIGARCH Computer Architecture News,
1997. http://www.simplescalar.com

[6] T. Burd, R. Brodersen. Energy Efficient CMOS Microproc-
essor Design. 28th Annual Hawaii International Conference
on System Sciences, 1995, pp. 288-297.

[7] M. Burtscher, B. G. Zorn. Hybridizing and Coalescing Load
Value Predictors. International Conference on Computer
Design, 2000, pp. 81-92.

[8] F. Gabbay. Speculative Execution Based on Value Predic-
tion. Technical Report 1080, Department of Electrical En-
gineering, Technion-Israel Institute of Technology, 1996.

[9] J. Gonzalez, A. Gonzalez. The Potential of Data Value
Speculation to Boost ILP. 12th International Conference on
Supercomputing, 1998, pp. 21-28.

[10] R. Gonzalez, M. Horowitz. Energy Dissipation in General
Purpose Microprocessors. IEEE Journal of Solid-State Cir-
cuits, 1996, pp. 1227-1284.

[11] B. Goeman, H. Vandierendonck, K. De Bosschere. Differen-
tial FCM: Increasing Value Prediction Accuracy by Improv-
ing Table Usage Efficiency. Seventh International Sympo-
sium on High-Performance Computer Architecture, 2001,
pp. 207-216.

[12] M. Horowitz, T. Indermaur, R. Gonzalez. Low-power Digi-
tal Design. IEEE Symposium on Low Power Electronics,
1994, pp. 8-11.

[13] G.H. Loh. Width-Partitioned Load Value Predictors. Jour-
nal of Instruction-Level Parallelism, 2003, pp. 1-23.

[14] M. H. Lipasti, C. B. Wilkerson, J. P. Shen. Value Locality
and Load Value Prediction. Second International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, 1996, pp. 138-147.

[15] R. Moreno, L. Pinuel, S. del Pino, F. Tirado. A Power Per-
spective of Value Speculation for Superscalar Microproces-
sors. International Conference on Computer Design, 2000,
pp. 147-154.

[16] L. Pinuel, R. A. Moreno, F. Tirado. Implementation of Hy-
brid Context Based Value Predictors Using Value Sequence
Classification. Euro-Par, 1999, pp. 1291-1295.

[17] G. Reinman, B. Calder. Predictive Techniques for Aggres-
sive Load Speculation. 31st IEEE/ACM International Sym-
posium on Microarchitecture, 1998, pp. 127-137.

[18] B. Rychlik, J. Faistl, B. Krug, J. P. Shen. Efficacy and Per-
formance Impact of Value Prediction. International Confer-
ence on Parallel Architectures and Compilation Techniques,
1998, pp. 148-154.

[19] T. Sato, I. Arita. Low-Cost Value Prediction Using Frequent
Value Locality. Fourth International Symposium on High
Performance Computing, 2002, pp. 106-119.

[20] Y. Sazeides, J. E. Smith. Implementations of Context Based
Value Predictors. Technical Report ECE-97-8, University of
Wisconsin, Madison, Wisconsin, 1997.

[21] Y. Sazeides, J. E. Smith. The Predictability of Data Values.
30th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 1997, pp. 248-258.

[22] P. Shivakumar, N. P. Jouppi. CACTI 3.0: An Integrated
Cache Timing, Power and Area Model. TR 2001/2. Compaq
Western Research Laboratory, 2001.

[23] SPECcpu2000 benchmarks.
http://www.spec.org/osg/cpu2000.

[24] T. Sherwood, E. Perelman, G. Hamerly, B. Calder. Auto-
matically Characterizing Large Scale Program Behavior.
Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2002, pp.
45-57.

[25] K. Wang, M. Franklin. Highly Accurate Data Value Predic-
tion using Hybrid Predictors. 30th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, 1997, pp. 358-
363.

[26] H. Zhou, J. Flanagan, T. M. Conte. Detecting Global Stride
Locality in Value Streams. 30th Annual International Sym-
posium on Computer Architecture, 2003, pp. 324-335.

[27] V. Zyuban, P. Strenski. Unified Methodology for Resolving
Power-Performance Tradeoffs at the Microarchitectural and
Circuit Levels. International Symposium on Low Power
Electronics and Design, 2002, pp. 166-171.

