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ABSTRACT 
Microprocessor trends are moving towards wider architectures 
and more aggressive speculation.  With the increasing transistor 
budgets, energy consumption has become a critical design con-
straint.  To address this problem, several researchers have pro-
posed and evaluated energy-efficient variants of speculation 
mechanisms.  However, such hardware is typically evaluated in 
isolation and its impact on the energy consumption of the rest of 
the processor, for example, due to wrong-path executions, is ig-
nored.  Moreover, the available metrics that would provide a thor-
ough evaluation of an architectural optimization employ some-
what complicated formulas with hard-to-measure parameters. 

In this paper, we introduce a simple method to accurately com-
pare the energy-efficiency of speculative architectures.  Our met-
ric is based on runtime analysis of the entire processor chip and 
thus captures the energy consumption due to the positive as well 
as the negative activities that arise from the speculation activities.  
We demonstrate the usefulness of our metric on the example of 
value speculation, where we found some proposed value predic-
tors, including low-power designs, not to be energy-efficient.      

Categories and Subject Descriptors 
C.1.1 [Computer Systems Organization]: Processor Architec-
tures – pipeline processors. 

General Terms 
Design, Measurement, Performance. 

Keywords 
Energy-Efficiency, Energy-Performance Metric, Speculation.  

 

 

 

1. INTRODUCTION 
Today’s high-end microprocessors try to extract and exploit more 
instruction-level parallelism than ever before.  However, the tradi-
tional emphasis on performance often leads to designs that waste 
energy.  For instance, the rapid increase in the complexity and 
speed of each new processor generation cannot be compensated 
for by reducing the supply voltage.  Consequently, organizational 
choices and tradeoffs need to be made with energy in mind, and 
designers are increasingly being challenged to come up with 
novel ways to reduce energy while trying to meet all other con-
straints imposed on the design.   

Most research on energy optimization or estimation has focused 
on single components of the system, such as the on-chip memory, 
the processor core or the branch predictor.  While this approach is 
good for optimizing individual units, it is even more important to 
evaluate the impact of hardware and software optimizations on 
the whole chip.  After all, the introduction of new components 
may cause interactions that change the power activity in the rest 
of the system in significant ways, which is especially true for 
speculative hardware.   

Control speculation, data dependence speculation, hardware pre-
fetching, and other speculative mechanisms allow the processor to 
make forward progress without waiting for long-latency opera-
tions to complete.  However, even though speculation can greatly 
improve performance, it also increases power dissipation and 
possibly energy consumption.  This increase is caused not only by 
the speculative hardware, but also by useless activities in other 
components that are performed by instructions that are later dis-
carded due to a misspeculation.  A useless instruction contributes 
to the dynamic power consumption through data path switching 
activity until it is removed from the pipeline.  Hence, when de-
signing an energy-efficient speculative optimization, it is neces-
sary to consider the impact of the speculation activities on the 
whole chip. 

This paper makes the following contributions.  First, we introduce 
a simple, processor-wide energy-efficiency metric that is based on 
cycle-accurate energy estimation and static supply voltage scal-
ing.  We developed this metric out of a need for an accurate en-
ergy-performance metric for speculative optimizations in one of 
our research projects.  The general relation derived by Zyuban et 
al. [27] for the optimal balance between the architectural com-
plexity, hardware intensity and power supply was the closest for 
our purposes.  Unfortunately, it was difficult to accurately meas-
ure some of the formula’s parameters, such as the architectural 
complexity.  Our metric, on the other hand, has well-defined and 
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measurable parameters and has proven useful in our research.  It 
only needs the targeted supply and threshold voltages as well as 
the expected average speedup and energy increase due to the new 
speculative hardware to determine whether it is worthwhile add-
ing this hardware to the processor.  Second, we use our metric to 
examine the energy-efficiency of several architectural optimiza-
tions in the domain of value speculation.  We chose this domain 
because even though many different value predictors have been 
proposed, to date none have been implemented in hardware.  
Moreover, the analysis of the energy consumption of value specu-
lation is relatively new and to our knowledge, no prior study has 
compared multiple predictors using an energy-efficiency metric 
that includes the effect of speculation activities in the entire mi-
croprocessor.  In fact, we were surprised to find that some sup-
posedly energy-efficient designs turned out not to be.  While this 
paper assumes an aggressive, dynamically scheduled, wide, su-
perscalar processor, we believe many of our findings apply to 
other processors as well. 

The rest of the paper is organized as follows.  Section 2 discusses 
energy-performance considerations in speculative architectures.  
Section 3 describes our energy-efficiency metric.  Section 4 pre-
sents the simulation framework.  In Section 5, we discuss our 
evaluations and results.  Section 6 summarizes our conclusions. 

2. SPECULATION AND ENERGY-
PERFORMANCE TRADEOFFS 

2.1 Energy Consumption in Speculative     
Architectures 
The increasing density of on-die transistors has enabled designers 
and researchers to explore novel ways to improve instruction 
throughput.  One strategy for using these transistors is to increase 
execution resources and to use aggressive speculation techniques.  
Examples include branch prediction, which removes control de-
pendencies, and memory dependency prediction, which removes 
false dependencies between store and load instructions.   

In the past years, value speculation has been proposed to elimi-
nate true data dependencies between instructions.  Load instruc-
tions have been shown to fetch predictable sequences [8], [14] 
and several predictors have been proposed including single-level 
[8], [9], [14], [21], multi-level [11], [20], [26] and hybrid [7], 
[16], [18], [25] predictors.  Even though value speculation shows 
potential for increasing the performance of future microproces-
sors, the extensive hardware budgets and high energy consump-
tion of many of these predictors cannot be ignored.   To improve 
the prediction accuracy, these structures are made as large as pos-
sible, which increases their energy consumption.  Interestingly, 
making them too small can also waste energy due to an increased 
number of misspeculations.  For example, branch mispredictions 
are responsible for about 28% of the power dissipated in a typical 
processor [1].   

The power limitation of high-performance microprocessors is 
already critical to their design [3], [10].  To address the energy 
consumption problem some researchers have suggested value 
predictors that take space and power limitations into consideration 
[2], [7], [13], [16], [19].   

Unfortunately, evaluations of these recommended energy-saving 
techniques have only focused on the predictors themselves with-

out considering other sources of energy consumption introduced 
by the speculation activities.  Moreno et al. [15] observed that 
recovery from mispredictions has a significant negative impact on 
the energy consumption of the microprocessor.  Figures 1 and 2 
show the energy consumption of some of the major hardware 
structures for a processor with and without value prediction, for 
the two sample SPECcpu2000 programs gcc and mcf, respec-
tively.  The simulation parameters used are specified in Section 4.  
In both figures we see that adding value prediction to the proces-
sor significantly increases the energy consumption of the register 
file, the result bus, the instruction window and the global clock.  
Note that the energy consumption of the value prediction unit is 
substantially less than the total increase in energy consumption of 
the other units.   
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Figure 1. Energy consumption of common hardware struc-
tures in microprocessors with and without value prediction 

for gcc 
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Figure 2. Energy consumption of common hardware struc-
tures in microprocessors with and without value prediction 

for mcf 
 

On average, across the ten SPECcpu2000 programs we used for 
this study, we found that when value speculation was incorpo-
rated into the processor, the total increase in energy consumption 
of the rename unit, register file, load/store queue, functional units, 
result bus, instruction window, branch predictor, global clock and 
caches was 3.95 times that of the value predictor.  Thus, while it 
is important to design energy-efficient processor units, it is even 
more important that their evaluation involve the whole specula-
tive system. 



2.2 Energy-Performance Tradeoffs and    
Metrics 
The tradeoff between performance and energy consumption has 
received much attention in recent years.  Designing energy-
efficient microprocessors requires consideration of the energy 
consumption at early stages in the development where the oppor-
tunity for making energy-performance tradeoffs is the highest.  
Several parameters are involved in a given architecture, and dif-
ferent combinations of architectural parameters result in design 
points with different performance and energy efficiencies.  A 
reliable metric should make knowledgeable energy-performance 
tradeoffs in this multi-dimensional space.   

A number of energy-performance metrics have been proposed, 
some of which have been used to compare different products on 
the market.  The ‘MIPS per Watt’ metric has been used to com-
pare low-end products and to trade-off throughput and energy 
consumption [6].  It has also been employed to analyze high-
performance processors, whose energy at maximum speed ex-
ceeds the power-dissipation capabilities of the package.  The en-
ergy-delay product has been shown to be a more reasonable met-
ric than ‘MIPS per Watt’ [12] for evaluating the energy efficiency 
at the microarchitectural level [10].  Formulas placing more em-
phasis on performance by raising the exponent of ‘MIPS’ have 
also been used to compare high-end server microprocessors [3]. 

To evaluate the energy efficiency of architectural features at early 
design stages, Zyuban et al. [27] derived a metric that combines 
relative changes in the architectural speed, dynamic instruction 
count, average energy dissipated per executed instruction, and 
maximum clocking rate of the processor that result from design 
modifications at the architectural and microarchitectural levels.  
Their formula subsumes previously used energy-performance 
metrics [6], [10] as special cases of a more general equation.  
Unfortunately, it is difficult to use this metric to evaluate signifi-
cant architectural changes, such as the addition of value specula-
tion to a processor, because some of the parameters are almost 
impossible to obtain and it is unclear how to account for the un-
predictable behavior associated with speculation. 

3. AN ENERGY-EFFICIENCY METRIC 
FOR SPECULATIVE HARDWARE 
It is practically impossible to determine the optimal design point 
for an architecture because the optimality criteria depend on the 
type of processor.  There are configurations targeted at achieving 
the maximum performance and others targeted at achieving the 
minimum energy dissipation per instruction.  Between these two 
extremes are configurations with a reasonably high performance 
and reasonably low energy.  To better understand the energy-
performance tradeoff, it is helpful to define an energy-efficient 
configuration as one that delivers the highest performance among 
all the configurations consuming the same amount of energy.  An 
alternative definition is that it is the one that consumes the least 
energy among all configurations that deliver the same perform-
ance.  We consider these definitions equivalent since either one 
suffices to define an energy-efficient configuration. 

Since our focus is to analyze speculative architectures, we need a 
metric that provides a dynamic processor-wide energy-
performance analysis.  To measure the energy-efficiency of a 
design, we start with an initial architectural configuration, which 

we call CPUorig.  We enhance CPUorig with the speculative optimi-
zation under investigation and call this configuration CPUenh.  We 
then measure the performance and the energy consumed by 
CPUorig and CPUenh.  We use SimpleScalar [5] as our basic cycle-
accurate simulation engine because of its wide adoption in the 
microprocessor research community and because it models a typi-
cal modern microprocessor architecture.  We integrate Wattch [4] 
into this simulator to obtain detailed energy-consumption in-
formation.   

We then perform a post-simulation analysis, which involves scal-
ing the supply voltage Vdd of CPUenh, which is treated as the inde-
pendent variable in the optimization process.  To achieve the de-
sired energy and performance characteristics, we assume the sup-
ply voltage can be set to any value in the range for which the 
technology is qualified.  We define ∆T as the speedup of CPUenh, 
and ∆E as the corresponding energy increase.  Given the threshold 
voltage Vth, let 
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‘x’ is used to establish a direct relation between power and supply 
voltage (the variable in our metric).  This simple representation of 
the well-known CMOS power dissipation equation allows us to 
better demonstrate how we arrive at our final relation.  Likewise, 
the use of ‘y’ establishes a direct relation between the execution 
time (delay) and the supply voltage.  The relations can be ex-
panded to show that  

   x = (pCfclk) + S   

y = kC 
where p is the switching probability, C is the load capacitance 
(wiring and device capacitance), fclk is the clock frequency, and S 
is a factor that expresses static power as a function of Vdd

2.  k is a 
proportionality constant specific to a given technology.  We as-
sume the carrier velocity saturation to range between 1 and 2. 

To equalize the energy consumption of CPUenh with that of 
CPUorig, the supply voltage Ve of CPUenh has to be 

 2
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Similarly, to equalize the performance of CPUenh with that of 
CPUorig, the supply voltage Vt of CPUenh has to be 
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We define               
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is the performance gain of CPUenh when the supply voltage is 
scaled such that its energy consumption matches that of CPUorig, 
and the  

 

normalized energy savings = )1( normE−  

 
is the energy saved by CPUenh when the supply voltage is scaled 
such that its performance matches that of CPUorig.  We define an 
optimization as energy-efficient if the normalized speedup and the 
normalized energy savings are positive. 

We chose this method because after optimizing a processor, pro-
grams hopefully run faster than on the original processor.  How-
ever, as we are not interested in increasing both the performance 
and the energy consumption, we scale down the supply voltage 
such that the average execution time on the enhanced CPU is the 
same as the execution time of the original CPU.  Since reducing 
the supply voltage has a quadratic effect on the dynamic energy 
consumption, the enhanced CPU (with voltage scaling) often has 
lower energy consumption than the original CPU.  A similar ap-
proach is used to obtain the speedup of the enhanced CPU given 
the same energy budget as the original one.  Note that we scale 
only the supply voltage and not the threshold voltage. 

The benefit of our approach is that all variables (supply voltage, 
threshold voltage, the speedup and the change in energy con-
sumption) in the relation are well understood and easily obtained.  
Furthermore, our approach provides a simple way to determine 
the true energy-efficiency of an optimization.  Finally, since we 
use a cycle-accurate performance/energy simulation model, we 
capture the positive as well as the negative impacts of speculation 
activity on the performance and energy consumption of the whole 
chip. 

4. METHODOLOGY 
We obtain cycle-accurate performance data with the SimpleSca-
lar/Alpha 3.0 tool set [5].  We integrated this simulator with the 
Wattch power model [4] to obtain the energy data.  Wattch pro-
vides switching capacitance modeling for structures like ALUs, 
caches, arrays and buses in a processor.  We incorporated value 
prediction into the simulator.   

4.1 Simulation Framework 
Our baseline architecture is an 8-way superscalar, out-of-order 
CPU with 20 pipeline stages, a 128-entry instruction window, a 
64-entry load/store buffer, a 32-entry 8-way instruction TLB, a 
64-entry 8-way data TLB, both with a 30-cycle miss penalty, a 

64kB, 2-way 2-cycle L1 instruction cache, a 128kB, 2-way 3-
cycle L1 data cache, a unified 4MB, 4-way 20-cycle L2 cache, an 
8k-entry hybrid gshare-bimodal branch predictor, six integer ALU 
units, four floating-point adders and two floating-point 
MULT/DIV units.  There are two load/store units.  The data cache 
is write-back and non-blocking with two ports.  The caches have a 
block size of 64 bytes.  All functional units except the divide unit 
are pipelined to allow a new instruction to initiate execution each 
cycle.  It takes 300 cycles to access main memory.  We enable ‘no 
store alias’ dependence prediction to predict aliases between load 
and store instructions [18]. 

We use Wattch’s linear scaling to obtain energy results for 
0.13µm technology, Vdd = 1.3V and a clock speed of 2.0 GHz.  
The Vth is 0.38V.  The cache and predictor latencies are obtained 
with Cacti 3.2 [22].  We estimate static power as 25% of dynamic 
power.  

4.2 The Predictors 
We modeled a range of predictors, which are briefly described 
below.  All predictors, including hybrid components, have 1024 
entries.  The predictors include a bimodal confidence estimator 
(CE) [14], [17], [18] with three-bit saturating counters with a 
threshold of five, a penalty of three and an award of one.  A pre-
diction is made only when the confidence is above the threshold 
value.  The CE value is increased by the award when the value is 
predictable and decreased by the penalty when it is not.  We use 
the same CE configuration for all predictors.  Predictions are 
made after decode, the predictors are updated as soon as the true 
load value is available, there are no speculative updates, and an 
out-of-date prediction is made as long as there are pending up-
dates to the same predictor line.   

We considered implementing one of the replay schemes used in 
the Alpha 21264 and the Pentium 4.  In the squashing replay 
scheme used in the Alpha 21264, all dependent and independent 
instructions issued after the load scheduling miss are invalidated 
and replayed.  The selective replay scheme used in the Pentium 4 
reschedules only instructions dependent on misscheduled loads.  
However, complexity may significantly increase for precise de-
pendence tracking.  It was apparent to us that these replay 
schemes were not practical for load-value speculation as instruc-
tions dependent on the misses need to be searched across all in-
flight instructions and it can take hundreds of cycles to discover 
the misspeculation.  Hence, we use the re-fetch misprediction 
recovery scheme [8].  It is identical to that used for recovering 
from branch mispredictions.  As an energy-saving optimization, 
we do not recover from wrong predictions that were overwritten 
with the true load value before they were first used.   

LV: The last value predictor [8], [14] predicts that a load instruc-
tion will load the same value it did the previous time it executed.   

ST2D: The stride 2-delta predictor [21] remembers the last value 
for each load but also maintains a stride, i.e., the difference be-
tween the last two loaded values.  ST2D can predict sequences 
with zero (like LV) or non-zero strides. 

DFCM3: The third-order differential finite context method pre-
dictor [11] computes a hash value [17], [18], [20] out of the dif-
ference between the last three load values to index the predictor’s 
second-level table.  This table stores strides between consecutive 



values that follow every seen sequence of three strides.  After 
observing a sequence of load values, DFCM3 can predict any load 
that fetches the same sequence or a different sequence with the 
same strides.   

wp-LV: To reduce the energy consumption, Loh [13] replaced the 
traditional predictor with multiple smaller tables and proposed a 
data-width predictor to choose among the tables.  We implement 
Loh’s width-partitioned last-value predictor (wp-LV).  Since our 
base predictors have 1024 entries, we pick the configuration that 
Loh compared to the traditional 1024-entry LV.  Specifically, we 
use a 4096-entry last width predictor, a 512-entry VPT8, a 256-
entry VPT16, a 1024-entry VPT33 and a 256-entry VPT64.   

wp-ST2D, wp-DFCM3: We extended Loh’s energy-reducing 
(width-partitioning) idea to ST2D (wp-ST2D) and DFCM3 (wp-
DFCM3).   

LSD-hybrid: Hybrid predictors have been shown to be more 
effective than unit predictors [18].  We combined LV, ST2D and 
DFCM3 into a hybrid and the component with the highest confi-
dence makes the prediction. 

shared-LSD-hybrid: Some predictors are in themselves exten-
sions of smaller predictors.  For instance, the ST2D has an LV 
component, and so does the DFCM3.  To avoid replicating the 
common components, it has been proposed to share tables in the 
hybrid [7], [15], [16] to save space and power.  We extend this 
idea to the LSD-hybrid by sharing the LV table between all com-
ponents.  Also, we maintain only one decoder for each predictor 
level, i.e., we increase the size of each line to encompass the in-
formation required by all components to further reduce the energy 
consumption.   

wp-shared-LSD-hybrid: To minimize the energy of the shared-
LSD-hybrid, we replace the LV component with Loh’s wp-LV, 
which is described above.  

4.3 Benchmarks 
Table 1 describes the ten C programs (six integer and four float-
ing-point) from the SPECcpu2000 benchmark suite [23] that we 
use for our measurements.  They were compiled on a DEC Alpha 
21264A processor using the DEC C compiler under the OSF/1 
v5.1 operating system using the “-O3 -arch host” optimization 
flags.  We employed the reference inputs provided with these 
programs.  We utilize SimPoint [24] to select a representative 
subset (500 million instructions in length) of each benchmark 
trace.  Table 1 shows the number of instructions (in billions) that 
are skipped before beginning the cycle-accurate simulations, the 
number of simulated load instructions (in millions), the percent-
age of simulated instructions that are loads and the IPC on the 
baseline CPU.   

The following SPECcpu2000 programs are not used.  Compiling 
crafty, gap, parser and perlbmk with our optimization flags makes 
the resulting binaries incompatible with the simulator, and simu-
lating vpr is very slow since we would have to ‘fast-forward’ over 
1600 billion instructions.  Also, we do not use the C++ and For-
tran programs because we do not have a good compiler for them. 

 
 
 

Table 1. Information about the simulated segments of the 
benchmark programs 

skipped simulated %
insts (B) loads (M) loads

ammp 27.5 134.1 26.8 1.532
art 6.5 162.5 32.5 1.407
bzip2 19.5 145.9 29.2 1.314
equake 131.5 235.1 47.0 0.330
gcc 4.0 228.2 45.6 1.111
gzip 3.0 121.8 24.4 1.284
mcf 23.0 209.7 41.9 0.488
mesa 67.5 129.5 25.9 1.742
twolf 247.0 142.6 28.5 1.209
vortex 106.5 127.2 25.4 1.843
geo. mean 57.8 148.8 29.8 1.115

program base IPC

 
 

5. EXPERIMENTAL RESULTS 
As discussed in the previous sections, to evaluate the energy-
performance benefit of a speculative design, it is necessary to take 
the entire chip into account.  In this section, we compare the en-
ergy-efficiency of frequently used load-value predictors from the 
literature, including some energy-aware alternatives, using our 
metric described in Section 3.  We start with the initial configura-
tion described in Section 4 and evaluate the benefit of incorporat-
ing the different speculative optimizations to the processor.  Note 
that no prior processor-wide runtime energy-performance analysis 
has been done for all of these load-value predictors and that some 
of the presented predictors are our own extensions of previously 
proposed predictors 

5.1 Load-Value Predictors 
In this sub-section we evaluate the LV, ST2D and DFCM3 pre-
dictors as well as Loh’s energy-aware width-partitioned wp-LV.  
We also assess wp-ST2D and wp-DFCM3, our enhancement of 
the ST2D and DFCM3, respectively, with Loh’s width-
partitioning scheme.  These six predictors are described in detail 
in Section 4.2. 

We first examine the energy-efficiency of these six predictors for 
gcc and bzip2, and then study the overall behavior and trend 
across all the programs. 

Figure 3 shows the IPCs of the processor with and without the 
above-mentioned predictors for gcc.  gcc is of particular interest 
to us since it is one of the hardest programs to optimize in the 
SPECcpu2000 benchmark suite.  We see that ST2D outperforms 
both LV and DFCM3.  Context predictors such as DFCM3 have 
been shown to be the best performing load-value predictors.  
However, previous work has evaluated such predictors with large 
predictor tables, i.e., larger than 1024 entries.  In our study, we 
found context predictors to be quite sensitive to the predictor size.  
Using realistically sized tables (1024 entries in our case) makes 
DFCM3 perform worse than its counterparts.  This is because all 
loads share the second-level table in DFCM3, which increases 
aliasing and possibly negative interference.   
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Figure 3. IPCs of a microprocessor with and without load-

value predictors for gcc 
 
Figure 4 shows the corresponding energy consumption (relative to 
the base CPU, which does not include any load-value predictor).  
Here, we observe that the CPU with DFCM3 consumes signifi-
cantly less energy than those with LV and ST2D even though 
DFCM3 is larger in overall size.  The decision on whether to 
make a prediction is determined by the confidence estimator asso-
ciated with each predictor entry.  As fewer and fewer correct pre-
dictions are made, the confidence of the DFCM3 falls to such low 
levels that relatively fewer predictions are made, which results in 
less speculation activity and explains its low performance and 
energy consumption.   

We also find that although the CPUs with wp-LV and wp-ST2D 
consume less energy than LV and ST2D, respectively, they do not 
perform worse.  On the other hand, extending the width-
partitioning technique to DFCM3 increases the chip’s energy 
consumption without a significant change in performance.   
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Figure 4. Processor-wide energy consumption with load-value 

predictors relative to the base CPU for gcc 
 

To better see which of these designs are really energy-efficient, 
we derive the speedup of each speculative optimization given the 
same energy budget as the base processor, or alternatively the 
energy savings of each optimization given the same performance 
as the base processor.   This process is described in Section 3.  
We define an optimization as energy-efficient if the resulting 
normalized speedup, or alternatively the normalized energy sav-
ings, is positive.  In other words, a negative outcome indicates 
that it is not worth including the optimization.   

Table 2. Normalized speedup and energy savings for micro-
processors with load-value predictors for gcc 
(Section 3 details our normalization process.) 

normalized normalized
speedup energy savings

(%) (%)
LV -2.9 -3.2
wp-LV -1.5 -1.6
ST2D -2.9 -3.3
wp-ST2D -2.7 -3.0
DFCM3 -3.7 -4.2
wp-DFCM3 -4.7 -5.3  

 
Surprisingly, we observe in Table 2 that for gcc none of the op-
timizations is energy-efficient despite the fact that no optimiza-
tion slowed down the CPU (Figure 3).  Note that the normalized 
speedup and normalized energy savings are derived from our 
metric described in Section 3 and should not be confused with 
Figure 3 or Figure 4. 

We identified a couple of sources of inefficiency for gcc.  Due to 
the finite table size of load-value predictors, different loads can 
map to the same predictor line, which often results in detrimental 
aliasing.  Figure 5 shows the degree of aliasing for gcc in a 1024-
entry predictor table.  The minimum number of aliasing loads, 
i.e., static loads that access the same line, is 19 and the maximum 
is 55.  78 of the predictor entries have 37 aliasing loads.   
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Figure 5. Aliasing static loads in 1024-entry table for gcc 
 

Thus, gcc could benefit from an adaptive scheme that identifies 
the critical and predictable loads, and limits prediction resources 
to these, while keeping negative interferences to a minimum.  
However, this was not the major problem with gcc, as we explain 
next. 

We find that, on average, almost 98% of the data cache accesses 
were hits and only 3.9% of the L1 misses had to access main 
memory.  This means that no matter how accurate the value pre-
dictor is, the gains will be minimal for gcc.  As can be observed in 
Figure 6, for the six predictor configurations, less than 1% of the 
loads are mispredicted.  This is important because it is better not 
to predict than to do so incorrectly due to high cost of mispredic-
tions for performance and especially for energy consumption.  In 
fact, we find that for gcc employing a perfect predictor provides 
only 13% speedup. 
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Figure 6. Percent of total loads that are not predicted, cor-

rectly predicted and mispredicted for gcc 
 

We also varied the number of pipeline stages in our simulations 
(Table 3).  This experiment shows that the pipeline length has a 
minimal impact on gcc’s energy-efficiency.  There appears to be a 
slight improvement in energy-efficiency in the predictors espe-
cially for DFCM3, except for wp-DFCM3, as the number of 
stages is reduced.  We believe this trend can be attributed to the 
decrease in the cost of mispredictions in a processor with a shorter 
pipeline depth.   

 

Table 3. Normalized speedup for varying pipeline depths for 
gcc 

10 15 20
stages stages stages

LV -2.6 -2.8 -2.9
wp-LV -1.3 -1.5 -1.5
ST2D -2.7 -2.9 -2.9
wp-ST2D -2.6 -2.7 -2.7
DFCM3 -1.7 -1.8 -3.7
wp-DFCM3 -4.6 -5.8 -2.7  

 

A high prediction accuracy does not always translate into high 
performance.  This is due to the fact that a correct prediction is 
useless if a dependent instruction does not consume the prediction 
before the memory provides the result.  Thus one of the factors 
that influence the performance of a predictor is the load-to-use 
latency, i.e., the time between the issue of a load to when a de-
pendent instruction is ready to execute.   

Figure 7 shows the percent of total loads with a load-to-use la-
tency of less than 20 cycles, i.e., the time it takes to access the L2 
cache.  This graph shows that on average 51.7% of the loads will 
potentially cause a stall if the L1 cache results in a miss.  As is 
shown, bzip2 has the highest potential for such stalls, and thus we 
expect it to benefit significantly from value prediction.  We evalu-
ate bzip2’s energy-efficiency next. 
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Figure 7. Percent of total loads with a load-to-use latency of 

fewer than 20 cycles 
 

Figures 8 and 9 show the IPCs and the corresponding energy con-
sumption, respectively, for bzip2. As expected, bzip2 appears to 
benefit substantially from value prediction.  Here, we observe that 
the width-partitioned optimizations do not enhance the perform-
ance but reduce the energy consumption, and significantly so for 
DFCM3.   
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value prediction for bzip2 
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Figure 9. Processor-wide energy consumption with load-value 

prediction relative to the base CPU for bzip2 
 
 
 



When we evaluate the performance and energy savings using our 
metric, we find that all six optimizations are energy-efficient for 
bzip2.  Note that unlike with gcc, wp-DFCM3 is more energy-
efficient than DFCM3.  It is also interesting that the best design 
for bzip2 is wp-LV (Table 4), which is one of the simpler predic-
tors. 
We have presented the detailed analyses for gcc and bzip2 as 
examples of programs on opposite ends of energy-efficiency 
spectrum.  We have presented a few possible sources of effi-
ciency/inefficiency, namely prediction accuracy, cache miss rate, 
aliasing in predictor tables and the load-to-use latency.  Given the 
wide disparity in program behavior, it may be worthwhile to 
adopt adaptive schemes to make value predictors more energy-
efficient.  An effective scheme would be one that makes predic-
tions based on the energy-efficiency of a potential prediction.  
This is left for future work. 

 
Table 4. Normalized speedup and energy savings for micro-

processors with load-value predictors for bzip2 

normalized normalized
speedup energy savings

(%) (%)
LV 23.0 19.3
wp-LV 24.7 20.5
ST2D 23.2 19.5
wp-ST2D 24.2 20.2
DFCM3 8.2 7.9
wp-DFCM3 14.3 13.1  

 

Table 5 shows that DFCM3 and wp-DFCM3 are the only optimi-
zations that are not energy-efficient across all the programs.  The 
best predictor is wp-ST2D.  Again, this is a fairly simple predictor 
compared to DFCM3 and wp-DFCM3.  Research has shown that 
the most accurate load-value predictors tend to be large and com-
plex.  However, our findings demonstrate that designers can ex-
pect better energy-efficiency from seemingly simple predictors 
and future research in this field may need to focus on using sim-
pler predictors more effectively. 

 

Table 5. Normalized speedup and energy savings for micro-
processors with load-value predictors across all programs 

normalized normalized
speedup energy savings

(%) (%)
LV 0.9 0.9
wp-LV 0.9 1.0
ST2D 1.0 1.1
wp-ST2D 1.1 1.2
DFCM3 -1.9 -2.0
wp-DFCM3 -1.4 -1.6  

 
 

5.2 Hybrid Load-Value Predictors 
Different value predictors have been designed to exploit different 
predictable sequences.  To enhance predictability, hybrid predic-
tors combine dissociated predictors and employ a selection 
mechanism.  The selector is responsible for choosing the most 
suitable component for predicting each load instruction.  In the 
LSD-hybrid (described in Section 4.2), a confidence estimator is 
associated with each predictor and the component with the highest 
confidence makes the prediction.  We compare this predictor to a 
space-saving version, i.e., one in which tables common to all 
components are shared [7], [15], [16].  We call this the shared-
LSD-hybrid.  We extend the width-partitioning technique to this 
predictor to obtain the wp-shared-LSD-hybrid. 

 
Table 6. Normalized speedup for microprocessors with hybrid 

value predictors 

shared- wp-shared-
LSD-hybrid LSD-hybrid

ammp -1.5 -0.9 -1.9
art -2.7 -2.2 -1.7
bzip2 20.9 21.8 8.8
equake 11.2 11.9 0.7
gcc -4.6 -4.0 -3.3
gzip -0.3 0.6 -1.3
mcf -8.4 -7.4 -3.6
mesa -2.9 -2.2 -1.3
twolf -10.0 -9.2 -7.6
vortex -5.3 -4.7 -2.9
geo. mean -0.7 0.0 -1.4

normalized speedup (%)

LSD-hybridprogram

 
 
Tables 6 and 7 show the normalized speedup and normalized 
energy savings, respectively, for these three predictors and for the 
programs we simulate.  Sharing tables makes the LSD hybrid 
more energy-efficient.  This not unusual since this enhancement 
does not change the speculation activity of the processor but de-
creases the size and therefore the energy consumption of the pre-
dictor.  With the exception of ammp, bzip2, equake and gzip, wp-
shared-LSD-hybrid further improves the energy-efficiency of 
shared-LSD-hybrid.   

What we found astonishing is the fact that except for bzip2 and 
equake, none of the programs benefit from adding any of the hy-
brid predictors to the processor.  This is primarily due to the fact 
that the added complexity increases the energy consumption of 
the processor at a higher rate than it increases performance.  This 
observation further indicates that when energy consumption is 
taken into consideration, complex predictors do not provide a 
good energy-performance tradeoff. 

 

 

 

 



Table 7. Normalized energy savings for microprocessors with 
hybrid value predictors 

shared- wp-shared-
LSD-hybrid LSD-hybrid

ammp -1.6 -1.0 -2.1
art -3.0 -2.4 -1.9
bzip2 17.8 18.5 8.4
equake 10.8 11.3 0.8
gcc -5.2 -4.5 -3.7
gzip -0.3 0.6 -1.4
mcf -9.9 -8.6 -4.0
mesa -3.3 -2.4 -1.4
twolf -11.9 -10.9 -9.0
vortex -6.0 -5.3 -3.2
geo. mean -0.8 0.0 -1.5

normalized energy savings (%)

LSD-hybridprogram

 

 
Note that we do not draw conclusions on the overall performance 
of these predictors and their energy-saving variants.  Our observa-
tions are within the confines of our architectural configuration 
outlined in Section 4.  It may well be possible to derive benefit 
from these same predictors for a different processor.  The purpose 
of this study is to demonstrate how our metric can be used to 
measure the energy-efficiency of a speculative optimization and 
to answer the question ‘Is it worth it to add the speculative opti-
mization to the base processor?’  A natural progression of our 
work is to evaluate what could be done to make the predictors 
more energy-efficient.  This is left for future work. 

6. CONCLUSIONS 
Aggressive speculation is increasingly being used to exploit the 
growing transistor budgets.  However, designers are being chal-
lenged to come up with novel ways to improve performance 
within current power and energy constraints.  Several speculative 
hardware components have been optimized to reduce energy con-
sumption.  However, many of these optimizations have not taken 
into consideration the energy consumption introduced in other 
parts of the chip due to useless speculation activities.  To better 
evaluate speculative architectures for their energy-efficiency, we 
have described a simple metric that is based on a cycle-accurate 
energy-performance analysis.   

Unlike previously proposed metrics with hard-to-measure pa-
rameters, ours only relies on parameters that can easily be ob-
tained (the supply and threshold voltages) and that can be meas-
ured through simulation (the speedup and increase in energy con-
sumption of the optimization under investigation).  We have illus-
trated the use of our metric on several value speculation optimiza-
tions and found that some designs that would have been consid-
ered energy-efficient are not.  For instance, our metric revealed 
that applying an energy-saving technique such as width-
partitioning to the DFCM3 predictor can hurt the energy effi-
ciency of the processor as a whole. 
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