

Automatic Generation of High-Performance Trace Compressors

Martin Burtscher and Nana B. Sam
Computer Systems Laboratory, Cornell University

{burtscher, besema}@csl.cornell.edu

Abstract

Program execution traces are frequently used in indus-

try and academia. Yet, most trace-compression algo-

rithms have to be re-implemented every time the trace

format is changed, which takes time, is error prone, and

often results in inefficient solutions. This paper describes
and evaluates TCgen, a tool that automatically generates

portable, customized, high-performance trace compres-

sors. All the user has to do is provide a description of the

trace format and select one or more predictors to com-

press the fields in the trace records. TCgen translates

this specification into C source code and optimizes it for
the specified trace format and predictor algorithms. On

average, the generated code is faster and compresses

better than the six other compression algorithms we have

tested. For example, a comparison with SBC, one of the

best trace-compression algorithms in the current litera-
ture, shows that TCgen’s synthesized code compresses

SPECcpu2000 address traces 23% more, decompresses

them 24% faster, and compresses them 1029% faster.

1. Introduction

Execution traces are widely used by researchers and

educators to study program behavior and to drive simula-

tors. They are easy to process and guarantee repeatabil-

ity. The problem with traces from interesting applications

is that they are often large and storing them can be a chal-

lenge, even on today’s high-capacity disks. Thus, traces
are usually compressed.

Many trace-compression algorithms have been pro-

posed [1], [3], [7], [8], [18], [19], [21], [22], [25], [26],

[32], [33], [39]. While most implementations work well

for a predefined trace type, they are either domain spe-
cific, do not compress all that well, or cannot adapt to

different trace formats. As a consequence, users may find

themselves re-implementing their favorite compression

algorithm every time they start a new project that requires

different traces. Alas, writing new code is not only time

consuming but also error prone and likely to result in
suboptimal performance because algorithm details are left

out and novel optimization opportunities are overlooked.

This paper presents TCgen, an application-specific

compiler that solves the above-mentioned problems by

automatically translating simple user-provided trace de-

scriptions and predictor selections into high-performance

trace compression utilities. The generated code is typi-
cally faster and compresses better than the other compres-

sion algorithms we have evaluated. TCgen emits portable

C source code that is highly optimized for the given trace

format and predictors. The generated code is human

readable to the extent that it is correctly indented, does

not utilize macros, includes only one statement per line,
and contains meaningful variable and function names.

Users can choose between a number of prediction algo-

rithms and combinations to optimize the compression rate

and speed. A typical trace description, including the pre-

dictor selection, requires a couple of hundred characters.
TCgen is quite fast, taking under three thousandths of a

second on our reference machine to generate and optimize

code even for sophisticated trace descriptions. Compiling

the emitted C code with a high optimization level typi-

cally takes under one second. In other words, the synthe-

sis and compilation overhead is negligible compared to
the time it takes to compress or decompress a multi-

gigabyte trace.

TCgen was inspired by VPC3 [3], a fast and well-

performing trace-compression algorithm. Like VPC3,

TCgen employs value-prediction algorithms to convert a

trace into streams that are highly compressible and that
can be compressed and decompressed very quickly with a

general-purpose compression algorithm.

Value predictors identify patterns in sequences of

numbers to forecast the likely next value. In recent years,

hardware-based value predictors have been researched

extensively to predict the content of CPU registers [6],
[10], [23], [24], [34], [35], [38], making them good can-

didates for predicting the kind of values typically found in

program traces.

The following simplified example illustrates how the

value predictors are used to convert traces into streams
and compress them. Let us assume we have a set of pre-

dictors and that we want to compress a trace containing

records with a single field. During compression, the cur-

rent field’s value is compared with the predicted values.

If at least one of the predictions is correct, the identifica-

tion number of one of the correct predictors is written to
the first stream. If none of the predictions is right, a re-

served identification number is written to the first stream

and the unpredictable value is output to the second

stream. Then the predictors are updated and the proce-

dure repeats until all records have been processed.
Decompression works as follows. First, one entry is

read from the first stream. If it contains the reserved iden-

tification number, the field’s value is obtained from the

second stream. If, on the other hand, the entry contains a

predictor identification number, the value from the corre-

sponding predictor is used. Then the predictors are up-
dated to ensure that their state is consistent with the corre-

sponding state during compression. This process is iter-

ated until the entire trace has been reconstructed.

This approach already compresses the traces some-

what. However, the key is that it converts the traces into

streams that a general-purpose compressor can compress
well and quickly. We use BZIP2 for this purpose, but

users are free to select any other algorithm.

A comparison with BZIP2 [13], MACHE [33],

PDATS II [18], SBC [26], SEQUITUR [22], and VPC3

[3] shows that a TCgen-generated compressor outper-

forms all of them on average (harmonic mean) in com-
pression rate, decompression speed, and compression

speed on the three types of SPECcpu2000 traces we stud-

ied (SBC decompresses one type 2% faster).

TCgen is available on-line at http://www.csl.cornell.-

edu/~burtscher/research/TCgen/. We have successfully
tested a large number of compressors generated by TCgen

on a 64-bit UNIX system using cc as well as on a 32-bit

Windows machine using gcc under cygwin [15].

The remainder of this paper is organized as follows.

Section 2 summarizes related work. Section 3 introduces

the value predictors available to TCgen. Section 4 pre-
sents our trace-specification language. Section 5 de-

scribes TCgen’s code generation and optimization. Sec-

tion 6 explains the evaluation methods. Section 7 dis-

cusses the results. Section 8 summarizes our findings.

2. Related Work

Automated code generation for the manipulation of

files has been in use for a long time. For example, a pa-

per by Norton [31], which dates back to 1978, proposes a

tailored language for the automated generation of file
modification tools. It describes the use of the Recursive

Macro Actuated Generator (RMAG), a macro processor

capable of generating source code in any language to cre-

ate programs that manipulate sequential data files. These

programs can create, update, and invert textual data as
well as produce reports.

Haines et al. [11] propose an object-oriented approach

to replace data files with “smart files”. A SmartFile con-

sists of a file descriptor, the data itself, and a set of asso-

ciated library routines for interacting with the data at a

relatively high level of abstraction. The authors introduce
the DAFT (Data File Type) specification language, which

includes three types of declarations: attributes, parame-

ters, and fields. The attributes can be used to describe

information related to the elements of a SmartFile, such as
the fields, field types, and the files themselves. The pa-

rameters can be used to specify symbolic size and shape

relationships for fields. The fields allow the user to de-

fine data abstractions. The DAFT compiler reads the file

type declarations and produces an enhanced symbol table

for the SmartFile access routines. An inheritance mecha-
nism allows the user to derive new file types from exist-

ing ones. TCgen shares some of the file-description con-

cepts and also compiles the specification into a tool.

Chilimbi et al. designed the Heap Allocation Trace

Format (HATF) [7] to allow the collection and sharing of

large allocation traces. HATF is a binary format that in-
cludes inline metadata that can dynamically modify the

encoding of trace events. Data in a trace comes in two

variants: metadata and data. The metadata indicates the

size and interpretation of each field that follows. It can be

dynamically defined and changed. For example, varying

field sizes allows data gathering on 32-bit and 64-bit ma-
chines, empty fields can be omitted, regular patterns can

be exploited, etc. The authors found that HATF was ef-

fective at compressing size fields but not address fields.

Separating and compressing the address stream independ-

ently from the rest of the trace resulted in better compres-
sion. TCgen also separates the streams in the trace and

compresses them individually. Additionally, it is more

general in the sense that it can be used with traces created

by arbitrary trace generators, i.e., it does not rely on the

presence of metadata.

Meta-TF [7] builds on HATF. It is a meta specifica-
tion language that enables a trace to contain metadata to

vary the encoding of the trace on the fly. It can be used to

specify HATF. The first step is for the user to define a

Document Type Definition (DTD). The DTD documents

the format of the trace in a human readable way and al-

lows meaningful names for records, fields, and attributes.
The MetaTFtool, which includes a compiler for Meta-TF,

then takes the Meta-TF DTD and produces a set of Java

classes representing a reader/writer for traces that con-

form to the DTD. Record formats in the DTD allow trace

events to be encoded in a number of ways. For instance,
an allocation address may be given as a delta from a pre-

vious address. This approach also simplifies the auto-

matic generation of trace reader/writer implementations

from the DTD. TCgen’s specification language also al-

lows the automatic generation of trace (de-)compressors

(a form of readers and writers). Note that Meta-TF gen-
erates variable trace formats with embedded encoding

hints while TCgen produces variable encoders for user-

defined trace formats.

STEP [1] provides a standard method of encoding gen-

eral trace data to reduce the need for developers to con-

struct specialized systems and as such is probably the

closest system to TCgen. STEP uses a definition lan-

guage designed specifically to reuse records and feed

definition objects to its adaptive encoding process, which
employs strategies to increase the compressibility of the

traces. As with TCgen, the traces are compressed using a

general-purpose compressor. STEP comprises a defini-

tion language, STEP-DL, a compiler, stepc, and the archi-

tectural framework.

STEP-DL is similar to (and was inspired by) Meta-TF,
but provides a more generalized trace format with better

encoding properties. It is targeted towards application

and compiler developers and focuses on Java programs

running on a Java Virtual Machine. One key difference is

that while Meta-TF uses a dynamic encoding policy with

explicit changes, STEP-DL uses an adaptive encoding
process, i.e., it monitors various characteristics of the in-

put data and, when appropriate, makes adjustments to the

encoding policy automatically. In other words, encoding

strategies are associated with individual record types as

opposed to the system as a whole. TCgen also uses dif-

ferent compression algorithm for different parts of a trace.
STEP-DL, Meta-TF, and TCgen all use human-readable

ASCII input files.

Sucu and Krintz developed ACE [37], an adaptive

compression environment for a Java Virtual Machine to

improve Internet transfer rates. It decides whether to
compress or not, based on an estimation of the cost of

performing on-the-fly compression. ACE monitors the

number of bytes per second that the local host sends

through socket write calls. If this rate is lower than the

bandwidth between the local and remote host, ACE com-

putes the compressed and uncompressed transfer time for
each 32kB block of data to be sent and selects compres-

sion if the uncompressed transfer time is higher. ACE

also estimates (via sampling) the compression rate, the

effective data transfer rate, and the decompression rate. If

the smallest of these rates exceeds the available band-

width, then the data is sent compressed. Compression
decisions are only made for blocks of data that are 32kB

or larger. Smaller blocks are transferred uncompressed.

2.1 Compression Algorithms

This subsection describes the compression schemes

with which we compare TCgen’s output in Section 7.

BZIP2 is a lossless, general-purpose algorithm that can be

used to compress any kind of file. The remaining algo-

rithms are special-purpose trace compressors that we
modified (where necessary) to include efficient block I/O

operations, to understand our trace format, and to utilize a

post-compression stage to improve the compression rate.

They are all single-pass, lossless compression schemes.

BZIP2: BZIP2 [13] is a general-purpose compressor

that operates at byte granularity. It implements a variant
of the block-sorting algorithm described by Burrows and

Wheeler [2]. BZIP2 applies a reversible transformation to

a block of inputs, uses sorting to group bytes with similar

contexts together, and then compresses them with a
Huffman coder. The block size is adjustable. We use

version 1.0.2 with the “--best” option. BZIP2 requires

about 10MB of memory to compress and decompress our

traces. We evaluate BZIP2 as a standalone compressor

and as the post-compressor for the other algorithms.

MACHE: MACHE [33] was designed to compress
address traces. It distinguishes between three types of

addresses, namely instruction fetches, memory reads, and

memory writes. A label precedes each address in the

trace to indicate its type. MACHE works as follows.

After reading in a label and address pair, the address is

compared with the base for the current label type. If the
difference between the address and the base can be ex-

pressed in a single byte, the difference is emitted directly.

Otherwise, the full address is emitted and this address

becomes the new base for the current label. The algo-

rithm repeats until the entire trace has been processed.

Since PC and data entries alternate in our trace format
(Section 6.3), no labels are necessary to identify the type.

MACHE only updates the base when the full address

needs to be emitted. We retain this policy for the PC en-

tries in the traces. However, for the data entries, we

found it better to always update the base due to the fre-
quently encountered stride behavior. Our implementation

uses 2.3MB of memory to run.

PDATS II: PDATS II [18] improves upon PDATS

[19] by exploiting common patterns in program behavior.

For example, jump-initiated sequences are often followed

by strided sequences. PDATS encodes such patterns us-
ing one record to specify the jump and another record to

describe the sequential references. PDATS II combines

the two records into one. Moreover, when a program

writes to a particular memory location, it is also likely to

read from that location. PDATS separates read and write

references, resulting in two large offsets whenever the
location changes. PDATS II does not treat read and write

references separately. Additionally, common data offsets

are encoded in the header byte and instruction offsets are

stored in units of the default instruction stride (e.g., four

bytes per instruction on most RISC machines). Thus,
PDATS II achieves about twice the compression rate of

PDATS on average.

We modified PDATS II as follows. Since our traces

do not include both read and write accesses, we do not

distinguish between them in the header. This makes an

extra bit available, which we use to encode data offsets of
±16, ±32, and ±64. We further extended PDATS II to

also accommodate six- and eight-byte offsets. Our traces

do not exhibit many jump-initiated sequences that are

followed by strided sequences. Hence, we do not need

the corresponding PDATS II feature. Our implementation

needs 2.2MB of memory to run.

SEQUITUR: SEQUITUR [22] compresses traces by

converting them into a context-free grammar [28], [29],

[30]. The algorithm applies two constraints while con-
structing the grammar: each digram (pair of consecutive

symbols) in the grammar must be unique and every rule

must be used more than once. The biggest drawback of

SEQUITUR is its memory usage, which depends on the

data to be compressed (it is linear in the size of the gram-

mar) and can exhaust the system’s resources when com-
pressing large traces.

The SEQUITUR algorithm we use is a modified ver-

sion of Nevill-Manning and Witten’s implementation

[12], which we changed as follows. We converted the

C++ code into C, inlined the access functions, increased

the symbol table size to 33,554,393 entries, and added
code to decompress the grammars. To accommodate 64-

bit trace entries, we included a function that converts each

trace entry into a unique number (in expected constant

time). Moreover, we construct two grammars, one for the

PC entries and one for the data entries in the traces. To

cap the memory usage, we start new grammars when
eight million unique symbols have been encountered or

384MB of storage have been allocated for rule and sym-

bol descriptors. We found these cutoff points to work

well on our traces and system. According to ps, our im-

plementation’s memory usage never exceeds 951MB. To
prevent SEQUITUR from becoming very slow due to

hash-table inefficiencies, we also start a new grammar

whenever the last 65,536 searches for entries required an

average of more than thirty trials before terminating.

SBC: The Stream-Based Compression (SBC) algo-

rithm [26], [27] is one of the newest trace compressors in
the literature. It splits the traces into segments called in-

struction streams. A stream is a dynamic sequence of

instructions from the target of a taken branch to the first

taken branch in the sequence. SBC creates a stream table

that records relevant information such as the starting ad-

dress, the number of instructions in the stream, and the
instruction words and their types. During compression,

groups of instructions that belong to the same stream are

replaced by the corresponding stream table index. To

compress addresses of memory references, SBC further

records information about the strides and the number of
stride repetitions. This information is attached to the in-

struction stream. Note that TCgen’s streams are unrelated

to SBC’s streams.

We made the following changes to SBC [16]. Since

our traces contain only dynamic instances of some but not

all instructions, we redefined an instruction stream as a
sequence in which each subsequent instruction has a

higher PC than the previous instruction and the difference

between subsequent PCs is less than a preset threshold.

We found a threshold of four instructions to provide the

best compression rate on our traces. SBC uses 10MB of

memory to run.

VPC3: We use the Third Value-Prediction-Based

Compression (VPC3) algorithm [3] as a starting point for

TCgen. VPC3 employs value predictors to convert traces
into streams. BZIP2 is then utilized to compress the

streams. Internally, the value predictors divide the traces

into ministreams, one for each PC (i.e., static instruction),

which exhibit more locality than the original trace in

which the data are interleaved in complicated ways.

Since we utilize the VPC trace format in this paper, we
did not have to make changes to this algorithm and were

able to use it directly [14]. VPC3 requires 27MB of

memory to execute.

3. Value Predictors

This section describes the value predictors available to

TCgen, i.e., the predictors the user can select and config-

ure. All predictors predict the next trace entry based on

previously processed entries.
Last-value predictor: The first type of predictor

TCgen can emit is the last-value predictor (LV[n]) [6],

[24], [38]. It predicts the n most recently seen values.

This type of predictor can accurately predict sequences of

repeating and alternating values as well as repeating se-
quences of no more than n arbitrary values. Figure 1

shows a diagram of an LV[n] predictor with s lines in its

(first-level) table.

0 1 . . . n-1

0

1

2

 .

 .

s-2

s-1

. . .

P
C
 %

 s

n entries per line

n predictions

s
 l
in
e
s

������������������������������
������������������������������
������������������������������
��������������������������������

��
��
��

�
�
�
�������������������������������

��
��
��
��

������������������������������

Figure 1: LV[n] predictor with s lines.

The LV[n] predictor always predicts the n values
stored in the selected line. The PC (extracted from the

current trace record) modulo s determines the line index.

If no PC is available, s has to be one. After a prediction,

the selected line is updated by discarding the oldest entry,

moving the remaining entries to the right by one slot, and

copying the update value into the first slot.
Finite-context-method predictor: The second type of

predictor TCgen can produce is the finite-context-method

predictor (FCMx[n]) [35]. It computes a hash out of the x

most recently encountered values (x is the order of the

predictor), which are stored in the predictor’s first-level

table, using the select-fold-shift-xor hash function [34].
The hash is then used to index the predictor’s second-

level table (i.e., the hash table), which works just like the

LV[n] table. After updating the second-level table, the

entries in the selected line of the first-level table are

moved to the right by one slot, thus dropping the oldest

value and making room for the update value. Figure 2
shows an FCMx[n] predictor with s lines in the first-level

table (L1) and t lines in the second-level table (L2).

0 1 … x-1

0

1 0 1 . . . n-1

 . 0

 . 1

s-1 2

… .

 .

t-2

t-1

. . .

P
C
 %

 s

s
 l
in
e
s

t
li
n
e
s

n entries per line

x entries per line

hash function

n predictions

����������������
����������������
����������������

������������������������������
�
�
�
�

�
�
�
�����������������

��
��
��
�� ������������������������������

��������������������������������
��
��
��

�
�
�
�������������������������������

��
��
��
��

������������������������������

Figure 2: FCMx[n] predictor with L1 = s and L2 = t.

This predictor predicts the n values that followed the

last n times the same x preceding values (that is, the same
context) have been encountered [34], [35]. Thus, FCM

predictors can memorize long arbitrary sequences of val-

ues and accurately predict them when they repeat.

Differential-finite-context-method predictor: The

third type of predictor TCgen can create is the differen-

tial-finite-context-method predictor (DFCMx[n]) [10]. It
works just like an FCMx[n] predictor except it predicts

and is updated with differences (strides) between

consecutive trace entries rather than with absolute values.

To form the final prediction, the predicted stride is added

to the most recently seen value (the last value). DFCM
predictors are often superior to FCM predictors because

they warm up faster, make better use of the hash table,

and can predict values that have never been seen before.

Figure 3 illustrates a DFCMx[n] predictor with s lines in

the first-level table and t lines in the second-level table.

last-value 0 1 … x-1

0

1 0 1 . . . n-1

 . 0

 . 1

s-1 2

… .

 .

t-2

t-1

. . .

. . .

P
C
 %

 s

t
li
n
e
s

hash function

n predictions

n adders

s
 l
in
e
s

n entries per line

x entries per line

���������������
���������������

���������������������������
���������������������������

�
�
�
�

�
�
�
����������������

�
�
�
� ���������������������������

����������������������������
�
�

��
��
�����������������������������
���������������������������

�
�
�

���������������������������

Figure 3: DFCMx[n] predictor with L1 = s and L2 = t.

In addition to predicting long arbitrary sequences of

values that repeat, DFCMs can accurately predict long

arbitrary sequences of offsets (between consecutive val-

ues) that repeat.

4. Trace Specification Language

The input to TCgen is a trace format description com-

bined with a value-predictor configuration, expressed in

the regular language whose grammar is shown in Figure

4. The start symbol is Description. TCgen also supports
comments, which begin with a hash character (“#”) and

extend to the end of the line. The trace descriptions are

case sensitive.

Description = ‘TCgen’ ‘Trace’ ‘Specification’ ‘;’ Header Field {Field} PCDef.
Header = Number ‘-’ ‘Bit’ ‘Header’ ‘;’.
Field = Number ‘-’ ‘Bit’ ‘Field’ Number ‘=‘ ‘{‘ [LevelSizes] ‘:’ Predictors ‘}’ ‘;’.
LevelSizes = LevelSize [‘,’ LevelSize].
LevelSize = (‘L1’ ‘=‘ Number) | (‘L2’ ‘=‘ Number).
Predictors = Predictor {‘,’ Predictor}.
Predictor = (‘DFCM’ Number ‘[‘ Number ‘]’) | (‘FCM’ Number ‘[‘ Number ‘]’) |

(‘LV’ ‘[‘ Number ‘]’).
PCDef = ‘PC’ ‘=‘ ‘Field’ Number ‘;’.
Number = Digit {Digit}.
Digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’.

Figure 4: EBNF grammar of the description language.

Figure 5 shows the specification needed to emulate

VPC3 and its trace format. We will use it as an example

to discuss the features of TCgen’s input language. VPC3

traces start with a four-byte header that is followed by
records with four-byte PC and eight-byte data fields.

TCgen Trace Specification;
32-Bit Header;
32-Bit Field 1 = {L1 = 1, L2 = 131072: FCM3[2], FCM1[2]};
64-Bit Field 2 = {L1 = 65536, L2 = 131072: DFCM3[2], DFCM1[2], FCM1[2],

LV[4]};
PC = Field 1;

Figure 5: VPC3 trace format and predictor description.

All TCgen trace specifications have to start with the
phrase “TCgen Trace Specification”. A semicolon termi-

nates each statement. The second line in Figure 5 informs

TCgen that there is a header of four bytes. Header bytes

are copied to a separate stream without passing them

through value predictors. Lines three and four specify
that each record comprises two fields. Field 1 is four

bytes and Field 2 eight bytes wide. Line five tells TCgen

that the first field of each trace record holds the PC.

The expressions in the curly brackets specify the types

and sizes of the value predictors to be used for compress-

ing the fields with which they are associated. Since the
first field contains the PC, no index is available and the

level-one (L1) predictor size has to be set to one. No mat-

ter where in a trace record the PC field is, it is always

accessed first to make it available for computing the indi-

ces to predict the remaining fields.

The specified FCM3[2] and FCM1[2] predictors pro-
vide four predictions for Field 1. Note that each FCMx

and DFCMx predictor is allocated a second-level table

with L2*2(x-1) lines (see Section 5.2). Hence, the FCM1’s

hash table has 131,072 lines and the FCM3’s hash table

has 524,288 lines.
The predictors for the second field all have 65,536

lines in their first-level tables. There are four predictors,

DFCM3[2], DFCM1[2], FCM1[2], and LV[4], providing

a total of ten predictions for Field 2. According to the

above formula, the DFCM3’s level-two size is four times

the specified L2 value. The last-value predictor does not
have a second-level table, so the L2 value is irrelevant for

this predictor.

The L1 and L2 sizes have to be powers of two to make

the modulo computations fast. At least one predictor has

to be specified for each field. However, providing L1 and

L2 sizes is optional. If L1 is left out, a default value of
one is used. If L2 is omitted, it defaults to 65,536, which

we chose because it yields good results for most traces

while at the same time keeping the memory footprint rea-

sonable. The PC specification, e.g., the last statement in

Figure 5, is mandatory as the value-prediction-based ap-

proach is particularly effective on traces containing PCs.
Nevertheless, it is always possible to compress traces

without PC information by specifying an L1 size of one

for all fields. In fact, if only a single eight-bit field with

an L1 size of one is specified, the resulting code can be

used to compress and decompress arbitrary files, includ-
ing non-trace files. This mode of operation, however, is

not recommended as it typically underperforms BZIP2.

Unless TCgen terminates with a parse error, it will

write the synthesized C code to the standard output. The

listing starts with a commented out copy of the trace

specification to document the code. This text can directly
be used as input to TCgen. Moreover, this trace specifica-

tion is emitted in canonical form and includes a comment

line after each field specification (not shown) stating how

many predictions will be made for that field and what the

total size of the predictor tables is. The sum of the table

size of all fields plus about 2MB accurately reflects the
dynamic memory requirement of the synthesized code.

When the generated code is compiled and run, it will

read and compress a trace from the standard input that

matches the given specification. At the end of the com-

pression, predictor usage information is written to the
standard output. This feedback is provided to help the

user select the most effective predictors. If the code is run

with the “-d” command-line flag, it will decompress the

trace and write it to the standard output. No flag is

needed for compression.

5. Code Generation and Optimization

This section describes the code generation and the

application-specific optimizations that TCgen performs as

well as the algorithmic enhancements over VPC3.

5.1 Code Generation

When emitting code, TCgen makes use of several tech-

niques to aid the compiler in producing high-performance
binary. For example, all code is written into one file

(typically a few hundred lines of text), giving the

compiler a global view of the program. All generated

functions (except main) are declared static to allow the
compiler to optimize the calling convention and to inline

and eliminate any function it chooses. Similarly, all

global variables are declared static. All local variables for

which this is possible are declared as register variables to
inform the compiler that no pointer analysis is necessary

for them. Finally, all I/O is performed with efficient

block I/O calls and the data is internally extracted from

and inserted into buffers in a manner that avoids align-

ment problems.

5.2 Application-Specific Code Optimizations

TCgen performs several optimizations before emitting

code. It includes a dead-code remover to eliminate state-

ments that are only used for predictors that are not se-

lected. For example, there is no need to compute a stride

for any field that does not use a DFCM predictor. Simi-
larly, if a trace format does not specify a header, no code

to handle a header is emitted.

TCgen minimizes the memory footprint of the gener-

ated code by eliminating unnecessary predictor tables,

coalescing all tables that hold the same information, and
minimizing the table sizes. For instance, all DFCM and

LV predictors need to retain the most recent values (in the

last-value table). If only FCM predictors are specified for

a given field, no last-value table is emitted. On the other

hand, if multiple DFCM predictors or one or more DFCM

and an LV predictor are specified, only one shared last-
value table is generated. Furthermore, each FCM and

DFCM predictor is assigned a second-level table with

L2*2(x-1) lines, where x is the order of the predictor. This

is done to accelerate the computation of the hash function

and so that only one first-level table is needed for all

FCM predictors and another one for all DFCM predictors
of each field. In fact, only the first-level table for the

highest order predictor is generated and the lower-order

predictors utilize whatever fraction of that table they

need. All table elements are declared to be of the smallest

type that is sufficiently large. Eight-bit fields, for in-
stance, result in tables with eight-bit entries while 64-bit

fields result in 64-bit table entries. Likewise, elements of

the smallest possible type are written to the streams that

receive the unpredictable values.

No matter which predictors are included, they are al-

ways “re-named” so that the predictor identification codes
range from 0 to n-1, where n is the number of predictors.

TCgen eliminates superfluous parameters from func-

tions that do not use them. For example, the PC does not

need to be passed to prediction functions for fields that
use global predictors.

Finally, TCgen incrementally computes the hash func-

tions, which results in substantial speedups for predictors

with large orders. Moreover, the partial hash function

values are chosen in such a way that they reflect the cor-

rect indices for the lower-order predictors (if they exist).
As a result, only n operations have to be performed to

compute the new index for an nth-order FCM or DFCM

predictor, and the intermediate results provide “free” indi-

ces for all lower-order predictors that are present.

5.3 Algorithmic Enhancements

When instructing TCgen to emulate VPC3 using the

trace specification from Figure 5, the synthesized code

actually compresses better and is faster than VPC3 (see

Section 7). This is the result of the following enhance-

ments. First, we eliminated some duplicated variables.
Second, we modified the hash function to be faster for

small fields by taking advantage of the size of fields.

Third, we improved the hash function to increase the

number of reachable second-level table entries for small

fields by automatically adapting the shift amount in the

select-fold-shift-xor hash function [34]. Fourth and most
importantly, we enhanced the update policy. VPC3 al-

ways updates all predictor tables, which makes it very fast

because the tables do not have to be searched for a match-

ing entry. VPC2 [4], on the other hand, only updates ta-

bles if the update value is not already in the selected line.
This is much slower but increases the prediction accuracy

because only distinct values are retained. TCgen’s update

policy combines the benefits of both approaches essen-

tially without their downsides. It only performs an update

if the current value is different from the first entry in the

selected line. This way, only one table entry needs to be
checked (no code to perform this check is emitted if the

table only holds one entry per line), which makes updates

fast while at the same time guaranteeing that at least the

first two entries in each line are distinct, which improves

the prediction accuracy.

6. Evaluation Methods

This section provides information about the system,
the timing measurements, the traces, and the compiler we

used for our measurements. It includes a brief description

of our performance metrics.

6.1 System

We performed all measurements for this study on a

dedicated 64-bit CS20 system with two 833MHz 21264B

Alpha CPUs [20]. Only one of the processors was used.

Each CPU has separate, two-way set-associative, 64kB

L1 caches and an off-chip, unified, direct-mapped 4MB
L2 cache. The system is equipped with 1GB of main

memory. The Seagate Cheetah 10K.6 Ultra320 SCSI

hard drive has a capacity of 73GB, 8MB of built-in cache,

and spins at 10,000rpm. For maximum disk performance,

we used the advanced file system (AdvFS). The operat-

ing system is Tru64 UNIX V5.1B.

6.2 Timing Measurements

All timing measurements in this paper refer to the sum

of the user and the system time as reported by the UNIX

shell command time. In other words, we report the CPU

time and ignore any idle time such as waiting for disk

operations. We programmed all compression and decom-

pression algorithms so that they read traces from the hard
disk and write traces back to the hard disk. While these

disk operations are subject to caching, any resulting effect

should be minimal because of the large sizes of our traces.

Note that we “diff” the decompressed traces with the

original traces after each run to verify their integrity.

6.3 Traces

We used all integer and all but four floating-point pro-

grams from the SPECcpu2000 benchmark suite [17] to

generate the traces for this study. We had to exclude the

four Fortran 90 programs due to the lack of a compiler.
The C programs were compiled with Compaq’s C com-

piler V6.3-025 using “-O3 -arch host -non_shared” plus

feedback optimization. The C++ and Fortran 77 pro-

grams were compiled with g++/g77 V3.3 using “-O3

-static”. We used statically linked binaries to include the
instructions from library functions in the traces. Only

system-call code is not captured. We generated traces

from complete runs with the SPEC-provided test inputs

using the binary instrumentation tool-kit ATOM [9], [36].

Two programs, eon and vpr, require multiple runs and
perlbmk executes itself recursively. For these programs,
we concatenated the subtraces into a single trace each.

We generated three types of traces from the 22 pro-

grams to evaluate the different compression algorithms.

The first type captures the PC and the effective address of
each executed store instruction. The second type contains

the PC and the effective address of all loads and stores

that miss in a simulated 16kB, direct-mapped, 64-byte

line, write-allocate data cache. The third type of trace

records the PC and the loaded value of every executed

load instruction (that is not a prefetch, a NOP, or a load
immediate). All traces use the same format, that is, alter-

nating 32-bit PC and 64-bit data values. We did not gen-

erate traces with different formats as doing so would have

required us to implement multiple versions of all com-

pression algorithms with which we compare TCgen.

We selected the store-address traces because, histori-
cally, many trace-compression approaches have focused

on address traces. Such traces are typically relatively

easy to compress. We picked the cache-miss-address

traces because the simulated cache acts as a filter and only

lets some of the memory accesses through, which we ex-

pect to distort the access patterns, making the traces
harder to compress. Finally, we chose the load-value

traces because load values span large ranges and include

floating-point numbers, addresses, integer numbers, bit-

masks, etc., which makes them difficult to compress.

Table 1 shows the program name, the programming

language (lang), the type (integer or floating point), and
the uncompressed size (in megabytes) of the three traces

for each SPECcpu2000 program as well as which traces

were excluded. We had to exclude all traces with more

than one billion entries, i.e., the traces that are larger than

twelve gigabytes, because they would have exhausted the

available disk space. The corresponding entries in Table
1 are crossed out.

Table 1: Information about the traces.

store cache miss load
program lang type addresses addresses values

eon C++ 2,086.1 MB 94.6 MB 2,164.6 MB

bzip2 C 16,769.9 MB 726.1 MB 23,947.4 MB

crafty C 3,368.0 MB 1,967.8 MB 14,227.6 MB

gap C 1,269.2 MB 255.5 MB 3,141.6 MB

gcc C 2,280.9 MB 366.6 MB 4,523.2 MB

gzip C 2,836.0 MB 731.3 MB 8,070.1 MB

mcf C 400.4 MB 150.1 MB 455.7 MB

parser C 4,224.2 MB 821.2 MB 9,805.9 MB

perlbmk C 570.3 MB 86.1 MB 1,089.4 MB

twolf C 239.8 MB 73.4 MB 827.6 MB

vortex C 16,770.6 MB 2,185.2 MB 26,571.4 MB
vpr C 1,984.9 MB 644.0 MB 7,167.0 MB

ammp C 5,159.2 MB 3,442.0 MB 16,406.9 MB

art C 1,781.8 MB 2,381.8 MB 11,249.9 MB

equake C 1,229.8 MB 418.8 MB 4,323.0 MB

mesa C 3,671.1 MB 266.8 MB 6,055.2 MB

applu F77 522.7 MB 77.1 MB 1,002.7 MB

apsi F77 8,058.2 MB 3,018.9 MB 15,911.5 MB

mgrid F77 5,110.0 MB 6,377.0 MB 102,794.6 MB

sixtrack F77 18,735.9 MB 2,224.5 MB 38,889.2 MB

swim F77 452.0 MB 149.3 MB 1,985.5 MB
wupwise F77 10,829.6 MB 889.9 MB 22,628.8 MB

fl
o
a
ti
n
g
 p
o
in
t

in
te
g
e
r

6.4 Compiler

To make the running-time comparisons as fair as pos-

sible, we compiled all compressors with the same com-
piler (Compaq’s C compiler V6.3-025) and the same op-

timization flags (-O3 -arch host).

6.5 Performance Metrics

We use the following three performance metrics to

evaluate the quality of the compression algorithms. They
are, in decreasing order of importance, the compression

rate, the decompression speed, and the compression

speed. Other factors are also important. However, they

are either the same for all algorithms we evaluated (such

as the use of a linear-time, single-pass, lossless algorithm)

or only one algorithm differs from the others (such as
SEQUITUR not having a fixed memory requirement).

Our three metrics are defined as follows. They are all

higher-is-better metrics.

sizecompressed

sizeeduncompress
ratencompressio =

timeiondecompress

sizeeduncompress
speediondecompress =

timencompressio

sizeeduncompress
speedncompressio =

Note that the compression rate has no unit while the
decompression and compression speeds are throughputs

measured in bytes per second. The three metrics are in-

versely normalized to the uncompressed trace size and are

therefore independent of the trace length. Due to the in-

verse normalization, the natural way of averaging each of
these metrics is the harmonic mean.

7. Results

The following sections compare the six compression

algorithms described in Section 2.1 with TCgen’s output.

Unless otherwise specified, TCgen is used with the trace

description from Figure 5. Section 7.1 discusses the

compression rate, Section 7.2 studies the decompression

speed, Section 7.3 investigates the compression speed,
Section 7.4 evaluates the effectiveness of TCgen’s op-

timizations, and Section 7.5 takes a look at the sensitivity

of the predictor selection. Note that each algorithm in-

cludes a BZIP2 post-compression stage (except BZIP2).

7.1 Compression Rate

Figure 6 depicts the harmonic-mean compression rates

of the seven compression algorithms on our three types of

traces. For each trace type, the algorithms are sorted from

left to right by increasing compression rate. For improved

readability, we show the compression rates relative to
TCgen. Absolute numbers are provided in Table 2 and in

a technical report [5].

TCgen delivers the best compression rate for each type

of trace and outperforms VPC3 because of the improved

update policy. VPC3 is the second best performer on the

store-address and the load-value traces and SBC on the

cache-miss-address traces. Interestingly, SEQUITUR

exceeds SBC’s compression rate only on the load-value

traces. This is probably because SEQUITUR does not
handle strided sequences well, which occur more fre-

quently in the address traces than in the load-value traces.

This also explains why even MACHE and PDATS II out-

perform SEQUITUR on the store-address traces. Both of

these algorithms were specifically designed for address

traces. While PDATS II is more sophisticated than
MACHE, the latter is superior to the former on the load-

value traces. In fact, on these traces PDATS II with a

BZIP2 post-compression stage results in a lower com-

pression rate than BZIP2 alone.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

b
z
ip
2

s
e
q
u
it
u
r

m
a
c
h
e

p
d
a
ts
2

s
b
c

v
p
c
3

T
C
g
e
n

b
z
ip
2

m
a
c
h
e

p
d
a
ts
2

s
e
q
u
it
u
r

v
p
c
3

s
b
c

T
C
g
e
n

p
d
a
ts
2

b
z
ip
2

m
a
c
h
e

s
b
c

s
e
q
u
it
u
r

v
p
c
3

T
C
g
e
n

store addresses cache miss addresses load values

c
o
m
p
re
s
s
io
n
 r
a
te
 (
n
o
rm
a
liz
e
d
 t
o
 T
C
g
e
n
).
.

Figure 6: Harmonic-mean compression rates.

According to Figure 6, TCgen outperforms VPC3 by

6% to 13%, showing that the algorithmic improvements

described in Section 5.3 are effective. SBC’s compres-

sion rate is 6% to 81% lower than that of TCgen.
SEQUITUR underperforms TCgen by more than 100%

on the store-address traces, as do the remaining algo-

rithms on both the store-address and the load-value traces.

Looking at the compression rates achieved by the

seven algorithms on each individual trace [5], we find that
no algorithm is the best for all traces. Nevertheless,

TCgen outperforms the other six algorithms on every

load-value trace. We suspect this to be the case because

TCgen is based on value predictors, many of which were

developed to predict load values, that is, the content of

these traces.
On the 22 cache-miss-address traces, TCgen is outper-

formed by VPC3 on one trace (by 13%), by SEQUITUR

on five traces (by up to 452%), by MACHE on three

traces (by up to 46%), by SBC on nine traces (by up to

195%), by PDATS II on one trace (by 11%), and by

BZIP2 on four traces (by up to 60%). However, on aver-
age and for the majority of the traces TCgen yields the

highest compression rates.

On the 19 store-address traces, TCgen is inferior to

VPC3 on one trace (by 7%), to SEQUITUR on four traces

(by up to 168%), to MACHE on two traces (by up to

11%), to SBC on four traces (by up to 23%), and to

PDATS II on three traces (by up to 42%), but exceeds
BZIP2’s compression rate on each trace. Again, on aver-

age and in the majority of the cases, TCgen yields the best

compression rates. It compresses the store-address trace

art by a factor of 77161, which is the highest compression
rate we observed.

In the best case, TCgen outperforms VPC3 by a factor

of 89, SEQUITUR by a factor of 4823, MACHE by a

factor of 3991, SBC by a factor of 9.7, PDATS II by a
factor of 461, and BZIP2 by a factor of 4001. TCgen

compresses 36 of the 55 traces better than all the other

algorithms we investigated.

7.2 Decompression Speed

Figure 7 shows the harmonic-mean decompression

speed (the throughput in bytes per second at which the

original trace is recreated) of the seven algorithms on our

three types of traces normalized to TCgen. For each trace
type, the algorithms are sorted from left to right by in-

creasing decompression speed.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

b
z
ip
2

m
a
c
h
e

s
e
q
u
it
u
r

p
d
a
ts
2

s
b
c

v
p
c
3

T
C
g
e
n

m
a
c
h
e

b
z
ip
2

p
d
a
ts
2

s
e
q
u
it
u
r

v
p
c
3

T
C
g
e
n

s
b
c

m
a
c
h
e

p
d
a
ts
2

b
z
ip
2

s
b
c

s
e
q
u
it
u
r

v
p
c
3

T
C
g
e
n

store addresses cache miss addresses load values

d
e
c
o
m
p
re
s
s
io
n
 s
p
e
e
d
 (
n
o
rm

a
liz
e
d
 t
o
 T
C
g
e
n
).
.

Figure 7: Harmonic-mean decompression speeds.

TCgen provides the fastest decompression speeds on
the store-address and the load-value traces. On the cache-

miss-address traces, SBC is 2% faster, but on the other

two trace types, TCgen exceeds SBC’s decompression

speed by 24% and 32%. VPC3 is the next fastest decom-

pressor, with TCgen being 4% to 8% faster. SEQUITUR
is quite fast, too, except for the store-address traces, on

which it is only a little over half as fast as TCgen.

MACHE, PDATS II, and BZIP2 are in the bottom half for

all three types of traces. They are at least 44% slower

than TCgen.

Looking at the individual decompression speeds [5],
we see that TCgen is faster than MACHE on all 55 traces.

PDATS II beats TCgen on two traces (by up to 6%) and

so does BZIP2 (by up to 19%). SBC is faster on one

load-value trace and on nine cache-miss-address traces

(by up to 34%). VPC3 is faster on eight of the 55 traces,

though never by more than 6%. Finally, SEQUITUR
outperforms TCgen on eight of the 19 store-address traces

(by up to 87%), on ten of the 22 cache-miss-address

traces (by up to 125%), and on five of the load-value

traces (by up to 57%). Nevertheless, TCgen is fastest on

average and in the majority of the traces. It outperforms

VPC3 by up to 28%, SEQUITUR by up to 599%,
MACHE by up to 610%, SBC by up to 82%, PDATS II

by up to 244%, and BZIP2 by up to 444%.

In absolute terms, TCgen regenerates the store-address

traces at a harmonic-mean speed of 26MB/s (megabytes

per second), the cache-miss-address traces at 11.8MB/s,

and the load-value traces at 14.4MB/s. These rates ex-
ceed the throughput of a one-hundred megabit per second

network connection and the transfer rates of many hard

disks, suggesting that it may be faster to drive simulators

and other trace-consumption tools by TCgen rather than

from an uncompressed file on the hard drive.

7.3 Compression Speed

Figure 8 shows the harmonic-mean compression speed

of the seven algorithms on the three types of traces rela-

tive to TCgen. Again, the algorithms are sorted from left
to right by increasing speed.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

b
z
ip
2

s
b
c

m
a
c
h
e

s
e
q
u
it
u
r

p
d
a
ts
2

v
p
c
3

T
C
g
e
n

s
b
c

m
a
c
h
e

b
z
ip
2

p
d
a
ts
2

s
e
q
u
it
u
r

v
p
c
3

T
C
g
e
n

s
b
c

s
e
q
u
it
u
r

b
z
ip
2

m
a
c
h
e

p
d
a
ts
2

v
p
c
3

T
C
g
e
n

store addresses cache miss addresses load values

c
o
m
p
re
s
s
io
n
 s
p
e
e
d
 (
n
o
rm

a
liz
e
d
 t
o
 T
C
g
e
n
).
.

Figure 8: Harmonic-mean compression speeds.

TCgen and VPC3 (the algorithm TCgen is emulating)

are dominant. In fact, MACHE, PDATS II, and BZIP2
compress exactly one of the 55 traces faster than TCgen

(13%, 29%, and 17% faster, respectively). SBC is slower

on every trace (up to 180 times slower) and so is

SEQUITUR (up to 17 times slower). VPC3 is faster than

TCgen on four traces, though never by more than 2% [5].
In absolute terms, TCgen yields harmonic-mean com-

pression speeds of 7.5MB/s on the store-address traces,

4.2MB/s on the cache-miss-address traces, and 5.4MB/s

on the load-value traces.

7.4 Optimizations

Table 2 evaluates the performance of TCgen’s output

when some of the application-specific optimizations and
enhancements (Section 5) are turned off. The compres-

sion (c.spd) and decompression (d.spd) speeds are ex-

pressed in megabytes per second. The first line lists re-

sults when the new update policy is disabled and the pre-

dictors are always updated. The second line shows results

when we do not minimize the types of array and stream
elements. The third line presents results when all predic-

tors get their own tables, i.e., there is no sharing. The

fourth line displays results when the fast hash function is

replaced by an equivalent function that always computes

the hashes from scratch. The fifth line gives results when
combining the first four “de-optimizations”. Finally, the

last line represents the performance when all optimiza-

tions are turned on. This is the configuration used every-

where else in this paper.

Table 2: Performance impact of TCgen’s optimizations.

rate d.spd c.spd rate d.spd c.spd rate d.spd c.spd

no smart update 132.6 25.8 7.0 17.9 11.6 4.0 21.9 13.8 5.1

no type minimization 142.5 25.4 6.7 18.5 10.9 3.5 23.0 14.0 5.1

no shared tables 142.9 24.5 7.3 18.6 11.3 4.1 23.0 13.8 5.2

no fast hash function 142.9 19.8 7.0 18.6 10.1 4.0 23.0 11.7 5.1

all of the above 131.9 17.6 5.6 17.7 8.8 3.0 21.9 10.9 4.4

full optimizations 142.9 26.0 7.5 18.6 11.8 4.2 23.0 14.4 5.4

store addresses cache miss addrs load values

The four investigated optimizations are useful in all

cases. Disabling table sharing and using the unoptimized

hash function do not change the compression rate but do

slow down compression and decompression. The other

two optimizations affect all of our performance metrics.

Disabling the four optimizations simultaneously reduces
the harmonic-mean compression rates by 4.8% to 7.7%,

the decompression speeds by 24.4% to 32.3%, and the

compression speeds by 17.8% to 28.7%.

7.5 Predictor Sensitivity

This section investigates how the predictor selection
affects TCgen’s performance. To do so, we generated a

second compression utility that includes all the predictors

we found to be useful for at least two of the 55 traces.

The corresponding trace specification is shown in Figure

9. We call this configuration TCgen(B). The configura-

tion used elsewhere in this paper (specified in Figure 5) is
TCgen(A). Note that TCgen(B) is a true superset of

TCgen(A). It uses 22 predictors and requires a total of

35MB of table space. TCgen(A) employs 14 predictors

with a total table size of 20MB.

Table 3 compares the harmonic-mean performance of
the two configurations on the three types of traces. The

compression and decompression speeds are listed in

megabytes per second.

TCgen Trace Specification;
32-Bit Header;
32-Bit Field 1 = {L1 = 1, L2 = 131072: FCM3[4], FCM1[4]};
64-Bit Field 2 = {L1 = 65536, L2 = 131072: DFCM3[4], DFCM1[2], FCM1[4],

LV[4]};
PC = Field 1;

Figure 9: TCgen(B) specification.

Since TCgen(B) includes more predictors, one might

expect it to compress better but be slower. However, this

is only partially true because of the complex interaction

with the post-compression stage. For instance, using
more predictors will result in better compression in the

first stage, but will also emit more distinct predictor

codes, possibly making it harder for the post-compressor

to be effective.

Table 3: Harmonic-mean performance of TCgen(A) and
TCgen(B).

A B A B A B

store addresses 142.9 132.2 26.0 23.6 7.5 5.4

cache miss addresses 18.6 19.1 11.8 11.7 4.2 4.4

load values 23.0 23.7 14.4 13.5 5.4 3.4

trace
compr. rate decompr. speed compr. speed

As Table 3 shows, TCgen(B) yields a 2% and 3%
higher compression rate on the cache-miss-address and

the load-value traces, respectively, but TCgen(A) is 8%

more effective on the store-address traces. Similarly,

TCgen(B)’s compression speed is 6% faster on the cache-

miss-address traces, but TCgen(A) is 37% faster on the

store-address and 57% faster on the load-value traces.
Only the decompression speed is uniformly faster with

TCgen(A) (by 1% to 10%).

These results show that TCgen’s performance is rela-

tively insensitive to the exact predictor choice. In fact,

TCgen(B), a rather generic configuration, performs only
slightly worse than TCgen(A), a configuration that is the

result of manual fine tuning [3]. We take this as indica-

tion that TCgen will produce a high-performance com-

pressor with any reasonable predictor specification. Note

that, on average, TCgen(B)’s compression rate exceeds

that of the other compression algorithms we tested, its
decompression speed is higher (except for VPC3’s on the

store-address and load-value traces and SBC’s on the

cache-miss-address traces), and its compression speed is

faster (except for VPC3’s on the store-address and load-

value traces). Given these results, we recommend that

TCgen users start with a trace specification that covers a
wide range of predictors and then eliminate the useless

predictors as determined by the predictor usage informa-

tion output after each compression.

In fact, the above approach could be used to optimize

the predictor selection for each trace individually. Doing

so would require the inclusion of the predictor configura-
tion in the compressed trace so that a suitable decompres-

sor can be generated when a trace needs to be read. This

would incur an overhead of a few tens of bytes and about

a second of CPU time to synthesize and compile the de-

compressor, for which the resulting higher compression
rate and decompression speed should easily compensate.

8. Conclusions

This paper describes the code-generation and optimiza-

tion process and evaluates the performance of TCgen, a

tool that automatically synthesizes trace compressors

from user-provided trace descriptions. Based on a variety

of traces from the SPECcpu2000 benchmark suite, we

have shown the generated code to be faster and to com-
press better on average than BZIP2, MACHE, PDATS II,

SBC, SEQUITUR, and VPC3. In other words, the auto-

matically generated code typically outperforms hand-

crafted and optimized code. Note that all of the algo-

rithms we compared our approach with, which include the

best trace compressors from the current literature, have to
be re-implemented every time the trace format changes.

TCgen users, on the other hand, merely have to provide a

new format description, expressed in a simple specifica-

tion language, and a highly optimized compressor will be

generated in about a second. Based on its ease of use,
flexibility, performance, and portability, we believe

TCgen to be a useful tool for trace-based research and

teaching environments. TCgen is freely available at

http://www.csl.cornell.edu/~burtscher/research/TCgen/.

Acknowledgements

This work was supported in part by the National Science

Foundation under Grant No. 0312966. We would like to

thank Ilya Ganusov, Sandra J. Jackson, Jian Ke, and Paruj
Ratanaworabhan for porting and adapting MACHE,

PDATS II, and SBC to our platform and trace format.

References

[1] R. Brown, K. Driesen, D. Eng, L. Hendren, J. Jorgensen, C.

Verbrugge, and Q. Wang. “STEP: a Framework for the Ef-

ficient Encoding of General Trace Data.” Workshop on

Program Analysis for Software Tools and Engineering, pp.

27-34. November 2002.

[2] M. Burrows and D. J. Wheeler. “A Block-Sorting Lossless

Data Compression Algorithm.” Digital SRC Research Re-

port 124. May 1994.

[3] M. Burtscher. “VPC3: A Fast and Effective Trace-

Compression Algorithm.” Joint International Conference

on Measurement and Modeling of Computer Systems, pp.

167-176. June 2004.

[4] M. Burtscher and M. Jeeradit. “Compressing Extended

Program Traces Using Value Predictors.” International

Conference on Parallel Architectures and Compilation

Techniques, pp. 159-169. September 2003.

[5] M. Burtscher and N. B. Sam. “Automatic Generation of

High-Performance Trace Compressors.” Cornell Univer-

sity, Computer Systems Laboratory, Technical Report CSL-

TR-2004-1042. November 2004.

[6] M. Burtscher and B. G. Zorn. “Exploring Last n Value

Prediction.” International Conference on Parallel Archi-

tectures and Compilation Techniques, pp. 66-76. October

1999.

[7] T. Chilimbi, R. Jones, and B. Zorn. “Designing a Trace

Format for Heap Allocation Events.” Second International

Symposium on Memory Management, pp. 35-49. October

2000.

[8] E. N. Elnozahy. “Address Trace Compression Through

Loop Detection and Reduction.” International Conference

on Measurement and Modeling of Computer Systems, pp.

214-215. May 1999.

[9] A. Eustace and A. Srivastava. “ATOM: A Flexible Inter-

face for Building High Performance Program Analysis

Tools.” WRL Technical Note TN-44, Digital Western Re-

search Lab, Palo Alto. July 1994.

[10] B. Goeman, H. Vandierendonck, and K. Bosschere. “Dif-

ferential FCM: Increasing Value Prediction Accuracy by

Improving Table Usage Efficiency.” Seventh International

Symposium on High Performance Computer Architecture,

pp. 207-216. January 2001.

[11] M. Haines, P. Mehrotra, and J. V. Rosendale. “SmartFiles:

An OO Approach to Data File Interoperability.” Tenth An-

nual Conference on Object-Oriented Programming Sys-

tems, Languages, and Applications, pp. 453-466. October

1995.

[12] http://sequence.rutgers.edu/sequitur/sequitur.cc

[13] http://sources.redhat.com/bzip2/

[14] http://www.csl.cornell.edu/~burtscher/research/trace-

compression/

[15] http://www.cygwin.com/

[16] http://www.ece.uah.edu/~lacasa/sbc/sbc.html

[17] http://www.spec.org/osg/cpu2000/

[18] E. E. Johnson. “PDATS II: Improved Compression of

Address Traces.” International Performance, Computing

and Communications Conference, pp. 72-78. February

1999.

[19] E. E. Johnson and J. Ha. “PDATS: Lossless Address Trace

Compression for Reducing File Size and Access Time.”

IEEE International Phoenix Conference on Computers and

Communication, pp. 213-219. April 1994.

[20] R. E. Kessler, E. J. McLellan, and D. A. Webb. “The Alpha

21264 Microprocessor Architecture.” International Con-

ference on Computer Design, pp. 90-95. October 1998.

[21] J. R. Larus. “Abstract Execution: A Technique for Effi-

ciently Tracing Programs.” Software–Practice and Experi-

ence, Vol. 20, No. 12, pp. 1241-1258. December 1990.

[22] J. R. Larus. “Whole Program Paths.” Conference on Pro-

gramming Language Design and Implementation, pp. 259-

269. May 1999.

[23] M. H. Lipasti and J. P. Shen. “Exceeding the Dataflow

Limit via Value Prediction.” 29th International Symposium

on Microarchitecture, pp. 226-237. December 1996.

[24] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. “Value

Locality and Load Value Prediction.” Seventh Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems, pp. 138-147.

October 1996.

[25] Y. Luo and L. K. John. “Locality-based Online Trace

Compression.” IEEE Transactions on Computers, Vol. 53,

No. 6, pp. 723-731. June 2004.

[26] A. Milenkovic and M. Milenkovic. “Stream-Based Trace

Compression.” Computer Architecture Letters, Vol. 2, pp.

14-17. September 2003.

[27] A. Milenkovic and M. Milenkovic. “Exploiting Streams in

Instruction and Data Address Trace Compression.” 6th

Annual Workshop on Workload Characterization, pp. 99-

107. October 2003.

[28] C. G. Nevill-Manning and I. H. Witten. “Linear-Time,

Incremental Hierarchy Interference for Compression.” The

Data Compression Conference, pp. 3-11. March 1997.

[29] C. G. Neville-Manning and I. H. Witten. “Identifying Hi-

erarchical Structure in Sequences: A linear-time algo-

rithm.” Journal of Artificial Intelligence Research, Vol. 7,

pp. 67-82. September 1997.

[30] C. G. Nevill-Manning and I. H. Witten. “Compression and

Explanation Using Hierarchical Grammars.” The Com-

puter Journal, Vol. 40, pp. 103-116. 1997.

[31] L. M. Norton. “A Program Generator Package for Man-

agement of Data Files - The Input Language.” ACM 1978

Annual Conference, pp. 217-222. December 1978.

[32] A. R. Pleszkun. “Techniques for Compressing Program

Address Traces.” 27th Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 32-40. November

1994.

[33] A. D. Samples. “Mache: No-Loss Trace Compaction.”

International Conference on Measurement and Modeling of

Computer Systems, Vol. 17, No. 1, pp. 89- 97. April 1989.

[34] Y. Sazeides and J. E. Smith. “Implementations of Context

Based Value Predictors.” Technical Report ECE-97-8,

University of Wisconsin-Madison. December 1997.

[35] Y. Sazeides and J. E. Smith. “The Predictability of Data

Values.” 30th International Symposium on Microarchitec-

ture, pp. 248-258. December 1997.

[36] A. Srivastava and A. Eustace. “ATOM: A System for

Building Customized Program Analysis Tools.” Confer-

ence on Programming Language Design and Implementa-

tion, pp. 196-205. June 1994.

[37] S. Sucu and C. Krintz. “ACE: A Resource-Aware Adap-

tive Compression Environment.” International Conference

on Information Technology: Coding and Computing, pp.

183-188. April 2003.

[38] K. Wang and M. Franklin. “Highly Accurate Data Value

Prediction using Hybrid Predictors.” 30th International

Symposium on Microarchitecture, pp. 281-290. December

1997.

[39] Y. Zhang and R. Gupta. “Timestamped Whole Program

Path Representation and its Applications.” Conference on

Programming Language Design and Implementation, pp.

180-190. June 2001.

