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Abstract 

Program execution traces are frequently used in indus-

try and academia.  Yet, most trace-compression algo-

rithms have to be re-implemented every time the trace 

format is changed, which takes time, is error prone, and 

often results in inefficient solutions.  This paper describes 
and evaluates TCgen, a tool that automatically generates 

portable, customized, high-performance trace compres-

sors.  All the user has to do is provide a description of the 

trace format and select one or more predictors to com-

press the fields in the trace records.  TCgen translates 

this specification into C source code and optimizes it for 
the specified trace format and predictor algorithms.  On 

average, the generated code is faster and compresses 

better than the six other compression algorithms we have 

tested.  For example, a comparison with SBC, one of the 

best trace-compression algorithms in the current litera-
ture, shows that TCgen’s synthesized code compresses 

SPECcpu2000 address traces 23% more, decompresses 

them 24% faster, and compresses them 1029% faster. 
 

 

1. Introduction 

Execution traces are widely used by researchers and 

educators to study program behavior and to drive simula-

tors.  They are easy to process and guarantee repeatabil-

ity.  The problem with traces from interesting applications 

is that they are often large and storing them can be a chal-

lenge, even on today’s high-capacity disks.  Thus, traces 
are usually compressed. 

Many trace-compression algorithms have been pro-

posed [1], [3], [7], [8], [18], [19], [21], [22], [25], [26], 

[32], [33], [39].  While most implementations work well 

for a predefined trace type, they are either domain spe-
cific, do not compress all that well, or cannot adapt to 

different trace formats.  As a consequence, users may find 

themselves re-implementing their favorite compression 

algorithm every time they start a new project that requires 

different traces.  Alas, writing new code is not only time 

consuming but also error prone and likely to result in 
suboptimal performance because algorithm details are left 

out and novel optimization opportunities are overlooked. 

This paper presents TCgen, an application-specific 

compiler that solves the above-mentioned problems by 

automatically translating simple user-provided trace de-

scriptions and predictor selections into high-performance 

trace compression utilities.  The generated code is typi-
cally faster and compresses better than the other compres-

sion algorithms we have evaluated.  TCgen emits portable 

C source code that is highly optimized for the given trace 

format and predictors.  The generated code is human 

readable to the extent that it is correctly indented, does 

not utilize macros, includes only one statement per line, 
and contains meaningful variable and function names.  

Users can choose between a number of prediction algo-

rithms and combinations to optimize the compression rate 

and speed.  A typical trace description, including the pre-

dictor selection, requires a couple of hundred characters. 
TCgen is quite fast, taking under three thousandths of a 

second on our reference machine to generate and optimize 

code even for sophisticated trace descriptions.  Compiling 

the emitted C code with a high optimization level typi-

cally takes under one second.  In other words, the synthe-

sis and compilation overhead is negligible compared to 
the time it takes to compress or decompress a multi-

gigabyte trace. 

TCgen was inspired by VPC3 [3], a fast and well-

performing trace-compression algorithm.  Like VPC3, 

TCgen employs value-prediction algorithms to convert a 

trace into streams that are highly compressible and that 
can be compressed and decompressed very quickly with a 

general-purpose compression algorithm. 

Value predictors identify patterns in sequences of 

numbers to forecast the likely next value.  In recent years, 

hardware-based value predictors have been researched 

extensively to predict the content of CPU registers [6], 
[10], [23], [24], [34], [35], [38], making them good can-

didates for predicting the kind of values typically found in 

program traces. 

The following simplified example illustrates how the 

value predictors are used to convert traces into streams 
and compress them.  Let us assume we have a set of pre-

dictors and that we want to compress a trace containing 

records with a single field.  During compression, the cur-

rent field’s value is compared with the predicted values.  

If at least one of the predictions is correct, the identifica-

tion number of one of the correct predictors is written to 
the first stream.  If none of the predictions is right, a re-

served identification number is written to the first stream 



 

 

and the unpredictable value is output to the second 

stream.  Then the predictors are updated and the proce-

dure repeats until all records have been processed. 
Decompression works as follows.  First, one entry is 

read from the first stream.  If it contains the reserved iden-

tification number, the field’s value is obtained from the 

second stream.  If, on the other hand, the entry contains a 

predictor identification number, the value from the corre-

sponding predictor is used.  Then the predictors are up-
dated to ensure that their state is consistent with the corre-

sponding state during compression.  This process is iter-

ated until the entire trace has been reconstructed. 

This approach already compresses the traces some-

what.  However, the key is that it converts the traces into 

streams that a general-purpose compressor can compress 
well and quickly.  We use BZIP2 for this purpose, but 

users are free to select any other algorithm. 

A comparison with BZIP2 [13], MACHE [33], 

PDATS II [18], SBC [26], SEQUITUR [22], and VPC3 

[3] shows that a TCgen-generated compressor outper-

forms all of them on average (harmonic mean) in com-
pression rate, decompression speed, and compression 

speed on the three types of SPECcpu2000 traces we stud-

ied (SBC decompresses one type 2% faster). 

TCgen is available on-line at http://www.csl.cornell.-

edu/~burtscher/research/TCgen/.  We have successfully 
tested a large number of compressors generated by TCgen 

on a 64-bit UNIX system using cc as well as on a 32-bit 

Windows machine using gcc under cygwin [15]. 

The remainder of this paper is organized as follows.  

Section 2 summarizes related work.  Section 3 introduces 

the value predictors available to TCgen.  Section 4 pre-
sents our trace-specification language.  Section 5 de-

scribes TCgen’s code generation and optimization.  Sec-

tion 6 explains the evaluation methods.  Section 7 dis-

cusses the results.  Section 8 summarizes our findings. 
 

2. Related Work 

Automated code generation for the manipulation of 

files has been in use for a long time.  For example, a pa-

per by Norton [31], which dates back to 1978, proposes a 

tailored language for the automated generation of file 
modification tools.  It describes the use of the Recursive 

Macro Actuated Generator (RMAG), a macro processor 

capable of generating source code in any language to cre-

ate programs that manipulate sequential data files.  These 

programs can create, update, and invert textual data as 
well as produce reports. 

Haines et al. [11] propose an object-oriented approach 

to replace data files with “smart files”.  A SmartFile con-

sists of a file descriptor, the data itself, and a set of asso-

ciated library routines for interacting with the data at a 

relatively high level of abstraction.  The authors introduce 
the DAFT (Data File Type) specification language, which 

includes three types of declarations: attributes, parame-

ters, and fields.  The attributes can be used to describe 

information related to the elements of a SmartFile, such as 
the fields, field types, and the files themselves.  The pa-

rameters can be used to specify symbolic size and shape 

relationships for fields.  The fields allow the user to de-

fine data abstractions.  The DAFT compiler reads the file 

type declarations and produces an enhanced symbol table 

for the SmartFile access routines.  An inheritance mecha-
nism allows the user to derive new file types from exist-

ing ones.  TCgen shares some of the file-description con-

cepts and also compiles the specification into a tool. 

Chilimbi et al. designed the Heap Allocation Trace 

Format (HATF) [7] to allow the collection and sharing of 

large allocation traces.  HATF is a binary format that in-
cludes inline metadata that can dynamically modify the 

encoding of trace events.  Data in a trace comes in two 

variants: metadata and data.  The metadata indicates the 

size and interpretation of each field that follows.  It can be 

dynamically defined and changed.  For example, varying 

field sizes allows data gathering on 32-bit and 64-bit ma-
chines, empty fields can be omitted, regular patterns can 

be exploited, etc.  The authors found that HATF was ef-

fective at compressing size fields but not address fields.  

Separating and compressing the address stream independ-

ently from the rest of the trace resulted in better compres-
sion.  TCgen also separates the streams in the trace and 

compresses them individually.  Additionally, it is more 

general in the sense that it can be used with traces created 

by arbitrary trace generators, i.e., it does not rely on the 

presence of metadata. 

Meta-TF [7] builds on HATF.  It is a meta specifica-
tion language that enables a trace to contain metadata to 

vary the encoding of the trace on the fly.  It can be used to 

specify HATF.  The first step is for the user to define a 

Document Type Definition (DTD).  The DTD documents 

the format of the trace in a human readable way and al-

lows meaningful names for records, fields, and attributes.  
The MetaTFtool, which includes a compiler for Meta-TF, 

then takes the Meta-TF DTD and produces a set of Java 

classes representing a reader/writer for traces that con-

form to the DTD.  Record formats in the DTD allow trace 

events to be encoded in a number of ways.  For instance, 
an allocation address may be given as a delta from a pre-

vious address.  This approach also simplifies the auto-

matic generation of trace reader/writer implementations 

from the DTD.  TCgen’s specification language also al-

lows the automatic generation of trace (de-)compressors 

(a form of readers and writers).  Note that Meta-TF gen-
erates variable trace formats with embedded encoding 

hints while TCgen produces variable encoders for user-

defined trace formats. 

STEP [1] provides a standard method of encoding gen-

eral trace data to reduce the need for developers to con-

struct specialized systems and as such is probably the 



 

 

closest system to TCgen.  STEP uses a definition lan-

guage designed specifically to reuse records and feed 

definition objects to its adaptive encoding process, which 
employs strategies to increase the compressibility of the 

traces.  As with TCgen, the traces are compressed using a 

general-purpose compressor.  STEP comprises a defini-

tion language, STEP-DL, a compiler, stepc, and the archi-

tectural framework. 

STEP-DL is similar to (and was inspired by) Meta-TF, 
but provides a more generalized trace format with better 

encoding properties.  It is targeted towards application 

and compiler developers and focuses on Java programs 

running on a Java Virtual Machine.  One key difference is 

that while Meta-TF uses a dynamic encoding policy with 

explicit changes, STEP-DL uses an adaptive encoding 
process, i.e., it monitors various characteristics of the in-

put data and, when appropriate, makes adjustments to the 

encoding policy automatically.  In other words, encoding 

strategies are associated with individual record types as 

opposed to the system as a whole.  TCgen also uses dif-

ferent compression algorithm for different parts of a trace.  
STEP-DL, Meta-TF, and TCgen all use human-readable 

ASCII input files. 

Sucu and Krintz developed ACE [37], an adaptive 

compression environment for a Java Virtual Machine to 

improve Internet transfer rates.  It decides whether to 
compress or not, based on an estimation of the cost of 

performing on-the-fly compression.  ACE monitors the 

number of bytes per second that the local host sends 

through socket write calls.  If this rate is lower than the 

bandwidth between the local and remote host, ACE com-

putes the compressed and uncompressed transfer time for 
each 32kB block of data to be sent and selects compres-

sion if the uncompressed transfer time is higher.  ACE 

also estimates (via sampling) the compression rate, the 

effective data transfer rate, and the decompression rate.  If 

the smallest of these rates exceeds the available band-

width, then the data is sent compressed.  Compression 
decisions are only made for blocks of data that are 32kB 

or larger.  Smaller blocks are transferred uncompressed. 

 

2.1 Compression Algorithms 

This subsection describes the compression schemes 

with which we compare TCgen’s output in Section 7.  

BZIP2 is a lossless, general-purpose algorithm that can be 

used to compress any kind of file.  The remaining algo-

rithms are special-purpose trace compressors that we 
modified (where necessary) to include efficient block I/O 

operations, to understand our trace format, and to utilize a 

post-compression stage to improve the compression rate.  

They are all single-pass, lossless compression schemes. 

BZIP2: BZIP2 [13] is a general-purpose compressor 

that operates at byte granularity.  It implements a variant 
of the block-sorting algorithm described by Burrows and 

Wheeler [2].  BZIP2 applies a reversible transformation to 

a block of inputs, uses sorting to group bytes with similar 

contexts together, and then compresses them with a 
Huffman coder.  The block size is adjustable.  We use 

version 1.0.2 with the “--best” option.  BZIP2 requires 

about 10MB of memory to compress and decompress our 

traces.  We evaluate BZIP2 as a standalone compressor 

and as the post-compressor for the other algorithms. 

MACHE:  MACHE [33] was designed to compress 
address traces.  It distinguishes between three types of 

addresses, namely instruction fetches, memory reads, and 

memory writes.  A label precedes each address in the 

trace to indicate its type.  MACHE works as follows.  

After reading in a label and address pair, the address is 

compared with the base for the current label type.  If the 
difference between the address and the base can be ex-

pressed in a single byte, the difference is emitted directly.  

Otherwise, the full address is emitted and this address 

becomes the new base for the current label.  The algo-

rithm repeats until the entire trace has been processed. 

Since PC and data entries alternate in our trace format 
(Section 6.3), no labels are necessary to identify the type.  

MACHE only updates the base when the full address 

needs to be emitted.  We retain this policy for the PC en-

tries in the traces.  However, for the data entries, we 

found it better to always update the base due to the fre-
quently encountered stride behavior.  Our implementation 

uses 2.3MB of memory to run. 

PDATS II: PDATS II [18] improves upon PDATS 

[19] by exploiting common patterns in program behavior.  

For example, jump-initiated sequences are often followed 

by strided sequences.  PDATS encodes such patterns us-
ing one record to specify the jump and another record to 

describe the sequential references.  PDATS II combines 

the two records into one.  Moreover, when a program 

writes to a particular memory location, it is also likely to 

read from that location.  PDATS separates read and write 

references, resulting in two large offsets whenever the 
location changes.  PDATS II does not treat read and write 

references separately.  Additionally, common data offsets 

are encoded in the header byte and instruction offsets are 

stored in units of the default instruction stride (e.g., four 

bytes per instruction on most RISC machines).  Thus, 
PDATS II achieves about twice the compression rate of 

PDATS on average. 

We modified PDATS II as follows.  Since our traces 

do not include both read and write accesses, we do not 

distinguish between them in the header.  This makes an 

extra bit available, which we use to encode data offsets of 
±16, ±32, and ±64.  We further extended PDATS II to 

also accommodate six- and eight-byte offsets.  Our traces 

do not exhibit many jump-initiated sequences that are 

followed by strided sequences.  Hence, we do not need 

the corresponding PDATS II feature.  Our implementation 

needs 2.2MB of memory to run. 



 

 

SEQUITUR: SEQUITUR [22] compresses traces by 

converting them into a context-free grammar [28], [29], 

[30].  The algorithm applies two constraints while con-
structing the grammar: each digram (pair of consecutive 

symbols) in the grammar must be unique and every rule 

must be used more than once.  The biggest drawback of 

SEQUITUR is its memory usage, which depends on the 

data to be compressed (it is linear in the size of the gram-

mar) and can exhaust the system’s resources when com-
pressing large traces.   

The SEQUITUR algorithm we use is a modified ver-

sion of Nevill-Manning and Witten’s implementation 

[12], which we changed as follows.  We converted the 

C++ code into C, inlined the access functions, increased 

the symbol table size to 33,554,393 entries, and added 
code to decompress the grammars.  To accommodate 64-

bit trace entries, we included a function that converts each 

trace entry into a unique number (in expected constant 

time).  Moreover, we construct two grammars, one for the 

PC entries and one for the data entries in the traces.  To 

cap the memory usage, we start new grammars when 
eight million unique symbols have been encountered or 

384MB of storage have been allocated for rule and sym-

bol descriptors.  We found these cutoff points to work 

well on our traces and system.  According to ps, our im-

plementation’s memory usage never exceeds 951MB.  To 
prevent SEQUITUR from becoming very slow due to 

hash-table inefficiencies, we also start a new grammar 

whenever the last 65,536 searches for entries required an 

average of more than thirty trials before terminating. 

SBC: The Stream-Based Compression (SBC) algo-

rithm [26], [27] is one of the newest trace compressors in 
the literature.  It splits the traces into segments called in-

struction streams.  A stream is a dynamic sequence of 

instructions from the target of a taken branch to the first 

taken branch in the sequence.  SBC creates a stream table 

that records relevant information such as the starting ad-

dress, the number of instructions in the stream, and the 
instruction words and their types.  During compression, 

groups of instructions that belong to the same stream are 

replaced by the corresponding stream table index.  To 

compress addresses of memory references, SBC further 

records information about the strides and the number of 
stride repetitions.  This information is attached to the in-

struction stream.  Note that TCgen’s streams are unrelated 

to SBC’s streams. 

We made the following changes to SBC [16].  Since 

our traces contain only dynamic instances of some but not 

all instructions, we redefined an instruction stream as a 
sequence in which each subsequent instruction has a 

higher PC than the previous instruction and the difference 

between subsequent PCs is less than a preset threshold.  

We found a threshold of four instructions to provide the 

best compression rate on our traces.  SBC uses 10MB of 

memory to run. 

VPC3: We use the Third Value-Prediction-Based 

Compression (VPC3) algorithm [3] as a starting point for 

TCgen.  VPC3 employs value predictors to convert traces 
into streams.  BZIP2 is then utilized to compress the 

streams.  Internally, the value predictors divide the traces 

into ministreams, one for each PC (i.e., static instruction), 

which exhibit more locality than the original trace in 

which the data are interleaved in complicated ways. 

Since we utilize the VPC trace format in this paper, we 
did not have to make changes to this algorithm and were 

able to use it directly [14].  VPC3 requires 27MB of 

memory to execute. 

 

3. Value Predictors 

This section describes the value predictors available to 

TCgen, i.e., the predictors the user can select and config-

ure.  All predictors predict the next trace entry based on 

previously processed entries. 
Last-value predictor: The first type of predictor 

TCgen can emit is the last-value predictor (LV[n]) [6], 

[24], [38].  It predicts the n most recently seen values.  

This type of predictor can accurately predict sequences of 

repeating and alternating values as well as repeating se-
quences of no more than n arbitrary values.  Figure 1 

shows a diagram of an LV[n] predictor with s lines in its 

(first-level) table. 
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Figure 1: LV[n] predictor with s lines. 

 

The LV[n] predictor always predicts the n values 
stored in the selected line.  The PC (extracted from the 

current trace record) modulo s determines the line index.  

If no PC is available, s has to be one.  After a prediction, 

the selected line is updated by discarding the oldest entry, 

moving the remaining entries to the right by one slot, and 

copying the update value into the first slot. 
Finite-context-method predictor: The second type of 

predictor TCgen can produce is the finite-context-method 

predictor (FCMx[n]) [35].  It computes a hash out of the x 

most recently encountered values (x is the order of the 

predictor), which are stored in the predictor’s first-level 

table, using the select-fold-shift-xor hash function [34].  
The hash is then used to index the predictor’s second-

level table (i.e., the hash table), which works just like the 

LV[n] table.  After updating the second-level table, the 



 

 

entries in the selected line of the first-level table are 

moved to the right by one slot, thus dropping the oldest 

value and making room for the update value.  Figure 2 
shows an FCMx[n] predictor with s lines in the first-level 

table (L1) and t lines in the second-level table (L2). 
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Figure 2: FCMx[n] predictor with L1 = s and L2 = t. 

 

This predictor predicts the n values that followed the 

last n times the same x preceding values (that is, the same 
context) have been encountered [34], [35].  Thus, FCM 

predictors can memorize long arbitrary sequences of val-

ues and accurately predict them when they repeat. 

Differential-finite-context-method predictor: The 

third type of predictor TCgen can create is the differen-

tial-finite-context-method predictor (DFCMx[n]) [10].  It 
works just like an FCMx[n] predictor except it predicts 

and is updated with differences (strides) between 

consecutive trace entries rather than with absolute values.  

To form the final prediction, the predicted stride is added 

to the most recently seen value (the last value).  DFCM 
predictors are often superior to FCM predictors because 

they warm up faster, make better use of the hash table, 

and can predict values that have never been seen before.  

Figure 3 illustrates a DFCMx[n] predictor with s lines in 

the first-level table and t lines in the second-level table. 
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Figure 3: DFCMx[n] predictor with L1 = s and L2 = t. 

 

In addition to predicting long arbitrary sequences of 

values that repeat, DFCMs can accurately predict long 

arbitrary sequences of offsets (between consecutive val-

ues) that repeat. 

4. Trace Specification Language 

The input to TCgen is a trace format description com-

bined with a value-predictor configuration, expressed in 

the regular language whose grammar is shown in Figure 

4.  The start symbol is Description.  TCgen also supports 
comments, which begin with a hash character (“#”) and 

extend to the end of the line.  The trace descriptions are 

case sensitive. 

 

Description = ‘TCgen’ ‘Trace’ ‘Specification’ ‘;’ Header Field {Field} PCDef. 
Header = Number ‘-’ ‘Bit’ ‘Header’ ‘;’. 
Field = Number ‘-’ ‘Bit’ ‘Field’ Number ‘=‘ ‘{‘ [LevelSizes] ‘:’ Predictors ‘}’ ‘;’. 
LevelSizes = LevelSize [‘,’ LevelSize]. 
LevelSize = (‘L1’ ‘=‘ Number) | (‘L2’ ‘=‘ Number). 
Predictors = Predictor {‘,’ Predictor}. 
Predictor = (‘DFCM’ Number ‘[‘ Number ‘]’) | (‘FCM’ Number ‘[‘ Number ‘]’) | 

(‘LV’ ‘[‘ Number ‘]’). 
PCDef = ‘PC’ ‘=‘ ‘Field’ Number ‘;’. 
Number = Digit {Digit}. 
Digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’. 

Figure 4: EBNF grammar of the description language. 

 

Figure 5 shows the specification needed to emulate 

VPC3 and its trace format.  We will use it as an example 

to discuss the features of TCgen’s input language.  VPC3 

traces start with a four-byte header that is followed by 
records with four-byte PC and eight-byte data fields. 

 

TCgen Trace Specification; 
32-Bit Header; 
32-Bit Field 1 = {L1 = 1, L2 = 131072: FCM3[2], FCM1[2]}; 
64-Bit Field 2 = {L1 = 65536, L2 = 131072: DFCM3[2], DFCM1[2], FCM1[2], 

LV[4]}; 
PC = Field 1; 

Figure 5: VPC3 trace format and predictor description. 

 

All TCgen trace specifications have to start with the 
phrase “TCgen Trace Specification”.  A semicolon termi-

nates each statement.  The second line in Figure 5 informs 

TCgen that there is a header of four bytes.  Header bytes 

are copied to a separate stream without passing them 

through value predictors.  Lines three and four specify 
that each record comprises two fields.  Field 1 is four 

bytes and Field 2 eight bytes wide.  Line five tells TCgen 

that the first field of each trace record holds the PC. 

The expressions in the curly brackets specify the types 

and sizes of the value predictors to be used for compress-

ing the fields with which they are associated.  Since the 
first field contains the PC, no index is available and the 

level-one (L1) predictor size has to be set to one.  No mat-

ter where in a trace record the PC field is, it is always 

accessed first to make it available for computing the indi-

ces to predict the remaining fields. 

The specified FCM3[2] and FCM1[2] predictors pro-
vide four predictions for Field 1.  Note that each FCMx 

and DFCMx predictor is allocated a second-level table 



 

 

with L2*2(x-1) lines (see Section 5.2).  Hence, the FCM1’s 

hash table has 131,072 lines and the FCM3’s hash table 

has 524,288 lines. 
The predictors for the second field all have 65,536 

lines in their first-level tables.  There are four predictors, 

DFCM3[2], DFCM1[2], FCM1[2], and LV[4], providing 

a total of ten predictions for Field 2.  According to the 

above formula, the DFCM3’s level-two size is four times 

the specified L2 value.  The last-value predictor does not 
have a second-level table, so the L2 value is irrelevant for 

this predictor. 

The L1 and L2 sizes have to be powers of two to make 

the modulo computations fast.  At least one predictor has 

to be specified for each field.  However, providing L1 and 

L2 sizes is optional.  If L1 is left out, a default value of 
one is used.  If L2 is omitted, it defaults to 65,536, which 

we chose because it yields good results for most traces 

while at the same time keeping the memory footprint rea-

sonable.  The PC specification, e.g., the last statement in 

Figure 5, is mandatory as the value-prediction-based ap-

proach is particularly effective on traces containing PCs.  
Nevertheless, it is always possible to compress traces 

without PC information by specifying an L1 size of one 

for all fields.  In fact, if only a single eight-bit field with 

an L1 size of one is specified, the resulting code can be 

used to compress and decompress arbitrary files, includ-
ing non-trace files.  This mode of operation, however, is 

not recommended as it typically underperforms BZIP2. 

Unless TCgen terminates with a parse error, it will 

write the synthesized C code to the standard output.  The 

listing starts with a commented out copy of the trace 

specification to document the code.  This text can directly 
be used as input to TCgen.  Moreover, this trace specifica-

tion is emitted in canonical form and includes a comment 

line after each field specification (not shown) stating how 

many predictions will be made for that field and what the 

total size of the predictor tables is.  The sum of the table 

size of all fields plus about 2MB accurately reflects the 
dynamic memory requirement of the synthesized code. 

When the generated code is compiled and run, it will 

read and compress a trace from the standard input that 

matches the given specification.  At the end of the com-

pression, predictor usage information is written to the 
standard output.  This feedback is provided to help the 

user select the most effective predictors.  If the code is run 

with the “-d” command-line flag, it will decompress the 

trace and write it to the standard output.  No flag is 

needed for compression. 

 

5. Code Generation and Optimization 

This section describes the code generation and the 

application-specific optimizations that TCgen performs as 

well as the algorithmic enhancements over VPC3. 

 

5.1 Code Generation 

When emitting code, TCgen makes use of several tech-

niques to aid the compiler in producing high-performance 
binary.  For example, all code is written into one file 

(typically a few hundred lines of text), giving the 

compiler a global view of the program.  All generated 

functions (except main) are declared static to allow the 
compiler to optimize the calling convention and to inline 

and eliminate any function it chooses.  Similarly, all 

global variables are declared static.  All local variables for 

which this is possible are declared as register variables to 
inform the compiler that no pointer analysis is necessary 

for them.  Finally, all I/O is performed with efficient 

block I/O calls and the data is internally extracted from 

and inserted into buffers in a manner that avoids align-

ment problems. 

 

5.2 Application-Specific Code Optimizations 

TCgen performs several optimizations before emitting 

code.  It includes a dead-code remover to eliminate state-

ments that are only used for predictors that are not se-

lected.  For example, there is no need to compute a stride 

for any field that does not use a DFCM predictor.  Simi-
larly, if a trace format does not specify a header, no code 

to handle a header is emitted. 

TCgen minimizes the memory footprint of the gener-

ated code by eliminating unnecessary predictor tables, 

coalescing all tables that hold the same information, and 
minimizing the table sizes.  For instance, all DFCM and 

LV predictors need to retain the most recent values (in the 

last-value table).  If only FCM predictors are specified for 

a given field, no last-value table is emitted.  On the other 

hand, if multiple DFCM predictors or one or more DFCM 

and an LV predictor are specified, only one shared last-
value table is generated.  Furthermore, each FCM and 

DFCM predictor is assigned a second-level table with 

L2*2(x-1) lines, where x is the order of the predictor.  This 

is done to accelerate the computation of the hash function 

and so that only one first-level table is needed for all 

FCM predictors and another one for all DFCM predictors 
of each field.  In fact, only the first-level table for the 

highest order predictor is generated and the lower-order 

predictors utilize whatever fraction of that table they 

need.  All table elements are declared to be of the smallest 

type that is sufficiently large.  Eight-bit fields, for in-
stance, result in tables with eight-bit entries while 64-bit 

fields result in 64-bit table entries.  Likewise, elements of 

the smallest possible type are written to the streams that 

receive the unpredictable values. 

No matter which predictors are included, they are al-

ways “re-named” so that the predictor identification codes 
range from 0 to n-1, where n is the number of predictors. 



 

 

TCgen eliminates superfluous parameters from func-

tions that do not use them.  For example, the PC does not 

need to be passed to prediction functions for fields that 
use global predictors. 

Finally, TCgen incrementally computes the hash func-

tions, which results in substantial speedups for predictors 

with large orders.  Moreover, the partial hash function 

values are chosen in such a way that they reflect the cor-

rect indices for the lower-order predictors (if they exist).  
As a result, only n operations have to be performed to 

compute the new index for an nth-order FCM or DFCM 

predictor, and the intermediate results provide “free” indi-

ces for all lower-order predictors that are present. 

 

5.3 Algorithmic Enhancements 

When instructing TCgen to emulate VPC3 using the 

trace specification from Figure 5, the synthesized code 

actually compresses better and is faster than VPC3 (see 

Section 7).  This is the result of the following enhance-

ments.  First, we eliminated some duplicated variables.  
Second, we modified the hash function to be faster for 

small fields by taking advantage of the size of fields.  

Third, we improved the hash function to increase the 

number of reachable second-level table entries for small 

fields by automatically adapting the shift amount in the 

select-fold-shift-xor hash function [34].  Fourth and most 
importantly, we enhanced the update policy.  VPC3 al-

ways updates all predictor tables, which makes it very fast 

because the tables do not have to be searched for a match-

ing entry.  VPC2 [4], on the other hand, only updates ta-

bles if the update value is not already in the selected line.  
This is much slower but increases the prediction accuracy 

because only distinct values are retained.  TCgen’s update 

policy combines the benefits of both approaches essen-

tially without their downsides.  It only performs an update 

if the current value is different from the first entry in the 

selected line.  This way, only one table entry needs to be 
checked (no code to perform this check is emitted if the 

table only holds one entry per line), which makes updates 

fast while at the same time guaranteeing that at least the 

first two entries in each line are distinct, which improves 

the prediction accuracy. 

 

6. Evaluation Methods 

This section provides information about the system, 
the timing measurements, the traces, and the compiler we 

used for our measurements.  It includes a brief description 

of our performance metrics. 

 

6.1 System 

We performed all measurements for this study on a 

dedicated 64-bit CS20 system with two 833MHz 21264B 

Alpha CPUs [20].  Only one of the processors was used.  

Each CPU has separate, two-way set-associative, 64kB 

L1 caches and an off-chip, unified, direct-mapped 4MB 
L2 cache.  The system is equipped with 1GB of main 

memory.  The Seagate Cheetah 10K.6 Ultra320 SCSI 

hard drive has a capacity of 73GB, 8MB of built-in cache, 

and spins at 10,000rpm.  For maximum disk performance, 

we used the advanced file system (AdvFS).  The operat-

ing system is Tru64 UNIX V5.1B. 

 

6.2 Timing Measurements 

All timing measurements in this paper refer to the sum 

of the user and the system time as reported by the UNIX 

shell command time.  In other words, we report the CPU 

time and ignore any idle time such as waiting for disk 

operations.  We programmed all compression and decom-

pression algorithms so that they read traces from the hard 
disk and write traces back to the hard disk.  While these 

disk operations are subject to caching, any resulting effect 

should be minimal because of the large sizes of our traces.  

Note that we “diff” the decompressed traces with the 

original traces after each run to verify their integrity. 

 

6.3 Traces 

We used all integer and all but four floating-point pro-

grams from the SPECcpu2000 benchmark suite [17] to 

generate the traces for this study.  We had to exclude the 

four Fortran 90 programs due to the lack of a compiler.  
The C programs were compiled with Compaq’s C com-

piler V6.3-025 using “-O3 -arch host -non_shared” plus 

feedback optimization.  The C++ and Fortran 77 pro-

grams were compiled with g++/g77 V3.3 using “-O3 

-static”.  We used statically linked binaries to include the 
instructions from library functions in the traces.  Only 

system-call code is not captured.  We generated traces 

from complete runs with the SPEC-provided test inputs 

using the binary instrumentation tool-kit ATOM [9], [36].  

Two programs, eon and vpr, require multiple runs and 
perlbmk executes itself recursively.  For these programs, 
we concatenated the subtraces into a single trace each. 

We generated three types of traces from the 22 pro-

grams to evaluate the different compression algorithms.  

The first type captures the PC and the effective address of 
each executed store instruction.  The second type contains 

the PC and the effective address of all loads and stores 

that miss in a simulated 16kB, direct-mapped, 64-byte 

line, write-allocate data cache.  The third type of trace 

records the PC and the loaded value of every executed 

load instruction (that is not a prefetch, a NOP, or a load 
immediate).  All traces use the same format, that is, alter-

nating 32-bit PC and 64-bit data values.  We did not gen-

erate traces with different formats as doing so would have 



 

 

required us to implement multiple versions of all com-

pression algorithms with which we compare TCgen. 

We selected the store-address traces because, histori-
cally, many trace-compression approaches have focused 

on address traces.  Such traces are typically relatively 

easy to compress.  We picked the cache-miss-address 

traces because the simulated cache acts as a filter and only 

lets some of the memory accesses through, which we ex-

pect to distort the access patterns, making the traces 
harder to compress.  Finally, we chose the load-value 

traces because load values span large ranges and include 

floating-point numbers, addresses, integer numbers, bit-

masks, etc., which makes them difficult to compress. 

Table 1 shows the program name, the programming 

language (lang), the type (integer or floating point), and 
the uncompressed size (in megabytes) of the three traces 

for each SPECcpu2000 program as well as which traces 

were excluded.  We had to exclude all traces with more 

than one billion entries, i.e., the traces that are larger than 

twelve gigabytes, because they would have exhausted the 

available disk space.  The corresponding entries in Table 
1 are crossed out. 

 

 

Table 1: Information about the traces. 

store cache miss load
program lang type addresses addresses values

eon C++ 2,086.1 MB 94.6 MB 2,164.6 MB 

bzip2 C 16,769.9 MB 726.1 MB 23,947.4 MB 

crafty C 3,368.0 MB 1,967.8 MB 14,227.6 MB 

gap C 1,269.2 MB 255.5 MB 3,141.6 MB 

gcc C 2,280.9 MB 366.6 MB 4,523.2 MB 

gzip C 2,836.0 MB 731.3 MB 8,070.1 MB 

mcf C 400.4 MB 150.1 MB 455.7 MB 

parser C 4,224.2 MB 821.2 MB 9,805.9 MB 

perlbmk C 570.3 MB 86.1 MB 1,089.4 MB 

twolf C 239.8 MB 73.4 MB 827.6 MB 

vortex C 16,770.6 MB 2,185.2 MB 26,571.4 MB 
vpr C 1,984.9 MB 644.0 MB 7,167.0 MB 

ammp C 5,159.2 MB 3,442.0 MB 16,406.9 MB 

art C 1,781.8 MB 2,381.8 MB 11,249.9 MB 

equake C 1,229.8 MB 418.8 MB 4,323.0 MB 

mesa C 3,671.1 MB 266.8 MB 6,055.2 MB 

applu F77 522.7 MB 77.1 MB 1,002.7 MB 

apsi F77 8,058.2 MB 3,018.9 MB 15,911.5 MB 

mgrid F77 5,110.0 MB 6,377.0 MB 102,794.6 MB 

sixtrack F77 18,735.9 MB 2,224.5 MB 38,889.2 MB 

swim F77 452.0 MB 149.3 MB 1,985.5 MB 
wupwise F77 10,829.6 MB 889.9 MB 22,628.8 MB 
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6.4 Compiler 

To make the running-time comparisons as fair as pos-

sible, we compiled all compressors with the same com-
piler (Compaq’s C compiler V6.3-025) and the same op-

timization flags (-O3 -arch host). 

6.5 Performance Metrics 

We use the following three performance metrics to 

evaluate the quality of the compression algorithms.  They 
are, in decreasing order of importance, the compression 

rate, the decompression speed, and the compression 

speed.  Other factors are also important.  However, they 

are either the same for all algorithms we evaluated (such 

as the use of a linear-time, single-pass, lossless algorithm) 

or only one algorithm differs from the others (such as 
SEQUITUR not having a fixed memory requirement). 

Our three metrics are defined as follows.  They are all 

higher-is-better metrics. 
 

sizecompressed

sizeeduncompress
ratencompressio =

 

timeiondecompress

sizeeduncompress
speediondecompress =

 

timencompressio

sizeeduncompress
speedncompressio =

 

 

Note that the compression rate has no unit while the 
decompression and compression speeds are throughputs 

measured in bytes per second.  The three metrics are in-

versely normalized to the uncompressed trace size and are 

therefore independent of the trace length.  Due to the in-

verse normalization, the natural way of averaging each of 
these metrics is the harmonic mean. 

 

7. Results 

The following sections compare the six compression 

algorithms described in Section 2.1 with TCgen’s output.  

Unless otherwise specified, TCgen is used with the trace 

description from Figure 5.  Section 7.1 discusses the 

compression rate, Section 7.2 studies the decompression 

speed, Section 7.3 investigates the compression speed, 
Section 7.4 evaluates the effectiveness of TCgen’s op-

timizations, and Section 7.5 takes a look at the sensitivity 

of the predictor selection.  Note that each algorithm in-

cludes a BZIP2 post-compression stage (except BZIP2). 

 

7.1 Compression Rate 

Figure 6 depicts the harmonic-mean compression rates 

of the seven compression algorithms on our three types of 

traces.  For each trace type, the algorithms are sorted from 

left to right by increasing compression rate.  For improved 

readability, we show the compression rates relative to 
TCgen.  Absolute numbers are provided in Table 2 and in 

a technical report [5]. 

TCgen delivers the best compression rate for each type 

of trace and outperforms VPC3 because of the improved 

update policy.  VPC3 is the second best performer on the 

store-address and the load-value traces and SBC on the 



 

 

cache-miss-address traces.  Interestingly, SEQUITUR 

exceeds SBC’s compression rate only on the load-value 

traces.  This is probably because SEQUITUR does not 
handle strided sequences well, which occur more fre-

quently in the address traces than in the load-value traces.  

This also explains why even MACHE and PDATS II out-

perform SEQUITUR on the store-address traces.  Both of 

these algorithms were specifically designed for address 

traces.  While PDATS II is more sophisticated than 
MACHE, the latter is superior to the former on the load-

value traces.  In fact, on these traces PDATS II with a 

BZIP2 post-compression stage results in a lower com-

pression rate than BZIP2 alone. 
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Figure 6: Harmonic-mean compression rates. 

 

According to Figure 6, TCgen outperforms VPC3 by 

6% to 13%, showing that the algorithmic improvements 

described in Section 5.3 are effective.  SBC’s compres-

sion rate is 6% to 81% lower than that of TCgen.  
SEQUITUR underperforms TCgen by more than 100% 

on the store-address traces, as do the remaining algo-

rithms on both the store-address and the load-value traces. 

Looking at the compression rates achieved by the 

seven algorithms on each individual trace [5], we find that 
no algorithm is the best for all traces.  Nevertheless, 

TCgen outperforms the other six algorithms on every 

load-value trace.  We suspect this to be the case because 

TCgen is based on value predictors, many of which were 

developed to predict load values, that is, the content of 

these traces. 
On the 22 cache-miss-address traces, TCgen is outper-

formed by VPC3 on one trace (by 13%), by SEQUITUR 

on five traces (by up to 452%), by MACHE on three 

traces (by up to 46%), by SBC on nine traces (by up to 

195%), by PDATS II on one trace (by 11%), and by 

BZIP2 on four traces (by up to 60%).  However, on aver-
age and for the majority of the traces TCgen yields the 

highest compression rates. 

On the 19 store-address traces, TCgen is inferior to 

VPC3 on one trace (by 7%), to SEQUITUR on four traces 

(by up to 168%), to MACHE on two traces (by up to 

11%), to SBC on four traces (by up to 23%), and to 

PDATS II on three traces (by up to 42%), but exceeds 
BZIP2’s compression rate on each trace.  Again, on aver-

age and in the majority of the cases, TCgen yields the best 

compression rates.  It compresses the store-address trace 

art by a factor of 77161, which is the highest compression 
rate we observed. 

In the best case, TCgen outperforms VPC3 by a factor 

of 89, SEQUITUR by a factor of 4823, MACHE by a 

factor of 3991, SBC by a factor of 9.7, PDATS II by a 
factor of 461, and BZIP2 by a factor of 4001.  TCgen 

compresses 36 of the 55 traces better than all the other 

algorithms we investigated. 

 

7.2 Decompression Speed 

Figure 7 shows the harmonic-mean decompression 

speed (the throughput in bytes per second at which the 

original trace is recreated) of the seven algorithms on our 

three types of traces normalized to TCgen.  For each trace 
type, the algorithms are sorted from left to right by in-

creasing decompression speed. 
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Figure 7: Harmonic-mean decompression speeds. 

 

TCgen provides the fastest decompression speeds on 
the store-address and the load-value traces.  On the cache-

miss-address traces, SBC is 2% faster, but on the other 

two trace types, TCgen exceeds SBC’s decompression 

speed by 24% and 32%.  VPC3 is the next fastest decom-

pressor, with TCgen being 4% to 8% faster.  SEQUITUR 
is quite fast, too, except for the store-address traces, on 

which it is only a little over half as fast as TCgen.  

MACHE, PDATS II, and BZIP2 are in the bottom half for 

all three types of traces.  They are at least 44% slower 

than TCgen. 

Looking at the individual decompression speeds [5], 
we see that TCgen is faster than MACHE on all 55 traces.  

PDATS II beats TCgen on two traces (by up to 6%) and 

so does BZIP2 (by up to 19%).  SBC is faster on one 



 

 

load-value trace and on nine cache-miss-address traces 

(by up to 34%).  VPC3 is faster on eight of the 55 traces, 

though never by more than 6%.  Finally, SEQUITUR 
outperforms TCgen on eight of the 19 store-address traces 

(by up to 87%), on ten of the 22 cache-miss-address 

traces (by up to 125%), and on five of the load-value 

traces (by up to 57%).  Nevertheless, TCgen is fastest on 

average and in the majority of the traces.  It outperforms 

VPC3 by up to 28%, SEQUITUR by up to 599%, 
MACHE by up to 610%, SBC by up to 82%, PDATS II 

by up to 244%, and BZIP2 by up to 444%. 

In absolute terms, TCgen regenerates the store-address 

traces at a harmonic-mean speed of 26MB/s (megabytes 

per second), the cache-miss-address traces at 11.8MB/s, 

and the load-value traces at 14.4MB/s.  These rates ex-
ceed the throughput of a one-hundred megabit per second 

network connection and the transfer rates of many hard 

disks, suggesting that it may be faster to drive simulators 

and other trace-consumption tools by TCgen rather than 

from an uncompressed file on the hard drive. 

 

7.3 Compression Speed 

Figure 8 shows the harmonic-mean compression speed 

of the seven algorithms on the three types of traces rela-

tive to TCgen.  Again, the algorithms are sorted from left 
to right by increasing speed. 
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Figure 8: Harmonic-mean compression speeds. 

 

TCgen and VPC3 (the algorithm TCgen is emulating) 

are dominant.  In fact, MACHE, PDATS II, and BZIP2 
compress exactly one of the 55 traces faster than TCgen 

(13%, 29%, and 17% faster, respectively).  SBC is slower 

on every trace (up to 180 times slower) and so is 

SEQUITUR (up to 17 times slower).  VPC3 is faster than 

TCgen on four traces, though never by more than 2% [5]. 
In absolute terms, TCgen yields harmonic-mean com-

pression speeds of 7.5MB/s on the store-address traces, 

4.2MB/s on the cache-miss-address traces, and 5.4MB/s 

on the load-value traces. 

7.4 Optimizations 

Table 2 evaluates the performance of TCgen’s output 

when some of the application-specific optimizations and 
enhancements (Section 5) are turned off.  The compres-

sion (c.spd) and decompression (d.spd) speeds are ex-

pressed in megabytes per second.  The first line lists re-

sults when the new update policy is disabled and the pre-

dictors are always updated.  The second line shows results 

when we do not minimize the types of array and stream 
elements.  The third line presents results when all predic-

tors get their own tables, i.e., there is no sharing.  The 

fourth line displays results when the fast hash function is 

replaced by an equivalent function that always computes 

the hashes from scratch.  The fifth line gives results when 
combining the first four “de-optimizations”.  Finally, the 

last line represents the performance when all optimiza-

tions are turned on.  This is the configuration used every-

where else in this paper. 

 

Table 2: Performance impact of TCgen’s optimizations. 

rate d.spd c.spd rate d.spd c.spd rate d.spd c.spd

no smart update 132.6 25.8 7.0 17.9 11.6 4.0 21.9 13.8 5.1

no type minimization 142.5 25.4 6.7 18.5 10.9 3.5 23.0 14.0 5.1

no shared tables 142.9 24.5 7.3 18.6 11.3 4.1 23.0 13.8 5.2

no fast hash function 142.9 19.8 7.0 18.6 10.1 4.0 23.0 11.7 5.1

all of the above 131.9 17.6 5.6 17.7 8.8 3.0 21.9 10.9 4.4

full optimizations 142.9 26.0 7.5 18.6 11.8 4.2 23.0 14.4 5.4

store addresses cache miss addrs load values

 
 
The four investigated optimizations are useful in all 

cases.  Disabling table sharing and using the unoptimized 

hash function do not change the compression rate but do 

slow down compression and decompression.  The other 

two optimizations affect all of our performance metrics.  

Disabling the four optimizations simultaneously reduces 
the harmonic-mean compression rates by 4.8% to 7.7%, 

the decompression speeds by 24.4% to 32.3%, and the 

compression speeds by 17.8% to 28.7%. 

 

7.5 Predictor Sensitivity 

This section investigates how the predictor selection 
affects TCgen’s performance.  To do so, we generated a 

second compression utility that includes all the predictors 

we found to be useful for at least two of the 55 traces.  

The corresponding trace specification is shown in Figure 

9.  We call this configuration TCgen(B).  The configura-

tion used elsewhere in this paper (specified in Figure 5) is 
TCgen(A).  Note that TCgen(B) is a true superset of 

TCgen(A).  It uses 22 predictors and requires a total of 

35MB of table space.  TCgen(A) employs 14 predictors 

with a total table size of 20MB. 

Table 3 compares the harmonic-mean performance of 
the two configurations on the three types of traces.  The 

compression and decompression speeds are listed in 

megabytes per second. 



 

 

 

TCgen Trace Specification; 
32-Bit Header; 
32-Bit Field 1 = {L1 = 1, L2 = 131072: FCM3[4], FCM1[4]}; 
64-Bit Field 2 = {L1 = 65536, L2 = 131072: DFCM3[4], DFCM1[2], FCM1[4], 

LV[4]}; 
PC = Field 1; 

Figure 9: TCgen(B) specification. 

 

Since TCgen(B) includes more predictors, one might 

expect it to compress better but be slower.  However, this 

is only partially true because of the complex interaction 

with the post-compression stage.  For instance, using 
more predictors will result in better compression in the 

first stage, but will also emit more distinct predictor 

codes, possibly making it harder for the post-compressor 

to be effective. 

 

Table 3: Harmonic-mean performance of TCgen(A) and 
TCgen(B). 

A B A B A B

store addresses 142.9 132.2 26.0 23.6 7.5 5.4

cache miss addresses 18.6 19.1 11.8 11.7 4.2 4.4

load values 23.0 23.7 14.4 13.5 5.4 3.4

trace
compr. rate decompr. speed compr. speed

 

 

As Table 3 shows, TCgen(B) yields a 2% and 3% 
higher compression rate on the cache-miss-address and 

the load-value traces, respectively, but TCgen(A) is 8% 

more effective on the store-address traces.  Similarly, 

TCgen(B)’s compression speed is 6% faster on the cache-

miss-address traces, but TCgen(A) is 37% faster on the 

store-address and 57% faster on the load-value traces.  
Only the decompression speed is uniformly faster with 

TCgen(A) (by 1% to 10%). 

These results show that TCgen’s performance is rela-

tively insensitive to the exact predictor choice.  In fact, 

TCgen(B), a rather generic configuration, performs only 
slightly worse than TCgen(A), a configuration that is the 

result of manual fine tuning [3].  We take this as indica-

tion that TCgen will produce a high-performance com-

pressor with any reasonable predictor specification.  Note 

that, on average, TCgen(B)’s compression rate exceeds 

that of the other compression algorithms we tested, its 
decompression speed is higher (except for VPC3’s on the 

store-address and load-value traces and SBC’s on the 

cache-miss-address traces), and its compression speed is 

faster (except for VPC3’s on the store-address and load-

value traces).  Given these results, we recommend that 

TCgen users start with a trace specification that covers a 
wide range of predictors and then eliminate the useless 

predictors as determined by the predictor usage informa-

tion output after each compression. 

In fact, the above approach could be used to optimize 

the predictor selection for each trace individually.  Doing 

so would require the inclusion of the predictor configura-
tion in the compressed trace so that a suitable decompres-

sor can be generated when a trace needs to be read.  This 

would incur an overhead of a few tens of bytes and about 

a second of CPU time to synthesize and compile the de-

compressor, for which the resulting higher compression 
rate and decompression speed should easily compensate. 

 

8. Conclusions 

This paper describes the code-generation and optimiza-

tion process and evaluates the performance of TCgen, a 

tool that automatically synthesizes trace compressors 

from user-provided trace descriptions.  Based on a variety 

of traces from the SPECcpu2000 benchmark suite, we 

have shown the generated code to be faster and to com-
press better on average than BZIP2, MACHE, PDATS II, 

SBC, SEQUITUR, and VPC3.  In other words, the auto-

matically generated code typically outperforms hand-

crafted and optimized code.  Note that all of the algo-

rithms we compared our approach with, which include the 

best trace compressors from the current literature, have to 
be re-implemented every time the trace format changes.  

TCgen users, on the other hand, merely have to provide a 

new format description, expressed in a simple specifica-

tion language, and a highly optimized compressor will be 

generated in about a second.  Based on its ease of use, 
flexibility, performance, and portability, we believe 

TCgen to be a useful tool for trace-based research and 

teaching environments.  TCgen is freely available at 

http://www.csl.cornell.edu/~burtscher/research/TCgen/. 
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