
MPC: A Massively Parallel Compression Algorithm for Scientific Data

Annie Yang, Hari Mukka, Farbod Hesaaraki, and Martin Burtscher

Department of Computer Science

Texas State University

San Marcos, TX 78666
{ayang, mmsanthuhari, hesaaraki, burtscher}@txstate.edu

Abstract—Due to their high peak performance and energy effi-

ciency, massively parallel accelerators such as GPUs are

quickly spreading in high-performance computing, where large

amounts of floating-point data are processed, transferred, and

stored. Such environments can greatly benefit from data com-

pression if done sufficiently quickly. Unfortunately, most con-

ventional compression algorithms are unsuitable for highly

parallel execution. In fact, it is generally unknown how to de-

sign good compression algorithms for massively parallel sys-

tems. To remedy this situation, we study 138,240 lossless com-

pression algorithms for single- and double-precision floating-

point values that are built exclusively from easily parallelizable

components. We analyze the best of these algorithms, explain

why they compress well, and derive the Massively Parallel

Compression (MPC) algorithm from them. This novel algo-

rithm requires almost no internal state, achieves heretofore un-

reached compression ratios on several data sets, and roughly

matches the best CPU-based algorithms in compression ratio

while outperforming them by one to two orders of magnitude
in throughput.

Keywords - Lossless data compression; floating-point compres-

sion; massively parallel architectures; algorithm design; GPUs

I. INTRODUCTION

HPC cluster applications often process and transfer large
amounts of floating-point data. For example, many simula-
tions exchange data between compute nodes and with mass-
storage devices after every time step. Most HPC programs
retrieve and store large data sets, some of which may have to
be sent to other locations for additional processing, analysis,
or visualization. Furthermore, scientific programs often save
checkpoints at regular intervals.

Compression can reduce the amount of data that needs to
be transmitted and/or stored. However, if the overhead lowers
the effective throughput, compression will not be used in the
performance-centric HPC domain. Hence, the challenge is to
maximize the compression ratio while meeting or exceeding
the available transfer bandwidth. In other words, the com-
pression and decompression have to be done in real time.
Moreover, the compression should be lossless and single
pass. Intermediate program results that are exchanged be-
tween compute nodes, for example, generally cannot be
lossy. A single-pass algorithm is needed so that the data can

be compressed and decompressed in a streaming fashion as
they are being generated and consumed, respectively.

Some compression algorithms are asymmetric, meaning
that compression takes much longer than decompression.
This is useful in situations where data are compressed once
and decompressed many times. However, this is not the case
for checkpoints, which are almost never read, nor for inter-
mediate program results that are compressed to boost the
transmission speed between compute nodes, between accel-
erators and hosts, or between compute nodes and storage de-
vices. Thus, we focus on symmetric algorithms in this paper.

Massively parallel compute GPUs are quickly spreading
in HPC environments to accelerate calculations as GPUs not
only provide much higher peak performance than multicore
CPUs but are also more cost and energy efficient. However,
utilizing GPUs for data compression is difficult because com-
pression algorithms typically compress data based on infor-
mation from previously processed words. This makes com-
pression and decompression data-dependent operations that
are difficult to parallelize. Thus, most of the relatively few
parallel compression approaches from the literature simply
break the data up into chunks that are compressed inde-
pendently using a serial algorithm. However, this technique
is not suitable for massively parallel hardware. First, the data
would have to be broken up into hundreds of thousands of
small chunks, at least one per thread, thus possibly losing
much of the history needed to compress the data well. Second
and more importantly, well-performing serial compression
algorithms generally require a large amount of internal state
(e.g., predictor tables or dictionaries), making it infeasible to
run tens of thousands of them in parallel. As a consequence,
the research community does not yet possess a good under-
standing of how to design effective compression algorithms
for highly parallel machines.

At a high level, most data compression algorithms com-
prise two main steps, a data model and a coder. Roughly
speaking, the goal of the model is to accurately predict the
data. The residual (i.e., the difference) between each actual
value and its predicted value will be close to zero if the model
is accurate for the given data. This residual sequence of val-
ues is then compressed with the coder by mapping the resid-
uals in such a way that frequently encountered values or pat-
terns produce shorter output than infrequently encountered
data. The reverse operations are performed to decompress the

data. For instance, an inverse model takes the residual se-
quence as input and regenerates the original values as output.

To systematically search for effective and massive-paral-
lelism-friendly compression algorithms, we synthesized a
large number of compressors and their corresponding decom-
pressors using the following approach. We started with a de-
tailed study of previously proposed floating-point compres-
sion algorithms, broke them down into their constituent parts,
rejected all parts that could not be parallelized well, and gen-
eralized the remaining parts as much as possible. This yielded
a number of algorithmic components for building data mod-
els and coders. We then implemented each component using
a common interface, i.e., each component can be given a
block of data as input, which it transforms into an output
block of data. This makes it possible to chain the compo-
nents, allowing us to generate a vast number of compression-
algorithm candidates from a given set of components. Note
that each component comes with an inverse that performs the
opposite transformation. Thus, for any chain of components,
which represents a compression algorithm, we can synthesize
the matching decompressor. Figure 1 illustrates this approach
on the example of the four components named LNV6s, BIT,
LNV1s, and ZE that make up the 6D version of our Massively
Parallel Compression (MPC) algorithm.

Figure 1. The four chained components that make up the six-dimensional

MPC compression algorithm along with the corresponding four inverse

components that make up the decompression algorithm

We use exhaustive search to determine the most effective
compression algorithms that can be built from the available
components. Limiting the components to those that can ex-
ploit massively parallel hardware guarantees that all of the
compressors and decompressors synthesized in this way are,
by design, GPU-friendly.

Since floating-point computations are prevalent on highly
parallel machines and floating-point data tend to be difficult
to compress, we decided to target this domain. In particular,

we implemented 24 highly parallel components in the CUDA
C++ programming language for GPUs and employed our ap-
proach on single- and double-precision versions of 13 real-
world data sets. Based on a detailed analysis and generaliza-
tion of the best four-stage compression algorithms we found
for each data set as well as the best overall algorithm, we were
able to derive the MPC algorithm that works well on many
different types of floating-point data.

MPC treats double- and single-precision floating-point
values as 8- or 4-byte integers, respectively, and exclusively
uses integer instructions for performance reasons as well as
to avoid the possibility of floating-point exceptions or round-
ing inaccuracies. This means that positive and negative zeros
and infinities, not-a-number (NaN), denormals, and all other
possible floating-point values are fully supported.

The first stage of MPC subtracts the nth prior value from
the current value to produce a residual sequence, where n is
the dimensionality of the input data. The second stage rear-
ranges the residuals by bit position, i.e., it emits all the most
significant bits of the residuals packed into words, followed
by the second-most significant bits, and so on. The third stage
computes the residual of the consecutive words holding these
bits. The fourth stage compresses the data by eliminating zero
words. The precise operation of MPC, how it was derived,
and why it works well are explained in Sections 4.D and 5.A.

MPC is quite different from the floating-point compres-
sion algorithms in the current literature. In particular, it re-
quires almost no internal state, making it suitable both for a
massively parallel software implementation as well as for a
hardware implementation. On several of the studied data sets,
MPC outperforms the general-purpose compressors bzip2,
gzip, and lzop as well as the special-purpose compressors
pFPC and GFC by up to 33% in compression ratio. Through-
put evaluations show our CUDA implementation running on
a single K40 GPU to be faster in all cases than even the par-
allel pFPC code running on twenty high-end Xeon CPU
cores. Moreover, the double-precision throughput of MPC
exceeds that of the PCI-Express bus linking the GPU to the
CPU in our system, making real-time compression possible
for results that are computed on a GPU before they are trans-
ferred to the host or the network interface card (NIC), and
making real-time decompression possible of compressed data
that are streamed to the GPU from the CPU or the NIC.

This paper makes the following main contributions.

 It presents the MPC lossless compression algorithm for
single- and double-precision floating-point data that is
suitable for massively parallel execution.

 It systematically evaluates 138,240 combinations of
components to determine well-performing compres-
sion algorithms within the given search space.

 It analyzes the chains of components that work well to
gain insight into the design of effective parallel com-
pression algorithms and to predict how to adapt them
to other data sets.

 It describes previously unknown algorithms that com-
press several real-world scientific numeric data sets
significantly better than prior work.

 It demonstrates that, in spite of substantial constraints,
MPC’s compression ratios rival those of the best CPU-

based compressors while yielding much higher
throughputs than (multicore) CPU-based compressors.

 It makes the CUDA implementation of MPC available
at http://cs.txstate.edu/~burtscher/research/MPC/.

The rest of this paper is organized as follows. Section II
describes contemporary GPU architecture and why it is more
difficult to implement compression algorithms on such hard-
ware than on CPUs. Section III summarizes related work.
Section IV provides an overview of the system, the floating-
point data sets, and the algorithmic components we use for
our evaluation. Section V presents the MPC algorithm and
discusses its performance. Section VI concludes the paper.

II. GPU ARCHITECTURE

This section provides a brief overview of the architectural
characteristics of the Kepler-based Tesla K40 compute GPU
we use and explains the features that make it difficult to im-
plement compression algorithms on such a massively parallel
device. CUDA programs require hierarchical parallelization
across threads as well as across thread blocks of up to 1024
threads. The K40 consists of 15 streaming multiprocessors
(SMs) to which the thread blocks are mapped. Each SM con-
tains 192 processing elements (PEs) for executing the
threads. Whereas each PE can run an individual thread of in-
structions, sets of 32 PEs are tightly coupled and must either
execute the same instruction (operating on different data) in
the same cycle or wait. The corresponding sets of 32 coupled
threads are called warps. Warps in which not all threads can
execute the same instruction are subdivided by the hardware
into sets of threads such that all threads in a set execute the
same instruction. The individual sets are serially executed,
which is called branch divergence, until they re-converge. To
maximize performance, branch divergence has to be avoided,
but it is generally difficult to implement compression algo-
rithms in a manner such that sets of 32 threads always follow
the same control flow.

The K40’s memory subsystem is also built for warp-
based processing. If the threads in a warp simultaneously ac-
cess words in main memory that lie in the same aligned 128-
byte segment, the hardware merges the 32 reads or writes into
one coalesced memory transaction that is as fast as accessing
a single word. Warps accessing multiple 128-byte segments
result in correspondingly many individual memory transac-
tions that are executed serially. Hence, uncoalesced accesses
are slower, but it is unclear how to write compression algo-
rithms such that sets of 32 threads always access words from
the same 128-byte segment.

III. RELATED WORK

A. Floating-Point Compressors

This section summarizes related work on lossless float-
ing-point compression. We extracted the basic idea behind
many of our algorithmic components from these papers.

Lindstrom and Isenburg discuss real-time compression of
floating-point grid data for speeding up I/O operations [1].
They use a Lorenzo predictor and map reals to unsigned inte-
gers. We also exclusively use integer representation and op-
erations in MPC.

Burtscher and Ratanaworabhan’s FPC algorithm targets
double-precision values [2]. It predicts the integer interpreta-
tion of the 64-bit values using an FCM and a DFCM predic-
tor. The two predictions are XORed with the true value. The
result with more leading zeros is compressed using leading-
zero byte counts. The authors also published a parallel ver-
sion of their compression algorithm, called pFPC [3], with
which we compare our approach in the result section. We did
not include the FCM and DFCM predictors in our study be-
cause they require large tables, which is problematic in a mas-
sively parallel implementation where every thread would
need such a table. However, we adopted the XOR idea.

Chen et al.’s work orders grid points of tetrahedral vol-
ume data to improve compressibility [4]. Their approach sep-
arates the “signed exponent” from the mantissa values. We
include a similar component that groups the various bit posi-
tions from adjacent values so that all the sign bits, exponent
bits, etc. can be compressed together.

Bicer et al. describe a framework that XORs values and
leading-zero compresses the results [5]. As it operates at bit
granularity, their approach works for both single- and double-
precision data. The data are split into chunks, which are com-
pressed independently. MPC also supports both single- and
double-precision data and uses independent data chunks.
However, each chunk is assigned to a different thread block
in the GPU and all the threads in a block cooperatively com-
press and decompress the chunk.

Filgueira et al. focus on runtime compression of MPI
messages, including floating-point messages [6]. They found
lzop to work best on their synthetic integer and floating-point
data that include a significant number of zeros because lzop
is very fast. The user can select which compression algorithm
to use for which data type. A later paper describes an exten-
sion that dynamically selects the most appropriate algorithm
based on data type, including none for short messages [7].
Our approach is orthogonal to theirs and can be used to find
good compression algorithms for various data types.

Schendel et al. introduce a pre-compression tool that im-
proves the performance of general-purpose compressors on
double-precision floating-point data. Their approach ana-
lyzes the compressibility of the data at byte-level granularity,
determines the best compressor for the job and then identifies
and removes hard-to-compress sections before piping the re-
maining data to the compressor [8]. Our approach searches
for the best algorithms at word and byte granularity and pro-
duces standalone compression algorithms.

B. Floating-Point Compression on GPUs

There exists little prior work on GPU-based lossless float-
ing-point compression. Balevic et al. designed a block-paral-
lel arithmetic coder for post-processing scientific simulation
data directly on the GPU before transfer back to the CPU [9].
Their approach achieved significant storage savings, but the
compression overhead outweighed the resulting time savings.

Later, Balevic presented an algorithm for GPUs that is
based on Huffman coding and that exploits atomic operations
to enable variable-length code-word writes [10]. It relies on a
parallel prefix scan to compute output positions. Several of
our components also rely on prefix scans for parallelization.

O’Neil and Burtscher describe the GFC compression al-
gorithm for GPUs [11]. We include this algorithm in our eval-
uation. GFC breaks up the data into chunks that are com-
pressed independently by different warps. Our components
work at the coarser granularity of thread blocks to retain
larger “windows” of data, which greatly improves the result-
ing compression ratio.

Ozsoy and Swany implement LZSS for the GPU [12].
They achieve good speedups compared to serial LZSS imple-
mentations. However, their approach does not specifically
target scientific data. LZSS also differs from MPC in that it
requires tables and features a smaller window size.

While not targeting floating-point compression, the work
by Patel et al. is related in so far as it also investigates the
components of a compression algorithm and how to imple-
ment them efficiently on GPUs [13]. In particular, they study
how to port BWT, MTF, and Huffman coding, which are the
main components of the bzip2 algorithm. They found that
none of these components are conducive to GPU paralleliza-
tion, which demonstrates the need to find new algorithms.

C. Generating Compression Algorithms

Burtscher and Sam present TCgen, a tool that automati-
cally generates customized trace compressors [14]. The user
has to select one or more predictors for compression. TCgen
then translates this description into C source code and opti-
mizes it for the specified trace format and predictors. We use
many more components in our study, including non-predictor
components, all of which could be used to build a similar tool.

Kattan and Poli propose a system that employs genetic
programming to find optimal ways to combine standard com-
pression algorithms [15]. They group similar data chunks to-
gether and label each group with the best compression algo-
rithm for its chunks. We also combine components. How-
ever, their components represent entire compression algo-
rithms whereas our components are finer grained and repre-
sent parts of a compression algorithm.

Hsu and Zwarico describe an automatic synthesis tech-
nique for compressing heterogeneous files [16]. Each chunk
of data is compressed using a different algorithm, which is
determined using a statistical method. A compression history,
required for decompression, is automatically generated and
added in this phase. MPC only needs to record a single bit for
the word size and a few bits for the dimensionality.

Fang et al.’s work is probably the closest to our approach.
They investigate how to compress database information us-
ing GPUs to overcome the transfer overhead [17]. They em-
ploy a compression planner along with a cost model of their
GPU to identify an optimal combination among nine different
compression schemes. They use a rule-based method to auto-
matically prune the search space. Our approach could benefit
from their pruning techniques, but the results would no longer
be guaranteed to be optimal within the search space. Also,
they use fewer components and, as in Kattan and Poli’s work,
each component is an entire compression algorithm.

Note that chaining whole compression algorithms, as
done in the above related works, is fundamentally different
from chaining algorithmic components to build a compres-
sion algorithm, which is what we do. After all, the goal of a
compression algorithm is to maximally reduce the number of
bytes, which generally means that there are few exploitable

patterns left in the output. This makes it difficult for the next
compression algorithm in a chain to be effective. Our ap-
proach does not suffer from this problem. In fact, most of the
algorithmic components we use do not reduce the number of
bytes at all but transform the data to better expose patterns.

IV. METHODOLOGY

A. System and Compilers

We evaluated the tested compressors on one node of the
Maverick supercomputer at the Texas Advanced Computing
Center. Each compute node of Maverick contains two 10-
core Intel Xeon E5-2680 v2 Ivy Bridge processors running at
2.8 GHz and 128 GB of main memory. The operating system
is CentOS 6.4. We used the icc compiler version 14.0.1 with
“-O3 -xhost -pthread” for the CPU implementations.

Each compute node further contains an Nvidia K40 GPU.
It has 15 streaming multiprocessors with a total 2880 CUDA
cores running at 745 MHz and 12 GB of global memory. We
used nvcc version 6.0 with the “-O3 -arch=sm_35” flags to
compile the GPU codes.

B. Measuring Throughput

For all special-purpose floating-point compressors, the
timing measurements are performed by adding code to read a
timer before and after the compression and decompression
code sections and recording the difference. For the general-
purpose compressors, we measure the runtime of compres-
sion and decompression when reading the input from a disk
cache in main memory and writing the output to /dev/null. In
the case of GPU code, we exclude the time to transfer the data
to or from the GPU as we assume the data to have been pro-
duced there or to be needed there. Each experiment was con-
ducted three times and the median throughput is reported.
However, the three measured throughputs were very similar
in all cases. The decompressed results are always compared
to the original data to verify that every bit is identical.

C. Data Sets

We use the 13 FPC data sets for our evaluation [2]. Each
data set consists of a binary sequence of IEEE 754 double-
precision floating-point values. They include MPI messages
(msg), numeric results (num), and observational data (obs).

MPI messages: These five datasets contain the numeric
messages sent by a node in a parallel system running NAS
Parallel Benchmark (NPB) and ASCI Purple applications.

 msg_bt: NPB computational fluid dynamics pseudo-
application bt

 msg_lu: NPB computational fluid dynamics pseudo-
application lu

 msg_sp: NPB computational fluid dynamics pseudo-
application sp

 msg_sppm: ASCI Purple solver sppm

 msg_sweep3d: ASCI Purple solver sweep3d

Numeric simulations: These four datasets are the result of
numeric simulations.

 num_brain: simulation of the velocity field of a human
brain during a head impact

 num_comet: simulation of the comet Shoemaker-Levy
9 entering Jupiter’s atmosphere

 num_control: control vector output between two mini-
mization steps in weather-satellite data assimilation

 num_plasma: simulated plasma temperature evolution
of a wire array z-pinch experiment

Observational data: These four datasets comprise meas-
urements from scientific instruments.

 obs_error: data values specifying brightness tempera-
ture errors of a weather satellite

 obs_info: latitude and longitude information of the ob-
servation points of a weather satellite

 obs_spitzer: data from the Spitzer Space Telescope
showing a slight darkening as an extrasolar planet dis-
appears behinds its star

 obs_temp: data from a weather satellite denoting how
much the observed temperature differs from the actual
contiguous analysis temperature field

TABLE I. INFORMATION ABOUT THE DOUBLE-PRECISION DATA SETS

Table I provides pertinent information about each data

set. The first two data columns list the size in megabytes and
in millions of double-precision values. The middle column
shows the percentage of values that are unique. The fourth
column displays the first-order entropy of the values in bits.
The last column expresses the randomness of each data set in
percent, i.e., it reflects how close the first-order entropy is to
that of a truly random data set with the same number of
unique values. For the single-precision experiments, we
simply converted the double-precision data sets.

D. Algorithmic Components

We tested the following algorithmic components in our
experiments. They are generalizations or approximations of
components extracted from previously proposed compres-
sion algorithms. Each component takes a block of data as in-
put, transforms it, and outputs the transformed block.

The input data are broken down into fixed-size chunks.
Each chunk is assigned to a thread block for parallel pro-
cessing. We chose 1024-element chunks to match the maxi-
mum number of threads per thread block in our GPU.

The NUL component simply outputs the input block. Its
purpose will be explained below. The INV component flips
all the bits. The BIT component breaks a block of data into
chunks and then emits the most significant bit of each word
in the chunk, followed by the second most significant bits,

and so on. The DIMn component also breaks the blocks into
chunks and then rearranges the values in each chunk such that
the values from each dimension are grouped together. For ex-
ample, DIM2 emits all the values from the even positions first
and then all the values from the odd positions. We tested the
dimensions n = 2, 3, 4, 5, 8, 16, and 32. The LNVns compo-
nent uses the nth prior value in the same chunk as a prediction
of the current value, subtracts the prediction from the current
value, and emits the residual. The LNVnx component is iden-
tical except it XORs the prediction with the current value to
form the residual. In both cases, we tested n = 1, 2, 3, 5, 6,
and 8. Note that all of the above components transform the
data blocks without changing their size. The following two
components are the only ones that can actually reduce the
length of a data block. The ZE component outputs a bitmap
for each chunk that specifies which values in the chunk are
zero. The bitmap is followed by the non-zero values. The
RLE component performs run-length encoding, i.e., it re-
places repeating values by a count and a single copy of the
value. Each component has a corresponding inverse that per-
forms the opposite transformation for decompression.

Since it may be more effective to operate at byte rather
than word granularity, we also include the singleton pseudo
component “│”, which we call the cut, that converts a block
of words into a block of bytes through type casting (i.e., no
computation is necessary). As a result, we need three versions
of each component and its inverse, one for double-precision
values (8-byte words), one for single-precision values (4-byte
words), and one for byte values. Each component operates on
an integer representation of the floating-point data, i.e., the
bit pattern representing the floating-point value is copied ver-
batim into an appropriately sized integer variable.

We chose this limited number of components because we
only included components that we could implement in a mas-
sively parallel manner. Nevertheless, as the results in the next
section show, very effective compression algorithms can be
created from these components. In other words, the sophisti-
cation and effectiveness of the ultimate algorithm is the result
of the clever combination of components, not the capability
of each individual component. This is akin to how complex
programs can be expressed through a suitable sequence of
very simple machine instructions.

We investigate all four-stage compression algorithms that
can be built from the above components. Due to the presence
of the NUL component, this includes all one-, two-, and
three-stage algorithms as well. Note that only the first three
stages can contain any one of the 24 components described
above. The last stage must contain a component that can re-
duce the amount of data, that is, either ZE or RLE. The cut
can be before the first component, in which case the data is
exclusively treated as a sequence of bytes, after the last com-
ponent, in which case the data is exclusively treated as a se-
quence of words, or between components, in which case the
data is initially treated as words and then as bytes. The five
possible locations for the cut, the 24 possible components in
each of the first three stages, and the two possible compo-
nents in the last stage results in 5*24*24*24*2 = 138,240
possible compression algorithms that we evaluate.

TABLE II. BEST FOUR-STAGE ALGORITHM FOR EACH DATA SET, FOR ALL SINGLE-PRECISION DATA SETS, AND FOR ALL DOUBLE-PRECISION DATA SETS

V. EXPERIMENTAL RESULTS

A. Synthesis Analysis and Derivation of MPC

Table II shows the four chained components and the lo-
cation of the cut that the exhaustive search found to work best
for each data set as well as across all 13 data sets, which is
denoted as “Best”. For Best, the compression ratio (CR) is the
harmonic mean over the data sets.

1) Observations about Individual Algorithms
The individual best algorithms are truly the best, i.e., the

next best algorithms compress successively worse (by a frac-
tion of a percent). Hence, it is not the case that an entire set
of algorithms performs equally well.

Whereas the last component (ignoring the cut) has to be
ZE or RLE, ZE is chosen more often. This indicates that the
earlier components manage to transform the data in a way
that generates zeros but not many zeros in a row, which RLE
would be better able to compress.

Interestingly, in most cases, the first three stages do not
include any ZE or RLE component, i.e., they do not change
the length of the data stream but transform it to make the final
stage more effective. Clearly, these non-compressing trans-
formations are very important, emphasizing that the best
overall algorithm is generally not the one that maximally
compresses the data in every stage. This also demonstrates
that chaining whole compression algorithms, as proposed in
some related work, is unlikely to yield effective algorithms.

There are several instances of DIM8 right after the cut in
the double-precision algorithms and of DIM4 right after the
cut in the single-precision algorithms. This surprised us as it
utilizes the DIM component differently than anticipated. In-
stead of employing it for multi-dimensional data sets, these
algorithms use DIM to separate the different byte positions
from each four- or eight-byte word. Note that the frequently
used BIT component serves a similar purpose but at a finer
granularity. This repurposing of the DIM component shows
that automatic synthesis is able to devise algorithms that the
authors of the components may not have foreseen.

The very frequent occurrence of BIT indicates that the in-
dividual bits of floating-point values tend to correlate more

strongly across values than within values. This might be ex-
pected as, for example, the top exponent bits of consecutive
values are likely to all be the same.

Another interesting observation is that the cut is often at
the end, i.e., it is not used. This means that the entire algo-
rithm operates at word granularity, including the Best algo-
rithm, and that there is no benefit from switching to byte gran-
ularity. This is good news because it simplifies and speeds up
the implementation as only word-granular components are
needed. NUL and INV are also not needed. Clearly, inverting
all the bits is unnecessary and algorithms with fewer than four
components (i.e., that include NUL) compress less well.

The LNV predictor component is obviously very im-
portant. Every listed algorithm includes it, and most of them
include two such components. LNV comes in two versions,
one that uses integer subtraction to form the residual and the
other that uses XOR (i.e., bitwise subtraction). Subtraction is
much more frequent, which is noteworthy as the current lit-
erature seems undecided as to which method to prefer.

In many cases, the single-precision algorithm is the same
as the corresponding double-precision algorithm, especially
when excluding the aforementioned DIM4 versus DIM8 dif-
ference immediately after the cut. This similarity is perhaps
expected since the data sets contain the same values (albeit in
different formats). However, in about half the cases, the al-
gorithms are different, sometimes substantially (e.g., on
msg_bt) and yield significantly different compression ratios.
This implies that the bits that are dropped when converting
from double to single precision benefit from different com-
pression algorithms than the remaining bits. Hence, it would
probably be advantageous if distinct algorithms were used for
compressing the bits or bytes at different positions within the
floating-point words.

2) Observations about the Best Algorithm
Focusing on the Best algorithm, which is the algorithm

shown in Figure 1, we find that the single- and double-preci-
sion data sets result in the same algorithm that maximizes the
harmonic-mean compression ratio. Hence, the following dis-
cussion applies to both formats. The most frequent pattern of
components in the individual algorithms is “LNV*s BIT

dataset CR 4-stage algorithm with cut CR 4-stage algorithm with cut

msg_bt 1.143 LNV1s BIT LNV1s ZE | 1.233 DIM5 ZE LNV6x | ZE

msg_lu 1.244 LNV5s | DIM8 BIT RLE 1.588 LNV5s LNV5s LNV5x | ZE

msg_sp 1.192 DIM3 LNV5x BIT ZE | 1.362 DIM3 LNV5x BIT ZE |

msg_sppm 3.359 DIM5 LNV6x ZE | ZE 4.828 RLE DIM5 LNV6s ZE |

msg_sweep3d 1.293 LNV1s DIM32 | DIM8 RLE 1.545 LNV1s DIM32 | DIM4 RLE

num_brain 1.182 LNV1s BIT LNV1s ZE | 1.344 LNV1s BIT LNV1s ZE |

num_comet 1.267 LNV1s BIT LNV1s ZE | 1.199 LNV1s | DIM4 BIT RLE

num_control 1.106 LNV1s BIT LNV1s ZE | 1.122 LNV1s BIT LNV1s ZE |

num_plasma 1.454 LNV2s LNV2s LNV2x | ZE 1.978 LNV2s LNV2s LNV2x | ZE

obs_error 1.210 LNV1x ZE LNV1s ZE | 1.289 LNV6s BIT LNV1s ZE |

obs_info 1.245 LNV2s | DIM8 BIT RLE 1.477 LNV8s DIM2 | DIM4 RLE

obs_spitzer 1.231 ZE BIT LNV1s ZE | 1.080 ZE BIT LNV1s ZE |

obs_temp 1.101 LNV8s BIT LNV1s ZE | 1.126 BIT LNV1x DIM32 | RLE

Best 1.214 LNV6s BIT LNV1s ZE | 1.265 LNV6s BIT LNV1s ZE |

double precision single precision

LNV1s ZE”, where the star represents a digit. Consequently,
it is not surprising that the Best algorithm also follows this
pattern. It is interesting, however, that Best uses a “6” in the
starred position even though, with one exception, none of the
individual algorithms do. We believe that the exhaustive
search selected a six because six is the least common multiple
of one, two, and three, all of which occur more often than six.
In other words, the first component tries to predict each value
using a similar prior value, which is best done when looking
back n positions, where n is the least common multiple of the
dimensionality of the various data sets. Hence, it is likely that
larger n will work better, but we only tested up to n = 8.

With this in mind, we can now explain the operation of
the Best algorithm. The job of the LNV6s component is to
predict each value using a similar prior value to obtain a re-
sidual sequence with many small values. Since not all bit po-
sitions are equally predictable (e.g., the most significant ex-
ponent bits are more likely than the other bits to be predicted
correctly and to therefore be zero in the residual sequence), it
is beneficial to group bits from the same bit position together,
which is what the BIT component does. The resulting se-
quence of values apparently contains consecutive “words”
that are identical, which the LNV1s component turns into ze-
ros. The ZE component then eliminates these zeros.

3) Derivation of the MPC Algorithm
With this insight, a good compression algorithm for float-

ing-point data can be derived by adapting the first component
to the dimensionality of the data set and keeping the other
three components fixed. We named the resulting algorithm
MPC for “Massively Parallel Compressor”. It is based on the
aforementioned “LNV*s BIT LNV1s ZE” pattern but uses
the data-set dimensionality in the starred location. Note that
we obtained the same pattern when using cross-validation,
i.e., when excluding one of the inputs. MPC is identical to the
best algorithm the exhaustive search found for several of the
studied data sets. Even better, in cases where the actual di-
mensionality is above eight, MPC yields compression ratios
exceeding those of the Best algorithm (cf. the Best results in
Table II vs. the MPC results in Tables III and IV), which val-
idates our generalization of the Best algorithm.

B. Compression Ratios

Tables III and IV show the compression ratios on the dou-
ble- and single-precision data sets, respectively, for the gen-
eral-purpose compressors bzip2, gzip, and lzop, the special-
purpose floating-point compressors pFPC and GFC (they
only support double precision), and for MPC. The highest
compression ratio for each data set is highlighted in the ta-
bles. Since we want to maximize the compression ratio, we
selected the command-line flags that result in the highest
compression ratio where possible. For GFC and MPC, we
specify the true data-set dimensionality on the command line.

GFC and MPC are parallel GPU implementations. pFPC
is a parallel CPU implementation. The remaining compres-
sors are serial CPU implementations.

All of the tested algorithms except lzop and GFC com-
press at least one data set best. MPC delivers the highest com-
pression ratio on 5 double-precision and 8 single-precision
data sets. This is a rather surprising result given that MPC is
“handicapped” by being constrained to only utilize GPU-
friendly components that retain almost no internal state. Only
pFPC with 1-million-entry tables matches MPC in the num-
ber of data sets (5) on which it yields the highest compression
ratio. However, MPC not only requires much less memory
but also supports single-precision data, which pFPC does not.
In fact, the pFPC algorithm is not suitable for a single-preci-
sion implementation.

MPC is clearly superior to lzop and GFC, both of which
it outperforms on almost every data set in terms of compres-
sion ratio. Moreover, GFC also does not support single-pre-
cision data. pFPC and bzip2 outperform MPC on average.
However, this is only the case because of two data sets,
msg_sppm and num_plasma, on which they yield much
higher compression ratios than MPC.

Most of the double-precision data sets are less compress-
ible than the single-precision data sets. This is expected as the
least significant mantissa bits tend to be the most random in
floating-point values and many of those bits are dropped
when converting from double to single precision.

TABLE III. COMPRESSION RATIOS ON THE DOUBLE-PRECISION DATA SETS

TABLE IV. COMPRESSION RATIOS ON THE SINGLE-PRECISION DATA SETS

HarMean msg_bt msg_lu msg_sp msg_sppm msg_sweep3d num_brain num_comet num_control num_plasma obs_error obs_info obs_spitzer obs_temp

bzip2 --best 1.321 1.088 1.018 1.055 6.933 1.294 1.043 1.173 1.029 5.789 1.339 1.217 1.752 1.024

gzip --best 1.239 1.130 1.055 1.107 7.431 1.092 1.064 1.162 1.058 1.608 1.448 1.154 1.231 1.036

lzop -9 1.158 1.052 1.000 1.003 6.780 1.017 1.000 1.082 1.017 1.503 1.273 1.096 1.142 1.000

pFPC -1M 1.365 1.250 1.137 1.238 4.710 1.888 1.148 1.151 1.038 7.042 1.542 1.215 1.022 0.997

GFC 1.179 1.122 1.148 1.202 3.506 1.217 1.090 1.110 1.013 1.125 1.233 1.141 1.022 1.037

MPC 1.248 1.207 1.212 1.208 2.999 1.287 1.182 1.267 1.106 1.164 1.180 1.214 1.184 1.101

HarMean msg_bt msg_lu msg_sp msg_sppm msg_sweep3d num_brain num_comet num_control num_plasma obs_error obs_info obs_spitzer obs_temp

bzip2 --best 1.398 1.129 1.041 1.141 8.741 2.355 1.113 1.117 1.043 8.652 1.338 1.327 1.394 1.049

gzip --best 1.267 1.179 1.086 1.200 9.605 1.151 1.128 1.151 1.080 1.383 1.466 1.200 1.188 1.079

lzop -9 1.153 1.075 1.000 1.083 8.634 1.033 1.003 1.086 1.016 1.223 1.246 1.129 1.077 1.000

MPC 1.350 1.336 1.440 1.385 3.813 1.534 1.344 1.178 1.122 1.345 1.298 1.436 1.047 1.114

C. Compression and Decompression Speed

Table V lists the average throughput in gigabytes per sec-
ond on the 13 data sets for all tested compressors. As stated
before, GFC and pFPC do not support single-precision data.

TABLE V. AVERAGE COMPRESSION AND DECOMPRESSION

THROUGHPUT IN GIGABYTES PER SECOND

lzop is the fastest CPU-based algorithm at decompres-
sion, but it is still three to four times slower than MPC. gzip
is the fastest general-purpose compression CPU-based algo-
rithm at compression, but it is hundreds of times slower than
MPC. Thus, MPC not only compresses better than these al-
gorithms but also greatly outperforms them in throughput.

pFPC, the overall best implementation in terms of com-
pression ratio (on the double-precision data), is 7.5 times
slower when running on 20 CPU cores than MPC. Yet, MPC
compresses nearly as well. GFC is the fastest tested imple-
mentation (on the double-precision data sets). It is three to
four times faster than MPC, which is expected as GFC is es-
sentially a two-component algorithm that does not require
prefix sums. Recall, however, that GFC compresses poorly.

The double-precision throughput of MPC far exceeds that
of the PCI-Express bus linking the GPU to the CPU in our
system, making real-time compression and decompression
possible. The single-precision compression throughput ap-
proximately matches the PCI throughput, but decompression

is a little slower. Note, however, that the evaluated MPC im-
plementation is synthesized from general component code
that is not optimized for this particular algorithm.

D. Component Count

Figure 2 illustrates by how much the compression ratio is
lowered when reducing the number of chained components
on the double-precision data sets. The bars marked “Best” re-
fer to the single algorithm that yields the highest harmonic-
mean compression ratio over all thirteen data sets. All other
bars refer to the best algorithm found using exhaustive search
for each individual data set. The single-precision results are
not shown as they are qualitatively similar.

Except on two data sets, a single component suffices to
reach roughly 80% to 90% of the compression ratio achieved
with four components. Moreover, the increase in compres-
sion ratio when going from one to two stages is generally
larger than going from two to three stages, which in turn is
larger than going from three to four stages. In other words,
the improvements start to flatten out, indicating that large
numbers of stages are unlikely to yield much higher compres-
sion ratios (and would be slower) than the presented four-
stage results. Note that, due to the presence of the NUL com-
ponent, the algorithms that can be created with a larger num-
ber of stages represent a strict superset of the algorithms that
can be created with fewer stages. As a consequence, the re-
sults in Figure 2 monotonically increase with more stages.

VI. SUMMARY, CONCLUSIONS & FUTURE WORK

The goal of this work is to determine whether effective
algorithms exist for floating-point data compression that are
suitable for massively parallel architectures. To this end, we
evaluated 138,240 possible combinations of 24 GPU-friendly
algorithmic components to find the best four-stage algorithm
for each tested data set as well as the best algorithm for all
thirteen data sets together, both for single- and double-preci-

Figure 2. Best exhaustive-search-based double-precision compression ratios with 1, 2, and 3 stages relative to the best compression ratios with 4 stages; the

y axis does not start at zero; the cut-off bar for msg_sppm reaches 0.4

compr. decom. compr. decom.

bzip2 --best 0.01 0.02 0.01 0.02

gzip --best 0.02 0.15 0.03 0.15

lzop -9 0.01 1.93 0.01 1.43

pFPC -1M 1.43 1.05 n/a n/a

GFC 32.28 31.47 n/a n/a

MPC 10.78 7.91 5.81 4.23

single precisiondouble precision

sion representation. This study resulted in well-performing
algorithms that have never before been described. A detailed
analysis thereof yielded important insight that helped us un-
derstand why and how these automatically synthesized algo-
rithms work. This, in turn, enabled us to make predictions as
to which algorithms will likely work well on other data sets,
which ultimately led to our MPC algorithm. It constitutes a
generalization of the best algorithms we found using exhaus-
tive search and requires only two generally known parame-
ters about the input data: the word size (single- or double-
precision) and the dimensionality.

It rivals the compression ratios of the best CPU-based al-
gorithms, which is surprising because MPC is limited to us-
ing only algorithmic components that can be easily parallel-
ized and that do not use much internal state. In contrast, some
of the CPU compressors we tested utilize megabytes of inter-
nal state per thread. We believe the almost stateless operation
of MPC make it a great algorithm for any highly parallel com-
pute device as well as for FPGAs and hardware implementa-
tions, for instance in a network interface card.

Our open-source implementation of MPC, which is avail-
able at http://cs.txstate.edu/~burtscher/research/MPC/,
greatly outperforms all other tested algorithms that compress
similarly well, both in compression and in decompression
throughput. Moreover, the throughput is, in most cases, suf-
ficient for real-time compression/decompression of data
transmitted over the PCIe bus.

Clearly, highly parallel, effective compression algorithms
for floating-point data sets exist. Determining whether this is
also the case for other types of data is important future work.
To boost the throughput of MPC, we intend to replace the
synthesized, component-based implementation with a tai-
lored and tuned CUDA implementation. Should that not be
enough to match the PCI throughput even for single-precision
data, we may design a faster three-component algorithm that
compresses a little less. To further improve the compression
ratio, especially on the two data sets where other algorithms
perform significantly better, we will try to add other GPU-
friendly algorithmic components.

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science
Foundation under grants 1141022, 1217231, 1406304, and
1438963, a REP grant from Texas State University, and
grants and gifts from NVIDIA Corporation. The authors
acknowledge the Texas Advanced Computing Center for
providing the HPC resources used in this study.

REFERENCES

[1] P. Lindstrom and M. Isenburg. “Fast and Efficient Compres-
sion of Floating-Point Data.” IEEE Transactions on Visuali-
zation and Computer Graphics, 12(5):1245-1250. 2006.

[2] M. Burtscher and P. Ratanaworabhan. “FPC: A High-Speed
Compressor for Double-Precision Floating-Point Data.”
IEEE Transactions on Computers, 58(1):18-31. 2009.

[3] M. Burtscher and P. Ratanaworabhan. “pFPC: A Parallel
Compressor for Floating-Point Data.” Data Compression
Conference, pp. 43-52. 2009.

[4] D. Chen, Y.-J. Chiang, N. Memon, and X. Wu. “Lossless
Geometry Compression for Steady-state and Time-varying
Irregular Grids.” IEEE Symposium on Visualization, pp. 275-
282. 2006.

[5] T. Bicer, J. Yiny, D. Chiuz, G. Agrawal, and K. Schuchardt.
“Integrating Online Compression to Accelerate Large-Scale
Data Analytics Applications.” International Parallel and
Distributed Processing Symposium. 2013.

[6] R. Filgueira, D.E. Singh, A. Calderón, and J. Carretero.
“CoMPI: Enhancing MPI-based Applications Performance

and Scalability Using Run-Time Compression.”
EUROPVM/MPI. 2009.

[7] R. Filgueira, D.E. Singh, J. Carretero, A. Calderón, and F.

Garcia. “Adaptive-CoMPI: Enhancing MPI-based Applica-
tions - Performance and Scalability by using Adaptive Com-
pression.” International Journal of High Performance Com-
puting Applications, 25(1):93-114. 2011.

[8] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C. S. Chang, S-H.
Ku, S. Ethier, S. Klasky, R. Latham, R. B. Ross, and N. F.
Samatova. “ISOBAR Preconditioner for Effective and High-
throughput Lossless Data Compression.” 28th Annual IEEE
International Conference on Data Engineering (ICDE), pp.
138-149. 2012.

[9] A. Balevic, L. Rockstroh, M. Wroblewski, and S. Simon.
“Using Arithmetic Coding for Reduction of Resulting Simu-
lation Data Size on Massively Parallel GPGPUs.” 15th Euro-

pean PVM/MPI Users’ Group Meeting. Springer Verlag, pp.
295-302. 2008.

[10] A. Balevic. “Parallel Variable-length Encoding on

GPGPUs.” International Conference on Parallel Processing.
Springer-Verlag, pp. 26-35. 2009.

[11] M.A. O’Neil and M. Burtscher. “Floating-Point Data Com-

pression at 75 Gb/s on a GPU.” Workshop on General Pur-
pose Processing Using GPUs. 2011.

[12] A. Ozsoy and M. Swany. “CULZSS: LZSS Lossless Data

Compression on CUDA.” IEEE International Conference on
Cluster Computing, pp. 403-411. 2011.

[13] R. Patel, Y. Zhang, J. Mak, A. Davidson, and J. Owens.
“Parallel Lossless Data Compression on the GPU.” Innova-
tive Parallel Computing, pp. 1-9. 2012.

[14] M. Burtscher and N.B. Sam. “Automatic Generation of High-
Performance Trace Compressors.” International Symposium
on Code Generation and Optimization, pp. 229-240. 2005.

[15] A. Kattan and R. Poli. “Evolutionary Synthesis of Lossless
Compression Algorithms with GP-zip3.” IEEE Congress on
Evolutionary Computation, 1(8):18-23. 2010.

[16] W.H. Hsu and A.E. Zwarico. “Automatic Synthesis of Com-
pression Techniques for Heterogeneous Files.” Software:
Practice and Experience, 25(10):1097-1116. 1995.

[17] W. Fang, B. He, and Q. Luo. “Database Compression on
Graphic Processors.” Proceedings of the VLDB Endowment,
3(1-2):670-680. 2010.

