DiffTrace: Efficient Whole-Program Trace Analysis and Differing for Debugging

Saeed Taheri
School of Computing
University of Utah
Salt Lake City, Utah, USA
staheri@cs.utah.edu

Ian Briggs
School of Computing
University of Utah
Salt Lake City, Utah, USA
ian.briggs@gmail.com

Martin Burtscher
Department of Computer Science
Texas State University
San Marcos, Texas, USA
burtscher@txstate.edu

Ganesh Gopalakrishnan
School of Computing
University of Utah
Salt Lake City, Utah, USA
ganesh@cs.utah.edu

Abstract—We present a tool called DiffTrace that approaches debugging via whole-programs tracing and differencing of typical and erroneous traces. After collecting these traces, a user-configurable front-end filters out irrelevant function calls and then summarizes loops in the retained function calls based on state-of-the-art loop extraction algorithms. Information about these loops is inserted into concept lattices, which we use to compute salient differings, nested loop recognition, formal concept analysis

Index Terms—Whole-program tracing, HPC debugging, trace differencing, nested loop recognition, formal concept analysis

I. INTRODUCTION

Debugging high-performance computing code remains a challenge at all levels of scale. Conventional HPC debuggers [1], [2] excel at many tasks such as examining the execution state of a complex simulation in detail and allowing the developer to re-execute the program close to the point of failure. However, they do not provide a good understanding of why a program version that worked earlier failed upon upgrade or feature addition. Innovative solutions are needed to highlight the salient differences between two executions in a manner that makes debugging easier as well as more systematic. A recent study conducted under the auspices of the DOE [3] provides a comprehensive survey of existing debugging tools. It classifies them under four software organizations (serial, multithreaded, multi-process, and hybrid), six method types (formal methods, static analysis, dynamic analysis, nondeterminism control, anomaly detection, and parallel debugging), and lists a total of 30 specific tools. Despite this abundance of activity and tools, many significant problems remain to be solved before debugging can be approached by the HPC community as a collaborative activity so that HPC developers can extend a common framework.

Almost all debugging approaches seek to find outliers (“unexpected executions”) amongst thousands of running processes and threads. The approach taken by most existing tools is to look for symptoms in a specific bug-class that they cover. Unfortunately, this approach calls for a programmer having a good guess of what the underlying problem might be, and to then pick the right set of tools to deploy. If the guess is wrong, the programmer has no choice but to refine their guess and look for bugs in another class, re-executing the application and hoping for better luck with another tool. This iterative loop of re-execution followed by applying a best-guess tool for the suspected bug class can potentially consume large amounts of execution cycles and wastes an expert developer’s time. More glaring is the fact that these tools must recreate the execution traces yet again: they do not have means to hand off these traces to another tool or cooperate in symbiotic ways.

We cannot collect all relevant pieces of information necessary to detect all possible bug classes such as resource leaks, deadlocks, and data races. Each such bug requires its attributes to be kept. Also, debugging is not fully automatable (it is an undecidable problem in general) and must involve human thinking: at least to reconcile what is observed against the deeper application-level semantics. However, (1) we believe that it is still possible to collect one standard set of data and use it to make an initial triage in such a way that it can guide a later, deeper debugging phase to locate which of the finer bug gradations (e.g., resource leaks or races) brought the application down. Also, (2) we believe that it is possible to engage the human with respect to understanding structured presentations of information.

Our DiffTrace framework addresses both issues. The common set of data it uses is a whole-program function call trace collected per process/thread. DiffTrace relies on novel ways to diff a normal trace and a fault-laden trace to guide the debugging engineer closer to the bug. While our work has not (yet) addressed situations in which millions of threads and thousands of processes run for days before they produce an error, we strongly believe that we can get there once we understand the pros and cons of our initial implementation of the DiffTrace tool, which is described in this paper. The second issue is handled in DiffTrace by offering a novel collection of modalities for understanding program execution diffs. We now elaborate on these points by addressing the following three problems.

a) Problem 1 – Collecting Whole-Program Heterogeneous Function-Call Traces Efficiently: Not only must we
have the ability to record function calls and returns at one API such as MPI, increasingly we must collect calls/returns at multiple interfaces (e.g., OpenMP, PThreads, and even inner levels such as TCP). The growing use of heterogeneous parallelization necessitates that we understand MPI and OpenMP activities (for example) to locate cross-API bugs that are often missed by other tools. Sometimes, these APIs contain the actual error (as opposed to the user code), and it would be attractive to have this debugging ability.

Solution to Problem 1: In DiffTrace, we choose Pin-based whole program binary tracing, with tracing filters that allow the designer to collect a suitable mixture of API calls/returns. We realize this facility using ParLOT, a tool designed by us and published earlier [4]. In our research, we have thus far demonstrated the advantage of ParLOT with respect to collecting both MPI and OpenMP traces from a single run of a hybrid MPI/OpenMP program. We demonstrate that, from this single type of trace, it is possible to pick out MPI-level bugs and/or OpenMP-level bugs. While whole-program tracing may sound extremely computation and storage intensive, ParLOT employs lightweight on-the-fly compression techniques to keep these overheads low. It achieves compression ratios exceeding 21,000 [4], thus making this approach practical, demanding only a few kilobytes per second per core of bandwidth.

b) Problem 2 – Need to Generalize Techniques for Outlier Detection: Given that outlier detection is central to debugging, it is essential to use efficient representations of the traces to be able to systematically compute distances between them without involving human reasoning. The representation must also be versatile enough to be able to “diff” the traces with respect to an extensible number of vantage points. These vantage points could be differencing traces concerning process-level activities, thread-level activities, a combination thereof, or even finite sequences of process/thread calls (say, to locate changes in caller/callee relationships).

Solution to Problem 2: DiffTrace employs concept lattices to amalgamate the collected traces. Concept lattices have previously been employed in HPC to perform structural clustering of process behaviors [5] to present performance data more meaningfully to users. The authors of that paper use the notion of Jaccard distances to cluster performance results that are closely related to process structures (determined based on caller/callee relationships). In DiffTrace, we employ incremental algorithms for building and maintaining concept lattices from the ParLOT-collected traces. In addition to Jaccard distances, in our work, we also perform hierarchical clustering of traces and provide a tunable threshold for outlier detection. We believe that these uses of concept lattices and refinement approaches for outlier detection are new in HPC debugging.

c) Problem 3 – Loop Summarization: Most programs spend most of their time in loops. Therefore, it is important to employ state-of-the-art algorithms for loop extraction from execution traces. It is also important to be able to diff two executions with respect to changes in their looping behaviors. In our experience, presenting such changes using good visual metaphors tends to highlight many bug types immediately.

Solution to Problem 3: DiffTrace utilizes the rigorous notion of Nested Loop Representations (NLRs) for summarizing traces and representing loops. Each repetitive loop structure is given an identifier, and nested loops are expressed as repetitions of this identifier exponentiated (as with regular expressions). This approach to summarizing loops can help manifest bugs where the program does not hang or crash but nevertheless runs differently in a manner that informs the developer engaged in debugging.

Organization: §II illustrates the contributions of this paper on a simple example. §III presents the algorithms underlying DiffTrace in more detail. §IV summarizes the experimental methodology before showing a medium-sized case study involving MPI and OpenMP. §V shows initial measurements and examples on LULESH [6], a DOE common mini app. §VI summarizes selected related works. §VII concludes the paper with a discussion.

II. DiffTrace Overview

A. High-level Overview

DiffTrace employs ParLOT’s whole-program function-call and return trace-collection mechanism, where ParLOT captures traces via Pin [7] and incrementally compresses them using a new compression scheme [4]. ParLOT can capture functions at two levels: the main image (which does not include library code) and all images (including all library code). As the application runs, ParLOT generates per-thread trace files that contain the compressed sequence of the IDs of the executed functions. The compression mechanism is lightweight yet effective, thus reducing not only the required bandwidth and storage but also the runtime relative to not compressing the traces. As a result, ParLOT can capture whole-program traces at low overhead while leaving most of the disk bandwidth to the application. Using whole-program traces substantially reduces the number of overall debug iterations because it allows us to repeatedly analyze the traces offline with different filters.

Figure 1 provides an overview of the DiffTrace toolchain in terms of the blue flows (fault-free) and red flows (faulty). In a broad sense, code-level faults in HPC applications (e.g., the use of wrong subscripts) turn into observable code-level misbehaviors (e.g., an unexpected number of loop iterations), many of which turn into application-level issues. In our study of DiffTrace, we evaluate success merely in terms of the efficacy of observing these misbehaviors in response to injected code-level faults (we rely on a rudimentary fault injection framework complemented by manual fault injection).

The preprocessing stage removes calls/returns at the ignored APIs. The nested loop recognition (NLR) mechanism then extracts loops from traces. The resulting information not only serves as a lossless abstraction to ease the rest of the trace analysis but also serves as a per-thread measure of progress. The FCA (Formal Concept Analysis) stage conducts a systematic way to arrange objects (in our case threads) and attributes
(we support a rich collection of attributes including the set of function calls a thread makes, the set of pairs of function calls made—this reflects calling context—etc.). Weber et al.’s work [5], [8] employs FCA exactly in this manner (including the use of pairs of calls), however, for grouping performance information. Our new contribution is showing that FCA can play a central role in debugging HPC applications.

While faults induce asymmetries (“aberrations”) in program behaviors, one cannot locate faults merely by locating the asymmetries in an overall collection of process traces. The reason is that even in a collection of MPI processes or threads within these processes, some processes/threads may serve as a master while others serve as workers [9]. Thus, we must have a base level of similarities computed even for normal behaviors and then compute how this similarity relation changes when faults are introduced. This is highlighted by the blue and red rectangular patches in Figure 1 that, respectively, iconify the Jaccard similarity matrices computed for the normal behavior (above) and the erroneous behavior (below). This is shown as the “diff Jaccard similarity matrix” in greyscale at the juncture of JSM_{normal} and JSM_{faulty}.

After the JSM_{D} matrix is computed, we invoke a hierarchical clustering algorithm that computes the “B-score” and helps rank suspicious traces/processes. The diffNLR representation is then extracted. Intuitively, this is a diff of the loop structures of the normal and abnormal threads/processes. This diagram shows (as with git diff and text diff) a main stem comprised of green rectangles (“common looping structure”) and red/blue diff rectangles showing how the loop structures of the normal and erroneous threads differ with respect to the main stem. We show that this presentation often helps the debugging engineer locate the faults.

Last but not least, we strongly believe that a framework such as DiffTrace can serve as an important HPC community resource. Each debugging tool designer who uses DiffTrace can extend it by incorporating new attributes and clustering methods, but otherwise retain the overall tool structure. Such a “playground” for developing and exploring new methods for debugging does not exist in HPC. There is also the intriguing possibility that many of the 30-odd tools mentioned in §I can be made to focus on the problems highlighted by diffNLR, thus gaining efficiency (this will be part of our future work).

In this paper, we describe DiffTrace as a relative debugging [10] tool, in that bugs are caught with respect to JSM_{D} which is a change from the previous code version found working. However, many types of faults may be apparent just by analyzing JSM_{faulty}; for instance, processes whose execution got truncated will look highly dissimilar to those that terminated normally. In those use cases of DiffTrace, the B-score based ranking can then be made on JSM_{faulty} directly.

B. Example Walk-through

We now employ Figure 2—a textbook MPI odd/even sorting example—to illustrate DiffTrace. Odd/even sorting is a parallel variant of bubble sort and operates in two alternating phases: in the even phase, the even processes exchange (conditionally swap) values with their right neighbors, and in the odd phase, the odd processes exchange values with their right neighbors.

A waiting trap in this example is this: the user may have swapped the Recv; Send order in the else part, creating head-to-head ‘‘Send || Send’’ deadlock under low-buffering (MPI EAGER limit). We will now show how DiffTrace helps pick out this root-cause.
C. Pre-processing

Using ParLOT’s decoder, each trace is first decompressed. Next, the desired functions are extracted based on predefined (Table I) or custom regular expressions (i.e., filters) and kept for later phases. Table II shows the pre-processed traces \(T_i \) of odd/even sort with four processes. \(T_i \) is the trace that stores the function calls of process \(i \).

D. Nested Loop Representation

Function calls within a loop body yield repetitive patterns in ParLOT traces. Inspired by ideas for the detection of repetitive patterns in strings [11] and other data structures [12], we have adapted the Nested Loop Recognition (NLR) algorithm by Ketterlin et al. [13] to detect repetitive patterns in ParLOT traces (cf. Section III-A). Detecting such patterns can be used to measure the progress of each thread, revealing unfinished or broken loops that may be the consequence of a fault.

For example, the loop in line 3 of `oddEvenSort()` (Figure 2) iterates four times when run with four processes. Thus each \(T_i \) contains four occurrences of either \([\text{MPI} _\text{Send-MPI} _\text{Recv}] \) (even \(i \)) or \([\text{MPI} _\text{Recv-MPI} _\text{Send}] \) (odd \(i \)). By keeping only MPI functions and converting each \(T_i \) into its equivalent NLR, Table II can be reduced to Table III where \(L_0 \) and \(L_1 \) represent the loop body [\text{MPI} _\text{Send-MPI} _\text{Recv}] and \([\text{MPI} _\text{Recv-MPI} _\text{Send}] \), respectively. The integer after the `^` symbol in NLR represents the loop iteration count. Note that, since the first and last processes only have one-way communication with their neighbors, \(T_0 \) and \(T_3 \) perform only half as many iterations.

E. Hierarchical Clustering via FCA

Processes in HPC applications are known to fall into predictable equivalence classes. The widely used and highly successful STAT tool [14] owes most of its success for being able to efficiently collect stack traces (nested sequences of function calls), organize them as prefix-trees, and equivalence the processes into teams that evolve in different ways. Coalesced stack trace graphs (CSTG, [15]) have proven effective in locating bugs within Uintah [16] and perform stat-like equivalence class formation, albeit with the added detail of maintaining calling contexts. Inspired by these ideas, FCA-based clustering provides the next logical level of refinement in the sense that (1) we can pick any of the multiple attributes one can mine from traces (e.g., pairs of function calls, memory regions accessed by processes, locks held by threads, etc.), and (2) form this equivalencing relation quite naturally by computing the Jaccard distance between processes/threads. In general, such a classification is powerful enough to distinguish structurally different threads from one another (e.g., MPI processes from OpenMP threads in hybrid MPI+OpenMP applications) and reduce the search space for bug location to a few representative classes of traces that are distinctly dissimilar.

A formal context is a triple \(K = (G, M, I) \) where \(G \) is a set of objects, \(M \) is a set of attributes, and \(I \subseteq G \times M \) is an incidence relation that expresses which objects have which attributes. Table IV shows the formal context of the preprocessed odd/even-sort traces. We can employ as attributes either the function calls themselves or the detected loop bodies (each detected loop is assigned a unique ID, and one can diff with respect to these IDs). The context shows that all traces include the functions \text{MPI} _\text{Init}(), \text{MPI} _\text{Comm}_\text{size}(), \text{MPI} _\text{Comm}_\text{rank}() and \text{MPI} _\text{Finalize}(). The even traces contain the loop \(L_0 \) and the odd traces the loop \(L_1 \).

Figure 3 shows the concept lattice derived from the formal context in Table IV and is interpreted as follows:

- The top node indicates that all traces share \text{MPI} _\text{Init}(), \text{MPI} _\text{Comm}_\text{size}(), \text{MPI} _\text{Comm}_\text{rank}() and \text{MPI} _\text{Finalize}().

As emphasized earlier, we perform “sky subtraction” as in astronomy to locate comets; in our case, we diff the diffs, which is captured in JSM_\(D \).
The bottom node signifies that none of the traces share all attributes.

The middle nodes show that \(T_0 \) and \(T_2 \) are different from \(T_1 \) and \(T_3 \).

The complete pairwise Jaccard Similarity Matrix (JSM) can easily be computed from concept lattices. For large-scale executions with thousands of threads, it is imperative to employ incremental algorithms to construct concept lattices (detailed in Section III-B). Figure 4 shows the heatmap of the JSM obtained from the concept lattice in Figure 3. DiffTrace uses the JSM to form equivalence classes of traces by hierarchical clustering. Next, we show how the differences between two hierarchical clusterings from two executions (faulty vs. normal) reveal which traces have been affected the most by the fault.

F. Detecting Suspicious Traces via JSM\(_D\)

\(JSM_{normal}[i][j] \) (\(JSM_{faulty}[i][j] \)) shows the Jaccard similarity score of \(T_i \) and \(T_j \) from the normal trace (\(T'_i \) and \(T'_j \)). As explained earlier, we compute JSM\(_D\) to detect outlier executions, where \(JSM_D = |JSM_{faulty} - JSM_{normal}| \).

G. Evaluation

To evaluate the effectiveness of DiffJSM, we planted two artificial bugs (\(swapBug \) and \(dlBug \)) in the code from Figure 2 and ran it with 16 processes. \(swapBug \) swaps the order of MPI_Send and MPI_Recv in rank 5 after the seventh iteration of the loop in line 3 of oddEvenSort, simulating a potential deadlock. \(dlBug \) simulates an actual deadlock in the same location (rank 5 after the seventh iteration). Upon collection of ParLOT traces from the execution of the buggy code versions, DiffTrace first decompresses them and filters out all non-MPI functions. Then two major loops are detected, \(L_0 \) and \(L_1 \) (identical to the ones in Table III), that are supposed to loop 16 times in the even and odd traces, respectively (except for the first and last traces, which loop just eight times).

After constructing concept lattices and their corresponding JSMs, trace 5 appears as the trace that got affected the most by the bugs because row 5 (showing the similarity score of \(T_5 \) relative to all other traces) (\(JSM_{normal}[5][i] \) for \(i \in [0, 16] \)) changed the most after the bug was introduced. The differences between the suggested suspicious trace (\(T'_s \)) and its corresponding normal trace (\(T_s \)) is visualized by diffNLR.
1) **diffNLR**: To highlight the differences in an easy-to-understand manner, DiffTrace visually separates the common and different blocks of a pair of pre-processed traces via **diffNLR**, a graphical visualization of the **diff** algorithm [18].

diff takes two sequences S_A and S_B and computes the minimal **edit** to convert S_A to S_B. This algorithm is used in the GNU **diff** utility to compare two text files and in git for efficiently keeping track of file changes. Since ParLOT preserves the order of function calls, each trace T_i is totally ordered. Thus **diff** can expose the differences of a pair of Ts. **diffNLR** aligns common and different blocks of a pair of sequences (e.g., traces) horizontally and vertically, making it easier for the analyst to see the differences at a glance. For simplicity, our implementation of **gdiff** only takes one argument x that denotes the suspicious trace.

$\text{diffNLR}(x) \equiv \text{diffNLR}(T_x, T_x')$ where T_x is the trace of thread/process x of a normal execution and T_x' is the corresponding trace of the faulty execution.

Figure 5b shows the **diffNLR(5)** of **swapBug** where T_5 iterates over the loop [MPI_Recv - MPI_Send] 16 times (L1’16) after the MPI initialization while the order swap is well reflected in T_5' (L1’7 - L0’9). Both processes seem to terminate fine by executing MPI_Finalize(). However, **diffNLR(5)** of **dlBug** (Figure 6) shows that, while T_5 executed MPI_Finalize, T_5' got stuck after executing L1 seven times and never reached MPI_Finalize.

This example illustrates how our approach can locate the part of each execution that was impacted by a fault. Having an understanding of how the application should behave normally can reduce the number of iterations by picking the right set of parameters sooner.

III. Algorithms Underlying DiffTrace

A. Nested Loop Recognition (NLR)

We build NLRs based on the work by Ketterlin and Clauss [13], who use this algorithm for trace compression, and the work by Kobayashi and MacDougall [19], who propose a similar bottom-up strategy to build loop nests from traces, replacing each recognized loop with a new symbol. We adapt these algorithms to function-call traces wherein we record identical loops at different locations by introducing a single new (made-up) function ID that represents the entire loop. This process is restarted once the whole trace has been analyzed for depth-2 loops and so on until a function-ID replacement is performed. DiffTrace-NLR works by incrementally pushing trace entries (function IDs) onto a stack of elements (i.e., function IDs representing detected loop structures). Whenever an element is pushed onto the stack S, the upper elements of the stack are recursively examined for potential loop detection or loop extensions (Procedure 1).

Procedure 1: Reduce procedure adapted from the NLR algorithm

We store all distinct loop bodies (LBs) in a hash-table, assigning each a unique ID, which can be applied as a heuristic to detect loops not only in the current trace but also in other traces of the same execution. The maximum length of the subsequences to examine is decided by a fixed K. The complexity of the NLR algorithm is $Ω(K^2 N)$ where N is the size of the input. While loop detection has been researched in other contexts, its use to support debugging is believed to be novel.

B. Concept Lattice Construction

The efficiency of algorithms for concept lattice construction depends on the sparseness of the formal context [20], Ganter’s Next Closure algorithm [8] constructs the lattice from a batch of contexts and requires the whole context to be present in main memory and is, therefore, inefficient for long HPC traces.

We have implemented Godin’s incremental algorithm [21] to extract attributes (Table V) from each trace (object) and inject them into an initially empty lattice. Notice that our
representation already includes compression of the attributes as: (1) either the observed frequency is recorded, (2) the log10 of the frequency is recorded, or (3) “no frequency” (presence/absence) of a function call is recorded. These are versatile knobs to adjust for bug-location and similarity calculation.

Every time a new object with its set of attributes is added to the lattice, an update procedure minimally modifies/adds/deletes edges and nodes of the lattice. The extracted attributes are in the form \{attr:freq\}. attr is either a single entry of the trace NLR or a consecutive pair of entries. freq is a parameter to adjust the impact of the frequency of each attr in the concept lattice. The complexity of Godin’s algorithm is \(O(2^K |G|)\), where \(K\) is an upper bound for the number of attributes (e.g., distinct function calls in the whole execution) and \(|G|\) is the number of objects (e.g., the number of traces).

C. Hierarchical Clustering, Construction, and Comparison

DiffJSMs provide pair-wise dissimilarity measurements that can be used to combine traces (forming initial clusters). To obtain outliers (suspicous traces), we form dendrograms for which a linkage function is required to measure the distance between sets of traces. We currently employ SciPy (version 1.3.0. [22]) for these tasks. SciPy provides a wide range of linkage functions such as single, complete, average, weighted, and centroid, median, and ward.

1) **Ranking Table:** As shown in Figure 1, each component of DiffTrace has some tunable parameters and constants, and the suggested suspicious traces are a function of them. Thus, a metric is needed to serve as the sorting key of the suspicious traces. Each parameter combination, in essence, creates a different DiffJSM, giving us “the distance between two hierarchical clusterings”. Fowlkes et al. [17] proposed a method for comparing two hierarchical clusterings by computing their B-score. While we have not evaluated the full relevance of this idea, our initial experiments show that sorting suspicious traces based on the B-score of DiffJSMs is effective and brings interesting outliers to attention.

IV. CASE STUDY: ILCS

ILCS is a scalable framework for running iterative local searches on HPC platforms [23]. Providing serial CPU and/or single-GPU code, ILCS executes this code in parallel between compute nodes (MPI) and within them (OpenMP and CUDA).

To evaluate DiffTrace, we manually injected MPI-level and OMP-level bugs into the Traveling Salesman Problem (TSP) running on ILCS (Listing 1). The injected bugs simulate real HPC bugs such as deadlocks. Moreover, we inserted “hidden” faults that do not crash the program such as violations of critical sections and semantic bugs. The goal was to see how effectively DiffTrace can analyze the resulting traces and how close it can get to the root cause of the fault.

```c
main(argc, argv) {
    ... // initialization
    MPI_Init();
    MPI_Comm_size();
    MPI_Comm_rank();
    ... // Obtain number of local CPUs and GPUs
    MPI_Reduce(lCPUs, gCPUs, MPI_SUM); // Total # of CPUs
    MPI_Reduce(lGPUs, gGPUs, MPI_SUM); // Total # of GPUs
    champsize = CPU_Init();
    ... // Memory allocation for storing local and global champions w.r.t. champSize
    MPI_Barrier();
    #pragma omp parallel num_threads(lCPUs+1)
    {rank = omp_get_thread_num();
        if (rank != 0) { // worker threads
            while (cont) {
                ... // calculate seed
                local_result = CPU_Execute();
                if (local_result < champ[rank]) { // update local champion
                    #pragma omp critical
                    memcpy(champ[rank], local_result);
                } else { // master thread
                    ... // broadcast the global champion
                    MPI_AllReduce(); // broadcast the global champion P_id ...
                    if (my_rank == global_champion_P_id) {
                        #pragma omp critical
                        memcpy(bcast_buffer, champ[rank]);
                    }
                    bcast_buffer; // broadcast the local champion to all nodes
                    while (no_change_threshold);
                    cont = 0; // signal worker threads to terminate
                }
            }
            if (my_rank == 0) {CPU_Output(champ);} MPI_Finalize();
        } else { // master thread
            ... // broadcast the global champion ...
            if (my_rank == 0) {CPU_Output(champ);} MPI_Finalize();
        }
    }
    ... // user code for TSP problem */
    CPU_Init() {/* Read coordinates, calculate distances, initialize champion structure, return structure size */}
    CPU_Execute() {/* Find local champions (TSP tours) */}
    CPU_Output() {/* Output champion */}
}
```

Listing 1: ILCS Overview

We collected ParLOT (main image) traces from the execution of ILCS-TSP with 8 MPI processes and 4 OpenMP threads per process on the XSEDE-PSC Bridges supercomputer whose compute nodes have 128 GB of main memory and contain 2 Intel Haswell (E5-2695 v3) CPUs with 14 cores each running at 2.3 - 3.3 GHz. Note that we did not provide any GPU code to ILCS.

The collected traces (faulty and normal) are fed to DiffTrace. We enabled the MPI, OpenMP, and custom (ILCS-TSP user code) filters and set the NLR constant K to 10 for all experiments. The current version of DiffTrace is implemented and built using C++ GCC 5.5.0, Pin 3.8, Python 2.7, and Scipy 1.3.0.

We present the results in the form of ranking tables that show which traces (processes and threads) DiffTrace considers “suspicous”. Since DiffTrace output is highly dependent to “parameters”, each row in ranking tables starts with parameters whom the suspicious traces are the result of.
The linkage method that converts JSMs to flat clustering is “ward” for all of the top reported suspicious traces that we removed from tables for better readability. Ward linkage function in SciPy uses Ward variance minimization algorithm to calculate the distance between newly formed clusters [22]. Furthermore, we show diffNLRs for selected traces.

A. ILCS-TSP Workflow

The TSP code starts with a random tour and iteratively shortens it using the 2-opt improvement heuristic [24] until a local minimum is reached. ILCS automatically and asynchronously distributes unique seed values to each worker thread, runs the TSP code, reduces the results to find the best solution, and repeats these steps until the termination criterion is met. It employs two types of threads per node: a master thread (MPI process) that handles the communication and local work distribution and a set of worker threads (OpenMP threads) that execute the provided TSP code. The master thread forks a worker thread for each detected CPU core. Each worker thread continually calls CPU_Exec() to evaluate a seed and records the result (lines 14-20). Once the worker threads are running, the master thread’s primary job is to scan the results of the workers to find the best solution computed so far (i.e., the local champion). This information is then globally reduced to determine the current system-wide champion (lines 22-32). ILCS terminates the search when the quality has not improved over a certain period (lines 33-34).

B. OpenMP Bug: Unprotected Memory Access

The memory accesses performed by the memcpy calls on lines 20 and 30 are protected by an OpenMP critical section. Not protecting them results in a data race that might lead to incorrect final program output. To simulate this scenario, we modified the ILCS source code to omit the critical section in worker thread 4 of process 6.

Table VI lists the top suspicious traces that DiffTrace finds when injecting this bug. Each row presents the results for different filters and attributes. For example, the filter “11.mem.ompcit.cust.0K10” removes all function returns and .plt calls from the traces and only keeps memory-related calls,
OpenMP critical-section functions, and the custom function “CPU_Exec”. The “K10” at the end of filter means that the filtered traces are converted into an NLR with K=10. The bold numbers in the rightmost column of the table flag trace 6.4 (i.e., process 6, thread 4) as the trace that was affected the most by the bug.

The corresponding diffNLR(6.4) presented in Figure 7a clearly shows that the normal execution of ILCS (green and blue blocks) protects the memcpy while the buggy execution (green and red blocks) does not. Here, L0 represents CPU_Exec, which is called multiple times in both the fault-free and the buggy version (the call frequencies are different due to the asynchronous nature of ILCS).

C. MPI Bug: Deadlock Caused by Fault in Collective

By forcing process 2 to invoke MPI_Allreduce (line 24) with a wrong size, we can inject a real deadlock. Because the deadlock happens early in the execution, the resulting traces are very different from their fault-free counterparts. Consequently, DiffTrace marks almost all processes as suspicious (cf. Table VII). Clearly, this is not helpful for debugging. Nevertheless, diffNLR still yields useful information. Since most of the traces are suspicious, we do not know which one the real culprit is and randomly selected trace 4. By looking at the corresponding diffNLR(4) output shown in Figure 7b, we immediately see that both the normal and the buggy trace are identical up to the invocation of MPI_Allreduce. This gives the user the first (correct) hint as to where the problem lies. Beyond this point, the bug-free process continues to the end of the program (it reaches the MPI_Finalize call) whereas the buggy process does not. The last entry in the buggy trace is a call to MPI_Allreduce (the last green box), indicating that this call never returned, that is, it deadlocked. This provides the user with the second (correct) hint as to the type of the underlying bug.

D. MPI Bug: Wrong Collective Operation

By changing the MPI_MIN argument to MPI_MAX in the MPI_Allreduce call on line 24 of Listing 1, the semantics of ILCS change. Instead of computing the best answer, the modified code computes the worst answer. Hence, this code variation terminates but is likely to yield the wrong result. We injected this bug into process 0.

The first few suspicious processes listed in Table VIII are inconclusive. However, the filters that include MPI all agree that process 5 changed the most. Looking at the corresponding diffNLR(5) output in Figure 7c makes it clear why process 5 was singled out. In the buggy run, it executes many more MPI_Bcast calls than in the bug-free run because the frequency in which local “optimums” has produced has changed. Though this should affect all traces equally, which has reflected in the diffNLR of other traces. We are presenting these tables and figures to show that DiffTrace can reveal the impact of silent bugs like the wrong operation. Such data representation via suggested tables and diffNLRs helps developers to gain insight into the general behavior of the execution. More accurate results can be obtained by refining the parameters and collecting more profound traces (e.g., ParLOT(all images)). This would be part of our future work to find the set of parameters for different classes of bugs to maximize accuracy.

V. LULESH2 Examples

Our ultimate goal is to apply DiffTrace to complex HPC codes. As a more complex example, we have executed the single-cycle LULESH2[6] with 8 MPI processes and 4 OMP threads (system configuration described in §IV) and collected ParLOT (main image) function calls.

Before bug injection, we analyzed LULESH2 traces and computed some statistics to gain insight into the general control flow of LULESH2 and also to evaluate DiffTrace’s performance and effectiveness. Our primary results show that ParLOT instruments and captures 410 distinct function calls on average per process, and stores them in compressed trace
files of size less than 2.8 KB on average per thread. Upon de-
compression, each per process trace file turns into a sequence of
421503 function calls on average. The equivalent NLR of each
trace file reduces the sequence size by a factor of 1.92 and 16.74, for constant K set to 10 and 50, respectively.

For further evaluation of DiffTrace, we injected a fault into the
LULESH source code so that the process with rank 2 would not invoke the function LogRangeLeapFrog that is in charge of updating “domain” distances and send/receive
MPI messages from other processes.

Table IX reflects the ID of processes (rightmost column) that DiffTrace’s ranking system suggests as the most affected
taces by the bug. Since the fault in process 2 prevents other
processes from making progress and successfully terminate,
all of the process IDs appeared in the table. The generated
diffNLRs clearly showed the point at which each process
stopped making progress. Due to lack of space, we did not include the relatively large diffNLRs of LULESH in this paper. However, all diffNLRs and related observations are available online via [25].

VI. RELATED WORK

Three major recent studies have emphasized the need for better debugging tools and the need to build a community
that can share debugging methods and infrastructure: the DOE
report mentioned earlier [3], an NSF workshop [26], and an
ASCR report on extreme heterogeneity [27]. Our key
contribution in this paper is a fresh approach to debugging
that (1) incorporates methods to debug across the API-stack
by resorting to binary tracing and thereby being able to
dial into” MPI bugs and/or OpenMP bugs (as shown in the
ILCS case study), (2) makes initial triage of debugging
methods possible via function-call traces, and (3) enables
the verification community to cohere around DiffTrace by
allowing other tools to extend our toolchain (they can tap into
it at various places).

Many HPC debugging efforts have emphasized the need
to highlight dissimilarities and incorporate progress mea-
sures on loops. We now summarize a few of them. Auto-
maDeD [28][29] captures the application’s control flow
via Semi Markov Models and detects outlier executions.
PRODOMETER [30] detects loops in AutomadeD models and
introduces the notion of least progressed tasks by analyzing
progress dependency graphs. DiffTrace’s DiffNLR method
does not (yet) incorporate progress measures; it only computes
changes in loop structure. Prodometer’s methods are ripe for
symbiotic incorporation into DiffTrace. We also plan to
incorporate happens-before computation as a progress measure
using FCA-based algorithms by Garg et al. [31], [32]. FCA-
based approaches have been widely used in data mining [33],
machine learning [34], and information retrieval [35].

In terms of computing differences with previous executions, we draw inspirations from Zeller’s delta-debugging [36]
and De Rose et al.’s relative debugging [10]. The power of
equivalence classes for outlier detection is researched in
STAT [14], which merges stack traces from processes into a
prefix tree, looking for equivalence-class outliers. STAT
uses the StackWalker API from Dyninst [37] to gather stack
traces and efficiently handles scaling issues through tree-
based overlay networks such as MRnet [38]. D4 [39] detects
concurrency bugs by statically analyzing source-code changes,
and DMTTracker [40] detects anomalies in data movement.
The communication patterns of HPC applications can be
automatically characterized by diffing the communication ma-
trix with common patterns [41] or by detecting repetitive
patterns [42]. ScalaTrace [43] captures and compresses com-
munication traces for later replay. Synoptic [44] is applied to
distributed system logs to find bugs.

VII. DISCUSSIONS & FUTURE WORK

DiffTrace is the first tool we know of that situates debugging
around whole program diffing, and (1) provides user-selectable
front-end filters of function calls to keep; (2) summarizes
loops based on state-of-the-art algorithms to detect loop-level
behavioral differences; (3) condenses the loop-summarized
taces into concept lattices that are built using incremental
algorithms; (4) and clusters behaviors using hierarchical clus-
tering and ranks them by similarity to detect and highlight the
most salient differences. We deliberately chose the path of a
clean start that addresses missing features in existing tools and
missing collectivism in the debugging community. Our initial
assessment of this design is encouraging.

In our future work we will improve DiffTrace components
as follows: (1) Optimizing them to exploit multi-core CPUs,
thus reducing the overall analysis time; (2) Converting ParLOT
traces into Open Trace Format (OTF2) [45] by logically times-
tamping trace entries to mine temporal properties of functions
such as happened-before [46]; (3) Conducting systematic bug-
injection to see whether concept lattices and loop structures
can be used as elevated features for precise bug classifications
via machine learning and neural network techniques; and
(4) Taking up more challenging and real-world examples to
evaluate DiffTrace against similar tools, and release it to the
community.

Acknowledgements: Supported in part by NSF awards CCF
1817073 and 1704715.

