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Abstract

Large-scale3D shape retrieval has become an important research dineicticontent-based 3Bhaperetrieval. Topromotethis
research area, two Shape Retrieval Contest (SHREC) trackarge scale comprehensive and sketch-based 3D modelvetri
have ben organized by us in 2014Both tracks werdased on a unified large-scale benchntagt supports multimodal queries
(8D modelsand sketches).This benchmark contain3,680sketches and 8,987 3D models, divided into 171 distinciselas It
was compiledo bea superset of existing benchmarks and presents a new dlfterretrieval methods as it comprises generic
models as well as domain-specific model typBselve and six distinct 3D shape retrieval methods have compettideach other
in these two contests, respectively. To measure and contipagerformance of #hparticipating and othepromising Query-by-
Model or Query-by-Sketch 3D shape retrieval methodstaisdlicit state-of-the-art approaches, we perform a more comprelensi
comparison of twentwix (eighteen originallyarticipating algorithms andightadditional state-of-the-adr new)retrieval meth-
ods byevaluating thenon the common benchmark. The benchmark, results, and ¢amuaols are publicly availablat our
websites [1, 2].

Keywords:
3D shape retrieval, Large-scale benchmark, MultimodatigagUnified, Performance evaluation, Query-by-Model,
Query-by-Sketch, SHREC

1. Introduction 1 terms of the number of semantic query categories covese
i i i 1s well as the variations of model types. In particular, it com-
With the increasing number of 3D models created every day,ines generic and domain-dependent model types and therefo
and stored in databases, the developmentfeteve and scal- _ (ates the retrieval performance with respect to cross-itoma

able 3D search algorithms has become an important researgyieyal tasks. The benchmark supports both sketch and 3D
area. Generally speakingieir objective's to retrieve 3D mod- || mqqe| queriesthus providinga unified platform to test diverse

els similar to a 2[8D sketctimage or a complete 3D model, 3 model retrieval algorithms belonging to either Query-by-
query from a large collection of 3D shapes. In this paper, W& qdel or Query-by-Sketch 3D retrieval techniques.

resent a new large-scale benchmark that includes a large nu . .
b g 9 Query-by-Model 3D retrieval is one of the most commonly

ber of diversetypes of sketches and models. Owing to the Iﬁo_seen andnost widelystudied 3D model retrieval technicue

tegration of the most important existing benchmarks to ,date . i
the newly created benchmark is the mestensiveto date in * Many dedicated algorithms and several benchmarks have been

2s developed for this type of 3D retrieval. Howevetrréquires

22 USers to provide a 3D model as a quer
“Corresponding author at: 601 University Drive, DepartmehiCom- . _ ; ; ;
puter Science, Texas State University, San Marcos, Tex&§6]8E-mail: = Query-by-Sketch (sketch-based) 3D retrievadasetrieve a

b.I58@txstate.edu, li.bo.ntu0@gmail.com; Tek001 512 245 6580; Fax: ¢ list of 3D models that closely match a provided input sketch
+001 512 245 8750. . Compareda Query-by-Model, it is more intuitie and easier
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25 10 USe because users do not need to provide 3D models. Hewf the benchmark. Section 4 gives a brief introduction of the

20 €ver, it is also more challenging because of the semantic antbntributors of the paper. A short and concise descriptibn

% representational gap between the 2D query sketches an®the &ach contributed method is presented in Section 5. Section 6

s models, and because user sketches may vary widely in sketctiescribes the evaluation results of ##8Query-by-Model and 6

22 Ing style and level of detail, as wellt has many applications » Query-by-Sketch 3D retrieval algorithms on the unified tienc

a5 including sketch-based modeling and recognition, and Bkets maik. Section 7 concludes the paperdalists several future

. based 3D animation [3]. a1 research directions.

s Two previous Shape Retrieval Contest (SHREC) tracks,

s SHREC'12 [4] and SHREC'13 [Shavebeen successfully or- , 5 Related work

a7 ganized on the topic of sketch-based 3D model retrievaly The

s invigoratedthis research area by providing a small-scale ané:a In this section, wemainly concentrate orrelated work

» large-scale sketebased retrieval benchmanespectivelyand e published within the last thregears. The latest reviewof

w0 attractedstate-of-the-art algorithms to competith each other. s sketch-based 3D model retrieval techniques and benchmarks

« Yet, even the largescale SHREC'13 Sketch Track Benchmark is presentedn [10]. Thus, we will primarily review there-

= (SHREC13STB) [5] based on Eitz et al. [6] anthe Prince- « centprogress in the Query-by-Model techniques, especially in

s ton Shape Benchmark (PSB) [7] contmionly 90 classes of ss generic, non-rigid and semantics-based 3D model retrieval.

w4 7,200 sketches and 1,258 models. Compared with the compieker partial 3D retrieval techniques, please refer to [1H dr2]

s dataset of 25Wiser sketch classes compilby Eitz et al. [6], « for thelatest reviews.

s there is stillsubstantiatoomto make the benchmarkore com-

« prehensive in terms of completeness of object classedrexist: 2.1. Generic 3D model retrieval techniques

s in the real world. Thus, wéelt it is necessary to build an even.  Threeimportant surveys have beemittenby lyer et al. [13],

w larger sketch-based 3D retrieval benchmaith moresketches «: Bustos et al. [14],and Tangelder et al. [15], who reviewed

so andmoremodels to helfetterevaluate the scalability of exist-« typical generic 3D model retrieval techniques before 2008.

s1 ing andnewly developed sketch-based 3D model retrieval algoBased on the types déatures employedexisting generic 3D

s2 rithms. Considering this, wereateda new large-scale bench+ model retrieval techniques can be classified into four cate-

ss mark LSB) comprising13,680sketches and 8,98available .« gories: geometry-basedraphbased, view-basedénd hybrid

s 3D modeldrom 171 classgthatcan be an@lso havébeen used « techniques.

ss t0 evaluate botlQuery-by-Sketctand Query-by-Model 3D re-

s trieval algorithns. Figurel shows several example sketches2.1.1. Geometrypasedtechniques

sz and their relevan8D models. w0 Geometry-based techniques characterize the geometie inf

10 mation of a 3D model based on the distribution of geometric

102 elements. Resedrcon the feature extraction fogeneric 3D

10s modelsis usually designed witlthe following twogoals: (1)

104 Strong discriminative abilityv.r.t various 3D models; an)

10s adequate generality w.r.t the robustness tifedént geomet-

106 FiC representations, including surfaces (i.e., meshespana-

1 metrigsubdivisorimplicit surfaces), solids (i.e., volume data),
Figure 1: Example 2D sketches and their relevant 3D modelsitatige scale ,,; and raw data (i.e., point clouds, range images, or polygon
benchmarkl( SB). e Soups) These 3D features can be either global, sucBrape

1o Distribution [16] andShapeHistogram [17]; or local, such as

== Based on this new benchmark, we organized a SHREC 201#he 3D shape context [18, 19, 20], Extended Gaussian Images

s track [8] on large scale sketch-based 3D model retrievalito f,, (EGI) [21], conformal factor [22], spherical harmonics [23

« ther foster this challenging research area by solicitiigeveal .,; and Poisson histogram descriptor [24].

o results from current state-of-the-art retrieval methamiscbm- .., Recently, Sipiran et al. [25] enhanced the traditional Bag-

« parison, especially in terms of scalability to a lagpale sce-..; of-Featureframeworkfor generic shapes with their data-aware

s Nario. Moreover by utilizing only the 3D target dataset of;s partition approas. Zou et al [26] proposed a combined shape

« the benchmark, we organized another SHREC’14 track [9].@miistribution descriptor based on principal plane analysid

e the topic of large scale comprehensive 3D shape retrievalstgroup integration.

« perform a comparison, especially for practical retrievat-p.,  Two of the methods evaluated in this paper belong to this cat-

o formance,of top 3D model retrieval methods. Thus, the twg egory: Zhang’s Modified Shape Distribution (MSD) and Shell-

e contest tracks have demonstrated the unification lange- .., Distance-Sum (SDS) (Section 5.1.6).

o Scaleproperties of our benchmark in evaluating both Query-

7 by-Model and Query-by-Sketch 3D retrieval techniques. 1. 2.1.2. Graph-basedtechniques

n  Inthe rest of th@aper, we first review the related work (w.r:  Graph-based methods perform matching among models by

7 techniques and benchmarks) in Sectiorir2Section 3we in- 1. using their skeletal or topological graph structureSkele-

7 troduce themotivation building process, contentand evalua- s ton graph-based approahabstrat a 3D model as dow-

= tion metrics (containing both general and weighted vanied) 1. dimensionalgraph, which visually preserves the global shape
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122 configuratio and whose nodes and edges correspond to the.géne SIFT M-1SIFT), Manifold Ranking of BF-DSIFTNMR-

123 OMetric attributes of the shape componertdypical example .« BF-DSIFT), Manifold Ranking of D1SIFT MIR-D1SIFT) and
120 IS proposed in [27].Recently a geodesiskeleton pattbased s Manifold Ranking of 1SIFT MR-VM-1SIFT) (Section 5.1.3);
130 approachhas beemproposed in [28]wherethe geometry of aiss Tatsuma'Depth Bufered Super-Vector CodingpBSVC) and
1 3D mesh is coded as a sequenceafii of the maximal balls atisz Locally Constrained Ofusion Ranking of DBSVC L(CDR-

122 the skeleton points 13 DBSVC) (Section 5.1.5)

13 Topology-based methods compare 3D modsed orthe

12+ differencdn their global topological structures. Amottievar- .., 2.1.4. Hybridtechniques

15 I0US topologyrepresentationsReeb graps, which are rooted Hybrid approaches explicitly employ at least two of the
1 In the Morse theory,are considered one ahe most popular ,,, apove features to characterize a 3D model. Many hybrid
17 One typical example based on Reeb graph is presented in [293he descriptors have beproposedin the literature. We

s Recently, Barra et al. [30¢ompared 3D models based on the |ist 5 few recent work, such as DESIRE [51jand DSH [52]

s kernel functions defined on extended Reeb graphsether di-  \vhich combineDepth bufer-based 2D features agpherical

uo rectionrelies on the theory ofopologicalPersistence. It was . Harmonics-based 3D featureRANORAMA [53] represents a

w first formalized by Edelsbrunner et al. [31] as the concept, 03p model based on a set of panoramic views and achieves state-
12 persistence diagram or barcoded builds on previous related o.the-art performance on several generic 3D model dagzbas

1 work on size functions [32] The methd provides a princi- . Recently, shybrid descriptor named ZFDR comprisibgth
w pled way to qualitatively visualize and measuretibgological | geometric and view informatiohas beemproposed if54]. Li

us structuresvia the feature functions defined on the shape sur; g [55] combined the topological featuraultiresolutional

us face. Topological Persistence recently became of intdoes, Roep graph (MRG) based features and modified BOF-based

1w Shape retrieval tasks [33, 3partially due to the popularity of, ey features. I et al [56] adoped severafrepresentative

13 topological data analysis [35]. 23 geometric features such as shape diameter function, averag
. 204 geodesic distance, and heat kernel signature, to chawscter

1 2'1'_3' \Aevvbasedtechnlques _ 205 low-level semanticpatches. Tabia et al. [57] proposed to first

= View-based techniques use a set of rendered views 10 IRy mple a set of points on the surface of a 3D model, then use

w resent a 3D model The visual similarity between the Views, ihe covariance matrices of multiple local features as skiape

12 Of two models is regarded as the modeffelience. A Spe-, serintors for 3D face matching, and further apply an extende

i Cial survey has beepublishedin [36]. Efforts along this | gag_of-Words framework on the covariance matrix-basedlloc

1 line are mostly devoted to two stages: descriptive feature e shape descriptors for 3D model retrieval. Hybrid descripto

= traction from certain view imageand appropriate comparison, gre interesting because the integration éfedent features may

1 Detween sets of visual features. For the former, typical appetter accommodate a diversity of 3D shapes.

157 proache; include Light Field descripﬂ;d@?], the Mu.Iti—view .2 Among the evaluated methods, Aond@enter-Symmetric

12 Depth Line Approach (MDLA) [38], salient local visual fea; | oca1 Binary Pattern @SLBP), and Hybrid shape descriptor
155 tUres [39], Compact Multi-View Descriptor (CMVD) [40]and " omprising several features including Surface-Roughaesss

160 y|ew Context shape descriptor [41for the latter, ba_S|c Wda_tr s DEpth-buffer (HSR-DE)(Section 5.1.1), Chen’s hybrid shape
e includesthe Bag-of-Features based approach @] its vari- - qescriptorDBNAA _DERE, which combines Shape Distribu-
12 @antssuch asBag-pf—Regmn-Words [43%s well asmore accu- _ ion (D2) [58], Bounding Box, Normal Angle Area, DEpth
s rate 3D model.allgnment-baseq meth]. 20 buffer, and Ray Extend based features [ction 5.1.2), Li's

«  Recently, Ding et al[45] defined a view-based shape de: 7-pp hyirid shape descriptor, which integrates Zernike mo-
s Scriptor named Sphere Image that integrates the spat@tinf, ments Fourier descriptors, Depth information [59], ang-Ra
1 Mation ofa collection of viewpointsand their corresponding  pocad features [59] (Section 5.1.4), Zharlisiti-Feature Fu-
1w View features that are matched basedagurobabilistic graphi- i1 Based on Entropy Weights (MIEF—EW) (Section 5. 56

1 cal model.Similar to the Sphere ImagBonaventura et a[46] .« Papadakis’ PANORAMAwhich stands for PANoramic Object
1s proposeda 3D shape descriptor of the Information Sphere ands

o X ; 25 Representation for Accurate Model Attributifg3], fall into
wo Utilized mutual information-based measures for the matghi this group.
1 Whereas Liang et al. [47] designed a feature named Spherical
12 SIFT to represent the salient local features on sphericad@s.
173 As for applications, Sfikas et.g#8] retrievad complete 3D pot-
74 tery modelsbased on th@anoramicfeatureviews ofa partial s Unlike generic 3D model retrieval for rigid models, nonidig
ws range imag query. These view-based methods hawgnique 22 3D model retrieval techniques are dedicated to retrievirgg t
6 advantage for generic 3D model retrietasksin that they fo- .0 specific and ubiquitous non-rigid 3D models with diversegsos
177 CUS on the visual features of view imagand thus can work onzs: or articulations. Due to the non-rigid properties of the rlsd
s arbitrarily structured 3D models. 22 it IS more challenging to perform the retrieval. For a review
o The following evaluated methods in this paper belong to thisof non-rigid 3D retrieval techniques based on geodesiancst
180 category:Aono’s KAZE local feature [49] with the VLAD en-z:. and spectrum analysis approaches, as well fisrdint canoni-
w1 coding scheme [50] (KVLAD) (Section 5.1,1ffuruya’sBag- s cal form transforms for non-rigid models based on multidime
12 Of-Features of Dense SIFBE-DSIFT), per-View Matching of »ss sional scaling, please refer to [12]. Anothecent surveyof

3
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2 hon-rigid shape retrieval is presented in [60], where agertss non-trivially improve the retrieval performance when used

28 Mance comparison of several descriptors derived from sgdeet combination. They alsmentionedthat one advantage of their
20 geometryis given 25 Semantic features is the compactnesaking thenefficient for

2«0 Stability and repeatability are two important properties fo large-scale retrieval scenarios).

2 local descriptors and interest point detectors, and, hemee,,, The following evaluated algorithms belong to this type:
22 iImportant building blocks for non-rigid shape retrievaltime ., Aono’s machine learning-based method CSLBP* (Sec-
s 0ds. Stability and repeatability properties have beenetlidr . tion 5.1.1); the manifold ranking-based approaches, oty

24 @ NUMber of object transformations, including non-rigaht- ., Furuya’s MR-D1SIFT and MR-VM-1SIFT (Section 5.1.3) and
s formations [61]. s« Tatsuma’s LCDR-DBSVC (Section 5.1.5) Query-by-Model al-
=6 Recently, significant féorts have been invested in explot; gorithms; and Furuya’s CDMR (Section 5.2.1) and Tatsuma’s

2 ing the invariance properties of shapes to non-rigid deferm, SCMR-OPHOG (Section 5.2.3)u@ry-by-Sketch algorithms.
s tions.  In particular, the emerging field of spectral geome-

29 try provides an elegant framework for the geometric analysi

20 Of non-rigid shapeswhich relies on theEigensystem (eigen-,, 2.4. 3D model retrieval benchmarks

21 Values angbr eigenfunctions) of the Laplace-Beltrami opera-

252 tor [62, 63]. Prominent wdin this direction includesShape | A recent overviewof existing sketch-based 3D model re-
s DNA [64], heat kernel signature (HKS) [65, 66and wave . yjeval henchmarks is available in [LGfience, ve mainly con-

s kernel signature (WKS) [67] From the perspective of SPeC;, centrate on the review of currently available generic ocipe
25 tral graph wavele a general form of spectral descriptors was

tedn [68], which includesHKS and WKS ol ized 3D model retrieval benchmarks for the Query-by-Model
256 presentedn , Which includes an a gecial _ retrieval.

27 cases. A classic workin shape retrieval applicatisns the 309

28 Shape Google algorithm [69], which aggregatpectral de-

20 scriptorsbased on thdag-of-Features frameworkLater,as | 2 4 1. Generic 3D model retrieval benchmarks

20 the spatial partition versioranintrinsic spatial pyramid match- .
2 ing algorithm waglevelopedn [70]. Despite the elegance and' .TO evaluqte the performanoef a generic 3D model re-
= popularity of these spectral methods ytrequire the inpusD trieval algorithm,researchergave buit generic 3D model re-

x: models to have a manifold data structuénich is unrealistic trieval benchmarks including: the Princeton Shape Bench-
2+ for mostmodels collected from theeh Therefore, &tra pre- * mark PSB) [7], the SHREC'12 Generic Track Benchmark

s processings generally needed to remetthe surfacedbefore * (SHREC12GTB) [96], the Toyohashi Shape Benchmark
« feeding theninto the framework. a6 (TSB) [97], andthe Konstanz 3D Model BenchmarECCC)

a7 [59].
27 2.3. Semantics-based 3D model retrieval techniques

= Semantics-based 3D model retrieval techniques incomorat, , Specialized 3D model retrieval benchmarks

20 high-level semantic information of the query amd3D mod- o . ]

20 els into the retrieval process to bridge the semanticegisting Spemahzed 3D model retrieval benchmal_rks are de_dlcated to
2 in traditional content-based 3D model retrieval techniqua * testing the performance of a 3D model retrieval algorithnaon
2 surveyof three typical semantics processiteghniquegrele- * Particular type of 3D models, such as non-rigid, watertigint

s vance feedback, machine learning, and ontoldgyjresented® professpnaIFor exampl_e,he following specialized 3D bench-
2 in [71]. Typical semantics-based 3D retrieval approaches Marksexist the Watertight Model Benchmark\MB) [98],

2 clude relevance feedback [72], semantic labeling [73]raleg the McGill 3D Shape BenchmarkASB) [99], Bonn's Archi-

26 networls [74], supervised [75, 76, 77, 78] or semi-supervisggtecture BenchmarkBAB) [100], and the Engineering Shape
. [79, 80, 81]learning, boosting [82], prototypes [83], autotage Benchmark ESB) [101].

2 ging [84], spectral clustering [85], manifold ranking [868- == Table 1 lists the basic classification information of thevabo
2o Mantic tree [87], feature dimension reduction [88], sericant: €ight benchmarkeheread=ig. 2 shows some example models
20 Subspace [89], class distanae[54], semantics annotatioof s for the four specialized benchmarks. evéelected these eight
22 3D models[90], semantic correspondences [91], and spass®enchmarks tereatethe 3D target dataset of our benchmark.
262 Structure regularized ranking [92]. s Aside fromthe above mentioned benchmarks, there are sev-
s Recently, the attribute-based semantic approach has bkeeral otherbenchmarks or 3D model resourcbat may have

e COMe popular andhas demonstrated promising performance; overlap with theeight benchmarks we selectet@ihey include:

25 SUCh as multiple shape indexes (attributes) [&8] attribute- s« (1) generic 3D model datasets likee National Taiwan Univer-

26 aUgMented semantic hierarchy [94]. Gong et al. [95] progrosesity 3D model databaseN{TU) [37], the NIST dataset [102],

287 tO USe attribute signature (AS) and reference set signéR88) s the AIM@SHAPE Shape Repository [1034nd theSHREC

26 10 perform semantic 3D model retrieval. They selected 11.ateontests datasets (generic retrieval tracks, 220864)[104];

280 tributes including symmetry, flexibility, rectilinearitgircular- = (2) specialized 3D model retrieval benchmarks likiee

200 ity, dominant-plane, long, thin, swim, fly, stand with leg@nd s TOSCA [105] and SHREC contests datasets (non-rigid, wa-
2o Natural. They found that their high-level semantic appheacs. tertight, textured 3D, CAD, protein, face, human, rangasma

22 (AS and RSS) can complement low-level featyrasd they s parts-based partial retrieval tracks, 26@614) [104].
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Table 1:Classification information of the eidlyeneric or specialized 3D model retrieval benchmarks.

Benchmarks Types Number of models  Number of classes Average number of models per class
PSB Generic 907 (train) 90 (train) 10 (train)
907 (test) 92 (test) 10 (test)
SHREC12GTB  Generic 1200 60 20
TSB Generic 10,000 352 28
CCCC Generic 473 55 9
WMB Watertight (articulated) 400 20 20
MSB Articulated 457 19 24
BAB Architecture 257 183 (function-based) 12 (function-based)
180 (form-based) 13 (form-based)
ESB CAD 867 45 19
w0 SHREC13STB [5] has found 1,258 relevant models for 90
0 s Of the 250 classes from th@SB benchmark. However, it is
w2 Neithercompletenor large enough.160 classes, i.e., the ma-
a3 jority, havenot been included. Thus, welt a new 3D model
(a) ESB s retrieval benchmark based itz et al.’s sketch dataset and

70 X
A @

Figure 2: Example 3D models BSB, MSB, WM B andBAB datasets.

x2 3. Benchmark

el P

o B~

(b) MSB

~ + £

(c) WMB

(d) BAB

x: 3.1. Motivationand considerations

s SHREC13STB, but extended by finding more models from
ss Other 3D data sources, was needéds usefulfor the proper

w7 evaluation 6 sketch-basear model query-base8D model re-

ss trieval algorithns, especiallytheir scalability, which is very im-

s portantin practice

s To this end, we built a unified large-scale benchmark
sn supporting both sketch and model queries by extending
sz SHREC13ST B by means ofdentifying and consolidating rele-

ars Vant models for the 250 classes of sketches from the rpaior

a2 3D shaperetrieval benchmarks. When creating the benchmark,
a5 our target was to find models for as many of the 250 classes as
are Possible, andfor each classto find as many models as possi-
a7 ble. These previous benchmarks have been compiled with dif-
as ferent goals in mind ando date havenot been considered in

as combination Our work is the first to integrate them to form
0 @ New, larger benchmark corpus footh Query-by-Model and

s Query-by-Sketch retrieval.

2 3.2. Building process

xs Based on the abev wnsiderations, to build up a better
s and more comprehensive large-scale 3D retrieval benchmark

as  The benchmarkvasmotivated by the latest large collections we extend the search teight available benchmarks. To

as Of human-drawn sketches built by Eitz et al. [6]. To explass avoid adding replicate modelgside fromthe PSB used in

as human sketch recognition dfow humais draw sketches, theyss SHREC13STB, the othersevenavailable 3D model bench-

a7 collected 20,000 human-drawn sketches, categorized Bfio:2 mark sourcesve considered include thtetHREC12GTB, TSB,

us classes, each with 80 sketches. This sketch dataset isexkaCCCC, WMB, M SB, BAB, andESB, as listed in Table 1

ao tive in terms of the number of object categories. Thus, we be- We (one undergraduate student, one master student, one re-
=0 lieve that a 3D model retrieval benchmark based on their ebsearcher with a master degree and one with @PHegree)

=1 ject categorizations will be more comprehensive and appro@ adopted a voting scheme to classify models. ther classifi-

=2 ate thanother currently available 3D retrieval benchmarks te cation of each modelve obtainedat least two votes. If these

s more objectively and accurately evaluate tieal-world per- s two votes agre&ith each other, we confirm that the classifica-
s« formance of a 3D model retrieval algonith In addition, the s tion is correct otherwise, we perforeda third vote to finalize

ss Sketch dataset avoids the bias issue sihcentainsthe same s the classification.During the building process, we only kept

s NuMber of sketches for every classid the number of sketches: one model for the models that have duplicate copies spanning
s for one class is also adequate for a lasgale retrieval bench=ss different source datasets.

s mark. Moreover, he sketch variation within one class is als@

35 Ssufficient

In the endwe found 13,680 sketches and 8,987 models, clas-
w0 Sified into 171 classes (for the remaining 79 classes we did no

5



«a find relevant models in the selected benchmarks), which sul8.4. Properties of th& SB benchmark

w2 Stantially increase the scale of the benchmark and formuhe ¢ .

«s rently largesunified retrieval benchmark. The average numisr 1able 2 lists the correspondences between the target 3D
w: of models in each class is 53, which is also much more than4ry0del dataset of SB and its source benchmarks. The indexing
s of the benchmarkin Table 1. This benchmark provides an iny¢ @1d mapping relationship between our models and theimaigi

s portant resource for the community of 3D model retrieval affd’@mesn the source benchmarlas well as and the name list of

. will likely foster the development of practical Query-by-Modgl the 171 classes are available on the websites [1, 2]. Thageer
«» and Query-by-Sketch 3D retrieval applications. s number of vertices per model .|$233. Thoughon averagethe
»s2 Number of models per class i85t ranges from only 1 (i.e.
w3 for the basket, cake, fire hydrant, diie lion, owl, parking me-
ws 3.3. Unifiedlarge scalebenchmarkl SB s ter, parrot, penguin, tennis racket, and van classes) te than
) 5 600 (i.e, the chair and table class have632 and 601 mod-
w0 Our extended large-scale 3D model retrieval benchmarks respectively). The 79 classes that we did not find reteva

w1 (LSB) * is motivated bythe latest large collection of human;, mogelsor are listed in Table 3. As can be seen, quite a few
a2 drawn sketches built by Eitz et al. [6] attte SHREC'13 Sketch . of them are either only parts (i,earm, eye, mouth, foot, and

«s Track Benchmark §HREC13STB) [5]. The details of the  faather), or less representative or common to see éregel,

«« benchmark are as follows. %0 boomerang, craa mermaid, and pretzel), or relatively profes-
w1 Sional (i.e. harp, saxophone, and trombone). Therefoeel Th

s 3.3.1. 2Dsketchdataset s classes for which we have found relevant models in the eight

37Tajor 3D benchmarks are more representative as@ whole

as  The 2D sketch query set contains 13,680 sketches (f th ority of | obiects that -
a7 classes, each with 80 sketches) from Eitz et al’s [6] hunig foVer the m@on y 0 norma 0 1903_ atappear in _ )
Note that in the area of image retrieval, benchmarks with mil

«s Sketch recognition dataset, each of which has relevant Imotfe . : ) ;
«s in the selected 3D benchmarks. $liketch dataset was usedf 10nS Of image objects [106] are considered large-scaleuy

= as the 2D query sketch dataset in evaluating large scaletskét "eNt standards. Often, these image benchmarks are obtamned
1 based 3D shape retrieval algorithms in the SHREC'14 track®§rawling the web. In the 3D object case, compiling publicly

. large scale sketch-based 3D shape retriggjal w9 Available object repositories of large size is still a abradje.
a0 While alot of 3D content is available in private and commdrcia

«n repositories, the number of unique 3D objects freely alitgla
w23 3.3.2. 3Dmodeldataset «2 0n the web is limited. Hence, million-sized 3D object bench-
= In total, the 3D model datasef the L SB benchmark con-«s marks are not yet realistic. We therefore consider o8B
s tains 8,987 models classified into 171 classes. Each medbenchmark large in the sense that it is based on freely &lgila
w26 IS saved inthe “.OFF” format as a text file. Tis 3D dataset«s and carefully compiled content. Eventually, this situatioay
27 Was used in evaluating Query-by-Model 3D shape retrieval-alchange due to wider availability and easy-to-use 3D adijisi
2 gorithms in the SHREC'14 track on comprehensive 3D shapéechnology (see also Section 7).
a9 retrieval[1]. It was also used as the target 3D model dataset
«o in evaluating sketch-based 3D shape retrieval algorithms i3 5 Evaluation metrics
. the SHREC'14 track on extended large scale sketch-based 3D

«» Shape retrievgl]. a9 3.5.1. General evaluation metrics
w0 TO performa comprehensive evaluation of a retrieval algo-
w 3.3.3. Groundruth «a rfithm based on either a sketch or model query, we employed

: . seven commonlysedperformance metrics [7, 1, 2] in Infor-
« Allthe skeiches and models are categorized accarding t():t:n%ation RetrievaIwEvaISation that are also Wi([jely usld indhe
w5 Classifications in Eitz et al. [6] and the selected source:e:h»eq84 model retrieval field. They are Precision-Recall (PR) diagy
«s Marks, respectively. In our classification and evaluation, X

. s Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), E-
«r adopt the class naméom Eitz et al. [6]. s Measures (E), Discounted Cumulated Gain (DCG) 47l Av-
«s7 erage Precision (AP) [54]. Whave develope code [1, 2] to
s 3.3.4. Training and testing subsets e computeall of these metricsTheir meaning and definitions are

« To evaluate and compare the performance of both learnifigisted below.

w0 based and non-learning based Query-by-Sketch 3D model re-

«: trieval algorithmsye randomly selected 50 sketches from eaeh © Precision-Recall plot (PR): Assume there anemodels in

w2 class for training and used the remaining 30 sketches pss cta  the dataset, precisidn is to measure the accuracy of the

«s for testing, while the 3D model dataset as a whole was usedsfor ~ relevant models among the tép(1< K < n) ranking re-
wa both training and testing. 493 sults, while recalR is the percentage of the relevant class

a04 that has been retrieved in the tEpresults.

1The large-scale 3D model retrieval benchmarBB) is availableathttp: > ©® Nearest Neighbor (NN): NN is the precision of the top
//www.itl.nist.gov/iad/vug/sharp/contest/2014/SBR/. 496 most model.
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Table 2: Composition of the, 887 target 3D models in terms of the eigjeneric or specialized 3D model retrieval benchmatke:number of used models and its
percentages.

Generic Non-rigid Professional
Benchmarks
PSB  SHREC12GTB TSB CCCC | WMB MSB BAB ESB
#Used models 1,371 940 4617 382 44 367 1,239 27
Used percentage | 75.6% 78.3% 46.2% 80.8%9 11.0% 80.3%| 54.9% 3.1%
LSB percentage 15.3% 10.5% 51.4% 4.3%| 0.5% 41% | 13.8% 0.3%
Domain percentag 81.3% 4.6% 14.1%

Table 3:Seventy-nineemaining classes without relevant models in the selectechinearks.

angel arm backpack bell binoculars boomerang bottle openerulldozer cactus calculator
canoe carrot cat cloud comb computer mouse  crane machine  crown nut do envelope
eye feather flashlight foot frying pan grenade hamburger harp head phones hedgehogd
hotdog ipod lobster loudspeaker megaphone  mermaid moon mosquitomouse (animal)  mouth

nose panda paper clip parachute pigeon pineapple pizza rpoet  present pretzel
purse radio rainbow revolver rollerblades  rooster SantaClaus saxophone snail snowboard
socks speed boat sponge bob  squirrel strawberry streetligh sun swan T-shirt tiger
tomato  toothbrush tractor trombone trousers trumpet waditlee wheelbarrow  zebra

e First Tier (FT): Assume there ar€ relevant models inses o Average Precision (AP): AP is used to measure the over-

the database, FT is the recall of the ©f (for Query-by- sos all performance. It is computed as the total area under the
Model retrieval,excluding the query model itsglbr the so Precision-Recéturve. Therefore, it combines both preci-
top C (for Query-by-Sketch retrieval) retrieved models. sor sion and recall.

e Second Tier (ST): Similarly, ST is the recall of the tops We need to mention that, for the seven metrics above, a
2(C-1) (for Query-by-Model retrieval) or the topC2(for s higher value indicates better performance.
Query-by-Sketch retrieval) retrieved models.

s0 3.5.2. Weighted evaluation metrics
e E-Measure (E): Since generally people are more intef: Besides the common definitions of the evaluation metrics, we
ested in the retrieval resultm the first page, E-Measure:.. also have developed two weighteersionsfor the benchmark
is defined [7] to measure theompositeretrieval perfor- s by incorporating the model variations in each class. Bdgjca
mance ofboth precision and recall dhe top 32 retrieveds.. we use the number of available models to define the model vari-
models(that is, the exact results that usually can be showration. We assume there is a linear correlation between the num-

within one page) s1e ber of available models in one class and the degree of vaniati
2 si7 Of the class. Therefore, we adopt a weight based on the number
E= . Q) . . . .
% + é sis Of models or its reciprocal to define each weighted perfoean
s19 Metric.

e Discounted Cumulated Gain (DCG): The positionss» The poportionaly m, and recipr.ocay m weighted metrics
where the relevant models appéarthe retrieval listare =2 (MT=NN/FT/ST/E/DCG/AP) are defined as follows.

importantsince people are more interested in the models

in the front part of the listDCG is therefore defined as the sM nom

normalized summed weighted value about the positionsof mp, = + 3)

the relevant models. To compute DCG, the retriéis R L=y N

is first transformed into a veat@s, whereGi=1 if R is a Zi“ﬂlgll -m

relevant model, otherwisg;=0. Then, DCG is computed m = ZM—ll (4)
i=1n

according to the following equation

s22 Where M is the total number of modeketch queriesp; is
Gy i=1, s: the size ofthe class to which thé" querybelongs,andm is
DCGi_1 + |g% otherwise s« the non-weighted NNFT/ST/E/DCG/AP metric value for the

s I query. m, assigns bigger weights to the classes with more
s26 Variations. In contrast my highlights theoverall performance
s27 in retrievingdiverseclassedy assigning bigger weights to the

DCG = {

Finally, it is normalized by it®ptimum:

DCG, s2s Classes with few modeglaariations.lt is also intended to avoid
DCG = 125C 1 (2) = the bias on the performance evaluation because of frereint
+ 2 ] s humber of models in dierent classes.
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sa 4. Contributors s o SBR-VC ¢=1) andSBR-VC ¢ = %) submitted by Bo Li
o _ _ 580 and Yijuan Lu from Texas State University, USA; Henry
=2 Thefirst five authors of this paper built the above benchmark  jonhan from Fraunhofer IDM@NTU, Singapore; and Mar-

s and organized the SHREC'14 tracks on the topics of largescal  tin Burtscher from Texas State University, USA (Sec-
s« comprehensive and sketch-based 3D model retrieval as sella  tjon 5.2.2)

sss this follow-up study. Information about the other conttiims

s Of the two tracks is listed next. s« OPHOG and SCMR-OPHOGsubmitted by Atsushi Tat-
585 suma and Masaki Aono from Toyohashi University of
s 4.1. Query-by-Model retrieval 586 Technology, Japan (Section 5.2.3)

se  There ardive groups who have successfully participated in | gor_jESC (Words80W'Q), BOF-JESC (Words1000

s the SHREC'14 Compr_ehensive 3D_ S.ha_pe.Retrievf':lI track.mln VQ), and BOF-JESC (FVPCA32Words128)submitted
s total, they have submittefburteendissimilarity matrices.In by Changging Zou fronthe Chinese Academy of Sci-

. ) 589
sa addition, a new group (Zhang et al.) has contributed SeVen  onces. China: Hongbo Fu from the City University of
s2 New methods and the organizers also ran the PANORAMA [g§] Hong Kong, China; and Jianzhuang Liu from Huawei

sss method on our benchmark bas_ed on the publical_ly available ex Technologies Co. Ltd., China (Section 5.2.4)
s €cutable [107]. Below ardetails abotithe contributors and

s their twenty-tworuns. s To provide an even better overview of the twenty-six evalu-
s« ated 3D model retrieval algorithms, we classify them in €abl

= e CSLBP-Run-1 CS!‘BP'RUH'Z CSITBP'RUH'S, HSR-DE ses based on the following taxonomy: type of feature (e.g., view

. and KVLAD Sgbm't_ted by Mz_;\sak| Aono, !\hhad Karim_ based, geometric, or hybrid), feature codingtching methods

> Chowdhury, HItOShI Koyanagi, and Ryuichi quaka from (e.g., direct feature matching (DFM), Bag-of-Words (BoW) or

549 Toyohashi University of Technologyapan (Section 5.1.1)598 Bag-of-Features (BoF) framework, super-vector coding@EV

= o DBNAADERE submitted by Qiang Chen and Bin Farfg OF SParse coding (SC)), learning scheme (e.g., manifoltiiea

o from Chongging University, China (Section 5.1.2) w0 iNg (MR), supervised learning (SL), unsupervised learning
s (USL), or deep learning (DL)), and semantic informatiorg(e.

s2 o BF-DSIFT, VM-1SIFT, MR-BF-DSIFT MR-D1SIFTand «. usage of classification or label information). HowevercsiBD

553 MR-VM-1SIFTsubmitted by Takahiko Furuya and Ryus model retrieval methods have become more and more complex
554 tarou Ohbuchi fronthe University of Yamanashi, Japae. due to involvement of dierent localglobalhybrid features, di-
555 (Section 5.1.3) «s verse feature coding methods and various machine learning

. . N w6 Strategies or semantic information are being used, makdify i
wo e étF?RUS u.bmltF:ad Ulysif) le T_?d Y'J;ar? Ll; fro”; Tex:;:s%m ficult to provide both a descriptive and a compact taxonomy to
! IDi/le@erll'\(Jergir):,gaporéa(lgectieorr:r)Sl lo4)an rom Fraunnofere|assify and dferentiate 3D model retrieval algorithms.
558 s A

w0 We also need to mention that each method has some param-
% o DBSVCandLCDR-DBSVGubmitted by Atsushi Tatsum&® eter settings, which can be found in the following section on

560 and Masaki Aono from Toyohashi University of Techngt: Method description.
561 ogy, Japan (Sectiob.1.5

« o MSD, SDS, MFF-EW, SHELL, SECTOR, SECSHELL, 4@ Methods
563 D2 submitted by Chaoli Zhang, Haisheng Li, and Yajugllg5 1. Query-by-Model retrieval methods
s64 Wan from the Beijing Technology and Business Univer-

s sity, China (Section 5.1.6) as 5.1.1. Hybrid shape descriptors CSLBP*, HSR-DE, and_
615 KVLAD, by M. Aono, N.K., Chowdhury, H. Koyanagi,
s o PANORAMA [53]submitted by the organizers based en and R. Kosaka
s67 the results from the publicly available executable [107]s; We have investigated accurate 3D shape descriptors over the
«is years for massive 3D shape datasets. In the Large Scale Com-
ss 4.2. Query-by-Sketch retrieval «0 prehensive 3D Shape Retrieval track, we have attempted-to ap

ss  Four groups have participated in the SHREC’14 track on Exply three diferent methods VYith .five runs. Note thgt all the five
s tended Large Scale Sketch-Based 3D Shape Retrigwalve e runs, we apply pose normalization [85] agprocessing. .
sn rank list results (runs) fosix different methods developed by:  For the first three runs, we applied CSLBP*, a hybrid

sz four groups have been submitted. The participants and thefhape descriptor, composed@énterSymmetricL ocalBinary
55 FUns are listedhext. w4 Pattern (CSLBP) feature [108Entropy descriptor [109], and

«s Optional Chain Code (CC). Theftikrence between the three
su o BF-fGALIFF, CDMR (osuy=0.1, a=0.6), CDMR es runs comes from the number of view projections and the ex-
575 (csm=0.1, @=0.3), CDMR (snu=0.05, @=0.6), and e istence of the optional CC: 16 views for CSLBP in Run-1, 24
576 CDMR (sm=0.05, @=0.3) submitted by Takahikoss views for CSLBP in Run-2 and Run-3, while no CC for Run-1
577 Furuya and Ryutarou Ohbuchi from the University ef and Run-2 and CC addition in Run-3. CSLBP* is computed by
578 YamanashiJapan (Section 5.2.1) e first generating depth Iiier images from multiple viewpoints
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Table 4: Classification of the twenty-six evaluated methods. Whersiflaag Query-by-Sketch methods, we refer to [10] for “Feattype”: local or global 2D
feature. DFM: direct feature matching, BoW: Bag-of-Word¥/CS super-vector coding, BoF: Bag-of-Features, SL: suiget/learning, MR: manifold ranking,
LCDR: Locally Constrained Biusion Ranking, CDMR: Cross-Domain Manifold Ranking.

Index E%%%aé(?d Featuretype | Featurecoding/matching | Learning scheme insfgrpn?g%ljgn Section Reference(s)
Query-by-Model
1 CSLBP hybrid DFM no no 5.11 [108, 109]
2 HSR-DE hybrid DFM no no 5.11 [110]
3 KVLAD view-based DFM SL yes 5.11 [49, 50]
4 DBNAA _DERE hybrid DFM no no 5.1.2 [111]
5 BF-DSIFT view-based BoW no no 513 [96, 112, 113]
6 VM-1SIFT view-based DFM no no 5.1.3 [96, 112]
7 MR-BF-DSIFT view-based Bow MR no 5.1.3 [96, 112, 113, 114]
8 MR-D1SIFT view-based BoW + DFM MR no 5.1.3 [96, 112, 113, 114]
9 MR-VM-1SIFT view-based DFM MR no 5.1.3 [96, 112, 114]
10 ZFDR hybrid DFM no no 5.14 [54]
11 DBSVC view-based SvC no no 5.15 [115, 116]
12 LCDR-DBSVC view-based SvC MR (LCDR) no 5.1.5 [115, 116, 117]
13 MFF-EW hybrid DFM no yes 5.1.6 [118, 119, 79]
14 MSD geometric DFM no no 5.1.6 [58]
15 SDS geometric DFM no no 5.1.6 [17]
16 SHELL geometric DFM no no 5.1.6 [17]
17 SECTOR geometric DFM no no 5.1.6 [17]
18 SECSHELL geometric DFM no no 5.1.6 [17]
19 D2 geometric DFM no no 5.1.6 [58]
20 PANORAMA hybrid DFM no no 2.14 [53]
Query-by-Sketch

21 BF-fGALIF local Bow no no 5.2.1 [120, 10]
22 CDMR local Bow MR (CDMR) no 5.2.1 [120, 10]
23 SBR-VC global DFM no no 5.2.2 [121, 5, 10]
24 OPHOG local DFM no no 5.2.3 [122]
25 SCMR-OPHOG local DFM MR (SCMR) no 5.2.3 [122, 123, 117]
26 BOF-JESC local BoF no no 5.2.4 [124, 125, 126]

s for a given 3D shape object, then by analyzing gray-scale in*Visual Features”, which was introduced bggbu et al. [50].

2 tensities to produce three-resolution level histogramso(ir  VLAD differs from the histogram-based bag of visual words
s Implementation, 256256, 12&128, and 6464), having 16 (BoVW) model in that it maintains the residual vector during
4 DINS each, after segmenting each deptffdsimage into sub- the encoding procedure of visual features. VLAD can be repre
ws images (16, 8, 4, respectively). In addition to CSLBP, weechav sented by the following formula:

we @ugmented it with “Entropy”, trying to capture the randoisse

s Of surface shapes, resulting in CSLBP*. Vi = Z(x -G), (5)

«s  Forthe fourth run, we applied HSR-DE, another hybrid shape xeT

0 descriptor, composed of multiple Fourier spectra obtaimegd
«0 Hole, Surface-Roughness, Depthfiien, Contour, Line, Circle,
s and Edge images, an extension to the method we published

o [1}:0]' Fr:gufr.?s llustrates th(r'_ rzelir:;)fA?:;jopted n R.un;j4.l dimensional local features, then plain VLAD can be regaited
o or the Tiith run, we applie » @ SUPEIVISED 1€arn- 4 4 Kk dimensional matrix. Althoughégou et al. suggest that

s Ing m?th"d we developed by combining non-lingar scale SPaC&imension reduction of plain VLAD works reasonably well, we
= [49] with the Vector of Locally Aggregated Descriptofl(AD) eep all the data as they are. The KVLAD visual feature is
«s [50]. For the training stage, we employ SHREC2011 data an&epresented by the following:

«7 generate a code book of size 500, which is used for distance
s COMputation during the testing stage. V = [V, Vo, ..., Vk]. (6)
KVLAD is a combination of the KAZE local feature [49],
which is supposed to be free from blurring along the shargedg Dissimilarity computation is carried out such that we comepu
with the location sensitive encoding scheme VLAD to produceEuclidean distance between the visual features extracbed f
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wherei = 1,2, ..., K, ¢ is the centroid of theth clusted’;, andx
is a local feature in the clust&r. Each element of vecta has
{He same dimension of local features. Assume that we Have



«2 Model, followed by linearly combining all the three featute-

s3 gether based on fixed weights to form a new feature named D2
ss Bounding Box Normal Area feature (DBNAA) [111]. At last,

es We combine our DBNAA feature with Depth Ber (DE) [59]

«s and Ray Extent (RE) [59] features to build a more powerful fea

(a) Depth-buffer (b) Edge (c) Contour 7 ture named DBNAADERE [111]. Figure 4 shows the feature
s €Xtraction procedure.
o — o . .
°e / \ e s (1) DBNAA feature extraction. DBNAA comprises three
° Q ol|. ° ° s components: D2 feature, Bounding Box feature and Normal
o o / o A «1 Angle Area feature. The well-known D2 feature is first intro-
ez duced by Osada et al. [58]. Here we use D2 as a component
(d) Hole (e) Circle () Line (g) Surface roughness o3 Of our combined feature, and choose the parameters as fllow

s« N=1024 samples an8=1024 bins, which means we sample
Figure 3: An example of HSR-DE (Hole and Surface-Roughnessrifitors ., N=1024 sample points and divide the histogram into 1024 bins.
‘é";:ct'?z_pth'b“fer and Edge features augmented) before conversion to Fouriefina 1y e have a 1024-dimensional vector to represent eac

&7 model.

e Bounding Box feature of a model is extracted after applying
a query and the visual features of each 3D model. Assumedh&tontinuous Principle Component Analysis (CPCA) [59] on it
a visual feature for a query is given K, and an arbitrary 3D for pose normalization.
model is given by/. The distance or the dissimilarity between

them is computed as follows: L= {fggxk(_l_zf)i”’;”;]a;([ \;”)“"’ Xmax = Xmin}, ®
F = ’ s : ’ 9
K d B8 {rank(L, 2)" rank(L, 3)} ©
dist(Q,V) = Z(Qi,j - Vij) (7) e WhereZmay/Zmin is the maximunminimum value of the-axis
i=1 j=1 ez coordinates of all the vertices of the model. Similar arehwit

- o83 Ymax/ Ymin @nd Xmax'Xmin- rank() is a function to sort the vec-
« The sef';\rch resqlts computed from the above equation arg, ;p, ascending orderank(L, 1) means the first number in the
= ranked in ascending order. «s sorted vectol. Finally, we get a two-dimensional vectBeg

e 10 represent the Bounding Box feature of the model.

1 5.1.2. 3D model retrieval descriptor DBNAADERE, by Q. NAA feature is based on the mean angland average area

052 Chen and B. Fang [111] « S of each vertex,
1
Extract D2 | Combining A = Ny; N nZ}CF .ni -y, (10)
feature (D) | b features - NI ilcFy;
1
(DBNAA) s - 1%, (11)
Extract Ny; =
Bounding Box i
feamreg(B) B Extract Depth Combined 0 WhereNy;j is the number of adjacent faces of theh vertex.
Buffer-Based |l features | ) F,; is a set of the normals of the adjacent faces ofjtie ver-
(DE) feature (DBNAA_| o tex, whileni/n;j is the normal of fac#j. S; is the area of theth
Extract Normal DERE) «2 face, ands is the average area of the adjacent faces. Anillustra-
Angole Ares Extract ss3 tion to demonstrate th& andS joint distribution can be found
featu%e (NAA) | Ray-Extent (RE) |— s in [111]. After obtaining the mean angks and average area
feature s S, we can use them to form a joint 2D distribution histogram,

s Where bothA andS are divided intoN bins. N is empirically
s Set to be 16. NAA feature is therefore BN feature matrix.
s According to our experiments, NAA feature is suitable to dif
eggJerentiate models with similar D2 features.

= We propose a combined 3D model feature name After getting the above three types of features, we combine
= DBNAA _DERE which contains five fierent features: D2 [58], geting yp '
the three features as below,

«s Depth Bufer images (DE) feature, Ray Extent (RE) [59] fea-
sss ture, Bounding Box feature, and Normal Angle Area feature. dosnaa= @+ dp + B+ dg + (1 — @ — ) * dnaa, (12)

«7 Based on the analysis on model surfaces, for each vertex we

s cOmpute the mean angle and the average area of its adjagemherea andg are set as followsy=0.65, angg=0.15 according

o faces and then use them to form a joint 2D histogram disttito our experiments on the SHREC’12 Track: Generic 3D Shape
0 bution, which we name Normal Angle Area feature. Then, weRetrieval [96] dataset]p is a scalar, which means tlig-norm

«1 extract the D2 [58] feature and Bounding Box feature for eaghD2 distance of two modelslz anddyaa are the Bounding Box

10

Figure 4:DBNAA _DERE feature extraction procedure.



s and Normal Angle Area feature distance, respectively. Végine: for each range image is 25856 pixels. Then the algorithm ex-
705 10 mention that when combining features we should first nartracts a set of local visual features, Dense SIFT (DSIFT3[11
06 Malize diferent feature distances, which can be found in [1144]from each range image. The algorithm also extracts a global
(2) DBNAA _DERE feature combination. Inspired by the - visual features, One SIFT (1SIFT) [112] from a range image.
idea proposed in Li and Johan [54], we also integrate thelDept For DSIFT visual featureextraction, we randomly and
Buffer-based (DE) and Ray-Extent (RE) [59] features by adoptdensely sample feature points on the range image with prior
ing a similar framework as DBNAA: 7 10 concentrate feature points on or near 3D model in the im-
s age (see Figure 6 (b)). From each feature point sampled on the
dpenaADERE = @ * Oppnaa+ B+ Opg + (1 — @ — B) * dre. (13) 7 image, we extract SIFT [127], which is a multi-scale, raiati
0 iNvariant local visual feature. The number of feature pojer
o We sete=0.3 andp=0.35, which are similarly based on thg, jmage is set to 300 as in [113], resulting in about 13k DSIFT
~s experiments on the SHREC'12 Track: Generic 3D Shape Refeatures per 3D model. The set of dense local featureagire
o trieval [96] dataset. s gregatednto a single feature vector per 3D model by usihg
7o Since the label information for the test dataset of the benghBF approach. We usée ERC-Tree algorithm [128] to accel-
= mark is assumed unknown for the purpose of benchmarkifgrate both codebook learning (clustering of local feajuaesl
72 oUr class information-based retrieval method is not apple . vector quantization of local features into visual words. ré-f
s here. For more details about the shape descriptor compufati, quency histogram of vector-quantized DSIFT features besom

ns please refer to [111]. s a Bag-of-Features DSIFT, or BF-DSIFT feature vector for the
70 3D model.
75 5.1.3. Visuafeaturecombination fo 3D modelretrieval, by T.
716 Furuya and R. Ohbuchi
717
(7)) Tt dsiance  Ranking Overall
= ‘, BF-DSIFT|p| fixed dist. [-fadaptive dist. distance
"} -
m VM-lSlFTI—b' fixed dist. Hadaptive dist. (a) Original SIFT [127] (b) DSIFT (c) 1SIFT

Figure 6: Our method combines dense local visual feature (DSiRd global
visual feature (1SIFT).

Figure 5: Two feature-adaptive distances computed from tisoaV features
(BF-DSIFT and VM-1SIFT) are fused by summation.
w0 For 1SIFT extraction, we sample a feature point at the cen-
ns  Our algorithm is essentially the same as the one describes figr of the range image and extract a SIFT feature from a large
70 [96] and [112]. Figure 5 illustrates overall processing flofv 7 region covering the entire 3D model (see Figure 6 (c)). The
0 the algorithm. It starts with multi-viewpoint rendering 8D s number of 1SIFT per model is equal to the number of render-
-2 models, followed by extraction of a global visual feature an ing viewpoints, i.e.42. Note that the set of 1SIFT features is
72 set of local visual features from an image rendered froma.vies not BF-aggregatedbut is compared per-feature (i.e., per-view).
723 A distance between a pair of 3D models is compued sums Thus, the matching algorithm by using 1SIFT is called per-
74 Of distances learned from two distinct features % View Matching 1SIFT (VM-1SIFT).
= Our algorithm employs a view-based approach for itis able to
7 compare 3D models in almost any shape representations, £.@istancecomputation. Our method useswo different distance
7z polygon soup, open mesh, or point atbuA set of local fea- . metrics for retrievhranking; (1) fixed distance and (2) feature-
76 tures aggregated by using Bag-of-Features (BF) approdéh (B adaptive distance learned by using Manifold Ranking (MR) al
22s DSIFT below) is known to attain certain invariance againmst & gorithm [114].
70 ticulation of 3D shapes, e.g., bending of joints. Such auieat (1) Fixed distance. Symmetric version of Kullback-Leibler
= however, is incapable of distinguishingigirences among rigid  Divergence (KLD) is used as fixed distance metric. KLD per-
72 shapes, e.g, pipes bent in U shape and in S shape. Thusfgms well when comparing a pair of probability distributi
=3 fusion of an aggregated local feature, which is insensiive e, histograms. For the BF-DSIFRedistance between a pair
7« deformation or articulation, with a global feature semsitto  of 3D modelsx;, X; is equivalent to KLD between BF-DSIFT
s global deformation and articulation (VM-1SIFT below) cdul feature vectors of the two models (Equation (14)). For the-VM
s iImprove overall accuracy. 1SIFT, the distance between a pair of 3D models is calculated
by using Equation (15) wherd, is the number of 1SIFT fea-
77 Visualfeatureextraction. Our method first renders a 3D model tures per model anxl, is 1SIFT featue extracted from the view
e INtO range images from multiple viewpoints spaced unifgrml p of 3D modelx;.
29 iN solid anglespace Forthe SHREC'14 Comprehensive 3D
20 Shape Retrieval trackve used 42 viewpoints. Image resolution der-psieT(Xi, Xj) = dkLp(Xi, Xj), (14)
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Ny su above four diferent but complementary features to formulate

dvm-1s1FT(Xi, X)) = Z min dcLo(Xip, Xjq)- (15) ., the hybrid shape descriptor ZFDR to increase iffedéntiation
p=1 013 POWe.

7 (2) Feature-adaptive distance. To improve distance metric.  Figure 7 illustrates the overview of the feature extraction
7z among 3D models, we computeature-adaptivelistances ones process: 3D model normalization mainly utilizing Continigo
7 @ manifold of 3D model features. To do so, we apply the MRPrinciple Component Analysis (CPCA) [59] and extraction of
75 algorithm to each of the BF-DSIFT feature manifold and thefour component features, F, D andR. The detailof the re-
76 VM-1SIFT feature manifold. For each feature, we first geteeras trieval algorithmare described as follows.
77 & Nm X Npy affinity matrix W where Ny, is the number of 3Dss (1) View sampling. As a tradeff between #iciency and ac-
s models Nn=8,987for Query-by-Model retrieval o SB) and < curacy, the approach sets cameras on the 4 top corners,-3 adja
7o Wij indicates similarity between a pair of 3D modglsx;. Wi; «: cent face centers and 6 middle edge points of a cube to generat

70 IS computed by using thfellowing equation a2 13 silhouette views to represent a 3D model.
o)y e s L w3 (2) Zernike moments and Fourier descriptors features
W = {exp(—T") ifi#j, o4 (ZF). For each silhouette view, up to #@rder Zernike mo-
Y7o otherwise & ments [129] (totally 35 moments) and first 10 centroid disan

o ) ) ) a2s based Fourier descriptors [130] are computed to respéctive
s Whered is fixed d|st§nce of either BF-DSIFT (Equation (14)) represent the region-based and contour-based visuatdsaiti

=2 OF VM-1SIFT (Equation (15)). L «s thethe silhouette views of th@D model.

s \We normalizeW by computingS = D"2WD™z whereDisa ,, (3) Depth information and Ray-based features (DR). To

= diagonal matrix whose diagonal elemenbis = 3’ W;. s improve the versatility of the descriptor in characterigii-

We use the following closed form solution for the MR to fing verse types of models, the depthflau-based feature and ray-
relevance values iff given “source” vectorY. In the source ., hased with spherical harmonic representation featurd ojese
vectorY, an element corresponding to the query 3D model is geby vranic [59] are integrated into the hybrid shape descrip-
to 1 to serve as the source offdision, while the other elements, tor, The executable files [59] are utilized to extract the -438
corresponding to the database 3D models are setfg & the . gimensionaD and 136-dimensiona® features.
relevance yalue b.et\'/vee.:n 3D mod'edmdj.A higher relevance (4) ZFDR hybrid shape descriptor distance. Scaledé;
means a higher similarity, or a smalleffdsion distance. o (scaling each component of two feature vectors by theiresp

Fo(l-aSly (16) a3 tive £1-norm before computing the summed component-wise
' s €1 distance metric[59] or Canberra distanceéeomputing the

= We add prefix *MR-" before the feature comparison meth%‘i‘ijgl component-wise distance between any two components of

« to indicate MR-processed algorithms (MR-BF-DSIFT and vis-wo feature vectors followed by normalizing it by their sum,
. VM-1SIFT). For parameters, we use-0.005 ancv=0.975 for ** followed by summing all the component-wise distances) [76]

o MR-BE-DSIET. and user=0.0025 ande=0.9 for MR-VM- * Metricis first applied to measure the component distadges

2 1SIFT. To further improve retrieval accuracy, we combine dif: ?F’ g.D ,tand:jR bet\(veen two tm(?%elf.' Theln, thet?ypnd tﬂesfcrlp-
0 fusion distances of thivo features. The diusion distances of** ‘0" 9!Stanc&izror IS generated by linéarly combining the four

s MR-BF-DSIFT and MR-VM-1SIFT are normalized and the# COmponent distances. o
% summed with equal weight (MR-D1SIFT) a7 (5) Distanceranking and retrieval list output. Sort the hy-
' s brid distances between the query model and all the models in

5.1.4. Hybridshapedescriptor ZFDR, by B. Li, Y. Lu and H*" the dataset in ascending order and then list the modelsaccor
793 J.1.4. y . , Y. .

850 |ng|y
o Johan [54] = Please refer to the original paper [54] for more details abou

. . he feature extraction and retrieval process.
e The comprehensive 3D model dataset contains both ger?sezrlc P

7 and professional (e.g. CAD and architecture models), agid

%6 NON-rigid, articulated and non-articulated, watertightl aon- = 5.1.5. Unsupervised 3D model retrieval based on Depth
0 Watertight models. Due to the variations in the types andsthbss: Buffered Super-Vector Coding and Locally Constrained
«0 NESS considerations in retrieval performance, we empkpyh s Diffusion Ranking, by A. Tatsuma and M. Aono

s brid shape descriptor ZFDR devised in [54] which integratesDepth Byfered Super-Vector CodingWWe propose a new 3D
a2 both visual and geometric information of a 3D modéérnike sz model feature known as Depth Bered Super-Vector Cod-
w3 Moments anérourier descriptor features of 13 cube-based saming (DBSVC), an approach categorized advag-of-features

s ple views; Depth information feature of 6 depth fber views s method [131, 113]. DBSVC extracts 3D model features from
ss andRay-based features based on ray shooting from the centeendered depth lfiier images using a super-vector coding
a0s Of the model to its farthest surface intersection pointsual s: method[115]. Hgure 8 illustrates the generation of our pro-
a7 information-based features (e.@,andF) have good perfor-s. posed DBSVC featureWe first apply Point SVD, a pose nor-
ss Mance in characterizing some classes like “sea animalfobutss malization method developed previously by the authors.[85]
a0 SOMe other types of models like “car”, depthfilan-based fea-s: Post pose normalization, we enclose the 3D model with a unit
a0 tures (e.g.D andR) are better [83]. We optimally integrate thes geodesic sphere. From each vertex of the unit geodesicespher
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Translate the center
to the origin

Compute
bounding sphere

Scale to make the
radius equal to 1.0

CPCA
alignment

Compute Zernike moments

Cube-based view sampling

Z:13x35 matrix

featureZ and Fourier descriptors (< ‘ <
featureF for each view .‘-
u Compute depth-based feature D
ZFDR K— <
-y @

F: 13x10 matrix
D: 438-dimensional vector
R: 136-dimensional vector

Compute ray-based feature R

A

Figure 7: ZFDR feature extraction process [54].

ss We render depth bter images with 30& 300 resolution, and a

ss7 total of 38 viewpoints are defined.

s After image rendering, we extract local features from each
w0 depth budfer image. The SURF-128 descriptor is a well-
s Known local feature vector with outstanding discriminatio
sn power [116]. The SURF-128 descriptor outperforms the regu-
a2 lar SURF descriptor, but it turns more spar3éwus, we apply

a7 the power and thé, normalization, which diminish the sparse-
a7 Ness of the SURF-128 descriptor, and call it the Power SURF
s descriptor. Moreover, we employ feature augmentation with
a6 patch coordinates [132]. The Power SURF descriptors are ex-
a7 tracted from 98« 98 pixel patches arranged every 5 pixels.

es 1O calculate DBSVC, we generate a codebook of visual
ars Words in advance. The visual word is thus defined as the cen-
s ter of a cluster obtained by applying-means clustering to the

s1 Power SURF descriptorsyhich are extracted from 3D mod-
ss2 €ls in the training dataset prepared by removing the deeidnat
s and the duplicated models from the NTU 3D Model Dataset
ss4 (NMD) [37]. K-means clustering is performed with= 2048.

ss  We calculate DBSVC with the codebook Kfvisual words

a6 V1,...,Vk. Given a set of local features, ..., Xy extracted

se7 from a 3D model, lety; = 1 if x; is assigned tey and 0 other-

s Wise. For eachk = 1,...,K, we defing

¢ Training dataset

1

Test data

| Depth-buffer image rendering |

v T
|
: o .
R y L -
|
1 1 1
I Local feature extraction ]
v i v
/-8 | B-F
Local features | Local features
|
N |
A.AA oA |
a a
SYAN

Visual words

Feature encoding

[ewulls 6t 305, ¢, T

Depth Buffered
Super-Vector Coding

Figure 8: Overview of the Depth Biered Super-Vector Coding.

Locally Constrained Dfusion Ranking.We calculate ranking

1 N
be = Nzl]ak (17)
Ck = C bk, (18)
1 N
U = ﬁ;aki(xi—vk), (19)

wherec is a nonnegative constant and is chosen.e8in our
implementation. Then the DBSVC feature is obtained by

foesve=[C1, U], ..., Ck, U] (20)

P=TE,

scores using our modified manifold ranking algorithm. We use
the Locally Constrained [usion Process (LCDP) [117] for
calculating the fiinity matrix in the manifold ranking algo-
rithm [123], and call this method Locally ConstrainediDsion
Ranking (LCDR. LCDP aims at capturing the geometric struc-
ture of data manifolds, reducing th&ect of noisy data points.

Given a set of data poinfs, ..., f,, the transition probability
matrix on thek-nearest neighbor graph is defined by

(21)

whereE;; = exp(llfi — fjlI2/0?) if f; belongs to the-nearest
s TO diminish the sparseness, the DBSVC feature is normalizedeighbors off; andE;; = 0 otherwise, and; = 3; Ejj. Fur-

a0 USing the power and th& normalization. We simply calculate

thermore, LCDP sets a high value to the transition proksbili

sa the Euclidean distance for comparing DBSVC features batweebetween two data points if all the paths among tlkeiearest

sz two 3D models.
13

neighbors are short. This property is implemented in the fol



lowing update strategy Models | amt
. |
W(t + 1) = PW(t)P". (22)
Normalized
For the initial dfinity matrix W(0), we useasymmetrically nor- oy
malized dfinity matrix, whichis defined as point s2t
W(0) = QY2AQ 12, (23) Figure 9:Example sample point sets for normalized 3D models.

s WhereAjj = exp([lfi - fjl?/o?) andQ; = X Ajj.

Our LCDR calculates ranking scores using the manifold e - [t | L \i
ranking algorithm with thefinity matrix W obtained by LCDP. & 2 2 b
Given a column vectoy = [yi,...,Ya]T with y; = 1 if f; Wz 5
is a query andy; = O otherwise, the ranking score vector ) f
r =[ry,...,rn]" in LCDR is defined by 52 os
012 Statistical histogram + Statistical histogram
r=(>-aM)ly, (24) 5[ Cute spine emoaton cune | | g T oune pine preposton cne | |
wwhereM = DY2WDY2, Dy = 3, W, ande € [0,1) is a ] T [oeat |
ses tUNING parameter. ] &
ss  LCDR allowsto calculate the ranking scoreshich capture 15 i
s7 MOre geometric structure of data manifolds than the conven- ‘ 5
s tional manifold ranking methods. However, LCDR requires us 3
=0 MUCh execution time because of calculating the matrix produ I T s
w0 repeately. We fixed the LCDR parameters through prelimi- % L L & A BT ! 4 2

w01 NAry experiments with the Princeton Shape Benchmark [7]. We

. Figure 10: Example cubic spline interpolation curwesdto representhe
902 §etk 'Fo 12,0 to 0.36,  to 0.99, and the maximum number of Shape Distribution histograms.
03 iterations to 10.

w0s 5.1.6. 3D shape retrieval based on MSD, SDS and MFF;EW
08 by C. Zhang,H. Li, Y.Wan «22 Shell-Distance-Sum (SD&porithm. 3D Shape Histogram al-

= Toaccommodate the characteristics of the large-scale beticgOrithm [17] can be broadly divided into three types: SHELL,
s mark datase we adopt two highly timeicient geometry-s+ SECTOR and SECSHEL Our SDSis based on SHELland
= based retrieval algorithms, which are modified from Anketst* Makes animprovement in the step of constructing the shape hi
«s al’s Shape Histogram algorithm [17] and Osada et al.’s 8haptogram. In our algorl_thmwe sum theldlstances between every
o0 Distribution (D2) algorithm (SD) [58]. In addition, to bett * point in eachof 120 binsand th_e g_raV|ty center of t_he model to

o represent the feature of each category dataset, the reattivie = represent the feature of that bin, instead of counting timelas

o1 fusion method based on entropy weight is adopted. w0 Of points falling into each bin. This improvement enablesSSD
a0 10 describe both the location and the magnitude informatdfon

«: Modified Shape DistributiofMSD). To enhance the perforsa the vertices on a 3D model. In addition, we normalize the 3D
«s mance of the SDwe modify the 3D normalization part in the= model first asin the corresponding steps described in MSD.

a1s Preprocessing step, and construct a cubic spline intefpola

a6 CUIVe to represent the statistical shape distributiorobisim.  +: Multi-Feature Fusion Based on Entropy Weights (MFF-EW).
ar (1) 3D model normalization and sampling. Firstly, we ob- «« Considering the complementarity between the candidate fea
«s tain @ model’s gravity center by accumulating the gravitiéses tures for fusion, we select the MSD and SDS features in our
s all the faces on the surface of the 3D model. Then, we tramgnulti-feature fusion algorithm. & propose a novel multi-

0 late the gravity center to the origin and scale the model tkemer feature fusion algorithm by adaptively computing the fuasio
«: the radius of its bounding sphere to be 1. Consequently,sthteature weights using entropy feachquery, which is similar

«2 D2 distance feature value is compressed into the range of.{09 [118, 119].

w3 2], which contributes to the scale invariance property ofau o0 (1) Information entropy calculation based on a query re-

«4 gorithm. Finally, we randomly sample 1,024 sample points fo sult. The theoretical basis of this step is to characterize the
o5 each model. Figur@ shows examples. s differentiation ability of a 3D shape feature based on the infor-
«s  (2) Cubic splineinterpolation curve construction. To bet- s mation entropy of its retrieval results. We need to mentiat t

« ter describe the statistical properties of a Shape Digtdbuss the classification information of the benchmark is also eeed
«s histogram, a cubic spline interpolation cumih 1026 control ss in this step.

@29 points instead of polynomial fitting or piecewise linear funes 1) For each query modej € U, whereU represents the tar-

w0 tion [58], is used to represent the shape distribution. Somesexget 3D model dataset, we obtain the togetrieved modeltR;k

s amples are listed in FigarlQ sss When using the shape feature We setk=10 based on experi-
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0 Mental results as well as by referring to the approach in[79}s Our algorithm employs an unsupervised distance metric
2) Counting the number of models in the tepnodelsthat o+ learning to partially overcome the gap between sketche8and
belong to the same category, denote®Rgs wherei = 1,2, ...n o models [10][120]. Our algorithm called Cross-Domain Man-
andn is the number of categories. Then we calcutag prob- «s ifold Ranking, or CDMR [120], tries to bridge the gap be-
ability distribution ofR;ki, denotedas{ps, p2, --- Pis ---» Pn} «0 tween features extracted in two heterogeneous domains, i.e
«r domain of sketches and domain of rendered images of 3D mod-

Rfk_ s els. While the CDMR algorithm could perform in either an
pi = # (25) s unsupervised, semi-supervised, or supervised mode, wedse
qu s SUpervised CDMRN this paper.
_ ; s Figure 11 shows an overview of the CDMR. It first creates
3) Computing the entropy d& ,, s tWo separate manifolds of features, i.e., a manifold of gtket

. « features and a manifold of 3D model features. The feature
fy_ . ' s Manifolds are computed by using an algorithm best suited for
E(Ry) = - le pi-1og; pi. (26) ., each of the domains: BF-fGALIF [120] (slightly modified BF-
- s0 GALIF [133]) is used to compare sketches and BF-DSIFT [113]
(2) Calculating the weight of feature. Based on the anal< is used to compare 3D models. These two feature manifolds are
ysis of Step (1)a smaller entropy demonstrates that the certhen inter-linked to form a Cross-Domain Manifold (CDM) by
responding 3D feature can better describe the models, aneausing an algorithm capable of sketch-to-3D comparisort, tha
should assign a large weight for it. Therefore, we formulates, the BF-fGALIF. Using the CDM, similarity values between

their relationship as follows, s @ sketch query and 3D models are computed Ifijusing rel-
w6 evance on the CDM. The relevance originates from the query,
. 1- E(R(;k) o7 and it dituses towards 3D models via edges of the CDM by us-

ak = m (27) o ing a process identical to Manifold Ranking [123]. The highe
f=1 ="k w00 the relevance value of a 3D model, the closer it is to the query
w0 Unlike previous sketch-to-3D model comparison algorithms
100 the CDMR tries to maintain manifolds of sketches and 3D mod-
102 €lS. This often positively contributes to ranking accuraigo,
w03 if @ large enough number of sketches and their inter-siiylar
0. Values are available, the CDMR performs a form of automatic
105 quUery expansion on the manifold of sketches.

s« Wheremis thetotal number of the 3D features, aff | quk =
961 1
(3) Computing fusion dissimilarity distance. First, we nor-
malize each row of the dissimilarity distance matrices Itesy
from different features,

df (i, j) — min;

o .
= —.,j=12.,n,
d’ (i, J) max —min ] n

(28) 10s FOrming a Cross Domain ManifoldA CDM is a graph, whose
107 Vertices are either sketches or 3D models. The CDM gk&ph
whered'(i, j) andd" (i, j) are the pre-normalized and normals is represented by a matrix having si2é; ¢ Npm) X (Ns + Nm),
ized distances between modeind modelj respectively, while.w whereNs andN, are the number of sketches and 3D models in
max andmin; are the maximum and minimum distanceshe ..., a database respectively. FQuery-by-Sketch retrieval dnSB,

it row. Finally, the fusion dissimilarity distance is, 111 Ng = 13,680 andN,, = 8,987.
m vz The element of the matriw, i.e., Wj;, indicates similarity
Dtusion(is J) = Z d" (. ) - Wfk' (29) = between a sketch (or a 3D mode$nd a sketch (or a 3D model)
4 4 w4 j. (For details, please refer to [120].) Distances are coatput

w15 for each pair of verticesand j by using the feature compari-
w2 In the experiments, we also provide the performance of.auson methods i.e., BF-fGALIF and BF-DSIFT. The distances are
%3 implementations of the original D2, and three types of 3D
ss Shape Histograms (SHELL, SECTOR and SECSHELL) as a
«s baseline for reference.

/" Sketch feature
domain

Sketch-sketch

ws 5.2. Query-by-Sketch retrieval methods

o7 5.2.1. Ranking on Cross-Domain Manifold feketch-based

a68 3D modelretrieval, by T. Furuya and R. Ohbuchi

%o TO compare a hand-drawn sketch to a 3D model, most of ex-
o0 ISting Mmethods compare a sketch with a set of multi-view ren-
o dered images of a 3D model. However, there is a gap between
o2 Sketches and rendered images of 3D models. As hand-drawn
o Sketches contain “noise”, such as shape abstraction, sieman

feature
similarity

|
Sketch-3D
feature
similarity

|
3D-3D
feature
similarity

a4 influence, stylistic variation, and wobbly lines, thesetskes  Figure 11: Feature comparison using Unsupervised Cross-Dalf@nifold

o5 are often dissimilar to rendered images of 3D models. Ranking (CDMR).
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w17 then converted into similarities by using the following atjan wss s anda), we tried the following combinations of the param-

118 Whered(i, j) is thedistance between verticeand j. w050 eters; s, @) = (0.1, 0.6), (0.1, 0.3), (0.05, 0.6), (0.05, 0.3).
expd@, j)/o) ifi#]j, ws0 5.2.2. Hjicientsketchbased 3Dmodelretrievalbased orview
Wij = 0 otherwise 1061 clustering andparallel shape contextmatching (SBR-
1062 VC) [121] [5] [10], by B. Li, Y. Lu, H. Johan, and M.
we  The parametesr controls difusion of relevance value across Burtscher

w20 the CDM. We use dferent valuesrss, omm, andos i to com- ... The SBR-VC algorithm first clusters a set of sample views of
1z pute sketch-to-sketch similarity, 3D model-to-3D modehisi.es each model into an appropriate number of representativesvie
w2 larity, and sketch-to-3D model similarity, respectiveljhese..s according to its visual complexitwhich isdefined as the view-
123 Similarity values must be computed either by feature sintyla,e: point entropy distribution of its sample views. Neatparallel

1024 OF Semantic similarity (if available.) wes relative frame-basedhape contexreferred as relative shape
0 As mentioned above, sketch-to-3D model comparison usesontext)matching [135] algorithm is employed to compute the
12 BF-fGALIF algorithm [10][120], which is a slightly modified distances between a 2D sketch and the representative ithou
w27 version of BF-GALIF [133]. BF-fGALIF compare a sketch. views of a 3D model. Before retrieval, the relative shape-con
12s and multi-view rendered images of a 3D model by using setsext features of the representative views of all 3D targedefo

120 Of Gabor filter-based local features. A 3D model is rendatedare precomputed. Figure 12 presents an overview of the algo-
1030 INto Suggestive Contour (SC) [134] images from multiplenwiaq. rithm, which is described in more detail below.

w0z points. The sketch image and the SC images of the 3D model

1z are rotation-normalized by using responses of multi-gaiton ~ Precomputation.(1) Viewpoint entropy-based adaptive

1 Gabor filters computed of the image. After normalizing for ro View clustering. This clustering is performed in four steps. For
w0 tation, fGALIF features are densely extracted from the imag €ach 3D model, the first step computes the viewpoint entrbpy o
ws The set of fGALIF features are integrated into a feature vec81 views that are sampled by subdividing a regular icosatmedr
w3 tor per image by using Bag-of-Features (BF) approach. A BRusing the Loop subdivisiofil36] rule. The second step cal-
w feature of the sketch is compared against a set of per-view Bfulates the viewpoint entropy-based 3D visual complexaty f
w: features of the 3D model to find a distance between the sketctach model. The mean and standard deviation entropasd

103 and the 3D model. sof all sample views of each 3D model are computed first. The
w0  For sketch-to-sketch comparison, BF-fGALIF features are3D Vvisual complexity of each model is defined as

o extracted from the sketches. Unlike the BF-fGALIF for sketc —

12 10-3D model comparison, the BF-fGALIF for sketch-to-sketc I S+ 0¥ (31)

143 COMparison does not perform rotation normalizatio 2 7

w10 compare 3D models, we use the BF-DSIFT [113] algo
145 rithm. It is also a view-based algorithm. A set of multi-sgal

145 rotation-invariant local visual features is densely estied from € [0, 1]. This metric has the ability to quantitatively measure

1o Imultll-v!ew Irefndvtared r?‘”?he lmgge_stof a t3[()j modglb Thedsvletfo he visual complexitydifference between models belonging to
wes fOCAL VISUAL Teatures IS then br-integrated per MOoCEl T0irerent categories. In the third step, the visual complexiof

e COMparison. A little more detail on the BF-DSIFT is found , 35y el is tilized to determine the number of represietat
1050 IN Section 5.1.3. views

‘wheres andm are the entropies and m normalized relative
to their maximum and minimum over all the models. Hence,

: : : : Ne =[a - C- Nol, (32)
Ranking on the Cross Domain Manifold\fter generatingVv

representing a CDM, Manifold Ranking (MR) a|gorithm [12137]5 wherea is a constant and\lo is the number of Sample views
is applied onW to diffuse relevance value over the CDM from for €ach 3D model.No is 81 in the presented SBR-VC algo-
a query. We use the closed form of the MERy(iation(30)) to o fithm. For large-scale retrievak is chosen as 1 of, which
find relevance values i given “source” matrixY . In Equation = Corresponds to an average of 18.5 or 9.5 representativesview
(30), | is an identity matrix an®is a symmetrically normalizeei réspectively, for each model in the dataset. The fourth afep
matrix of W ande is a parameterf;; is the relevance value ofe Plies Fuzzy C-Meanf37] view clustering to the viewpoint en-

the 3D modelj given the sketch. A higher relevance meansa: tropy values of the 81 sample views, together with their view
smaller distance. sz POINt locations, to generate the representative views dche

F = (| _ QS)_]'Y. (30) 1083 Model. ' ' . .
w0 (2) Feature view generation. Outline feature views for the
w1 Using a naive algorithm, CDMR requires time complexity 2D sketches and the 3D models are generated. In the 3D case,
ws2 O((Ns + Nm)?) for generating the CDM grapt andO((Ns + s silhouette views are first rendered followed by outline dieat
wss Nip)®) for diffusing relevance over the CDM (Equation (30)): extraction. In the 2D case, silhouette views are generatsed
105« AS shown in the experiments, computing CDMR is slower thanon binarization, Canny edge detection, closfogce) dilation
1ss Other Query-by-Sketch retrieval algorithnfsmong the param-ess (7 times in this casepnd hole filling.
105 eters for the CDMR (i.egss, omm, 0sm anda), we fixedoss w00 (3) Relative shape context computation. Rotation-invariant
1057 10 0.02 andry v to 0.005 through preliminary experiments. Ref relative shape context features [135] are extracted teesemt
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Precomputation Stage:

Viewpoint 3D visual Representative Viewpoint
View sampling ™= entropy =1 complexity [ viewsnumber [=={ entropy-based

computation computation assignment view clustering

Retrieval Stage:

Query sketch —
Ranking
& output

Shape context matching s}

Representative views — jum

Figure 12: Overview of the SBR-VC algorithm: the first row is the precomputation whereas the second row is for the ratrage [5] [10].

1002 both sketches and sample views. 50 feature points are:.sn@re composed of the vertices of a unit geodesic sphere. To ob-
1003 fOrmly sampled for each outline feature view based on cubidain a sketch-like image, we apply Laplacian filtering, thirg
10: B-Spline interpolation. uss transformation and Gaussian filtering to the deptfidnimage.
uss Similarly, in the preprocessing of the sketch image, wezeesi
w95 Onlineretrieval. With a 2D query sketch, a target 3D databasg,it to 300x 300 resolution, and employ thinning transformation
w9 and the precomputed relative shape context features oéfhe.: and Gaussian filtering.
w97 resentative views of each model, the online retrieval élgar After preprocessing, OPHOG divides a given image into
e WOrks as follows. cells using a regular sliding window determined by the spati
we (1) Sketch feature extraction. First, an outline feature level. The window sizev and stride sizes are defined by the
uoo View Of the 2D sketch is generated. Then, its relative shap@mage sizen and spatial levell as follows:
ua context features are computéu parallel within the follow-
uo2 iNg three steps: outline magnitude computation, log-phoisy w=h/2', s=w/2 (33)
103 togram generation and normalization.
ue  (2) 2D-3D distance computation. The relative shape con- ~ The OPHOG feature is obtained by concatenating all of the
uos text matchings performedbetween the sketch and each repre-orientation histograms calculated for each cell. The daiton
106 Sentative view of a modeind hie minimum 2D-3D matching histogram is constructed by voting gradient magnitude & th
uor COSt is chosen as the sketch-model distaridee computation — corresponding orientation bin. The gradient magnitgdend
uos Of 2D-3D distances between the sketch and all the 3D modelgrientationd are defined as follows:
uos IS also performed in parallel.

uo  (3) 2D-3D distance ranking. The sketch-model distances a(x,y) = \/ux(x, Y)? + uy(X,y)?, (34)
un are sorted in ascending order and the models are ranked ac-

uz cordingly. 1 Ux(%,Y)

ws  SBR-VC @ = 1) and SBR-VC ¢ = 1) represent two runs o(x.y) = tan Wy’ (35)

114 Of the SBR-VC algorithm with corresponding values. The
s 70x performance speedup achieved over the serial code [5] Khere
s mainly due to the parallelization and code optimizationhaf t
.- relative shape context matching algorithm. ux(xy) = L(x+1,y) - L(x - L),

uy(xy) = Lxy+1)-L(xy-1)
s 5.2.3. Unsupervised sketch-based 3D model retrieval based ) ]
1119 on Overlapped Pyramid of HOG and Similarity Cofi® @1dL(x.y) denotes the image value at pixaly). .
1o strained Manifold Ranking , by A. Tatsuma and M. AGHb Finally, to decrease the influence of the noise in a sketch im-
.= Overlapped Pyramid of HOGWe propose a new feature vet age, we transform the OPHQG f_eature vector into its rankrorde
122 tor known as Overlapped Pyramid of Histograms of Orientati& vector.and. apply the’z pormahzatmn. , _
.» Gradients (OPHOG) which is an extended version of the Pyra- PUring implementation, we set the number of histogram bins
12 mid of Histograms of Orientation Gradients [122] propoged i ©© 40 and limit the number of levels ta 3For comparing a
s the field of image classification. An overview of the proposed>Ketch image to a 3D model, we calculate the minimum Eu-
12 OPHOG s illustrated in Figure 13. OPHOG divides an imaged'dean distance, which is denoted by the following equatio
127 iNto overlapped cells by stages, and extracts an orientais . m
128 togram from each cell. d(s m) = i=1rp.'202”f(s) - fi( )”’ (36)
ue  We perform preprocessing to a 3D model and a sketch image
uw before extracting OPHOG features as shown in Figure 14u.dmwheref(® is the feature vector of sketch imageandfi(m) de-
ua the preprocessing of the 3D model, we generate depfiierbus. notes the feature vector of thign depth bifer image rendered
ua images with 300 300 resolution from the 102 viewpoints that from 3D modelm.
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Figure 13: Overview of the Overlapped Pyramid of HOG.

Depth buffer Laplacian Thinning Gaussian
image filtering transformation filtering p \ ‘|

AN
- H % RN @ (b)
[y

Sketch image

Figure 15: lllustration for the junction-based extendedpshcontext feature
S descriptor. Two local patches on a junction of a query skattha model view
—— ] are shown in (a) and (b), respectively.

S

_ _ _ usz In SCMR, we use thd®BSVC as the feature vector for a
Figure 14: Preprocessing steps of the Overlapped Pyrami®@@H ., 3p model. Furthermore, we calculate thérity matrix using
uso the LCDP [117]. We fixed the SCMR parameters through pre-

s Similarity Constrained Manifold RankingWe also propose aie liminary experiments with the SHREC’13 Sketch Track Bench-

e extended manifold ranking method [123] constrained by ‘thénark [5]. For the SCMR, we set to 0.1 anda to 0.85. For

s Similarity between a sketch image and a 3D model. In the fe1ihe LCDP, we set the number of nearest neighbors to 10, the
lowing, we call this method Similarity Constrained Maniot Gaussian width t0.@5, and the maximum number of iterations

1149
us Ranking (SCMR). uea 10 10.
Suppose we have feature vectors of 3D mofjel..,f. )
SCMR aims to assign to each feature vedta ranking scores 5.2.4. BOF-JESGDaseddescrlptor, by C. Zou , H. Fu, and J.
r; which reflects the non linear structure of the data maniféfél. Liu
To reflect the data relations represented with tfimidy ma- ue+  BOF-JESC follows the bag-of-features framework. It em-
trix W within the ranking scores, we defined the following cestPloys a junction-based extended shape context to chaizeter

function: 16s the local details within the four concentric circles ceatknt
1 zn:[ r r ]2 un the key points. The motivation of the BOF-JESC descriptor
5 —_ - Wij, (37) 11 comes from two aspects: 1) the local patch centered at a junc-
244\ yDy  Dj;) p ) p j

a7 tion takes into account contour salience, hence can caipture
whereD; = 3; Wjj. Topreserve the similarity between a query portant cues for perceptual organization and shape dis@im
sketch-image and a target 3D model in the ranking scorepmwtion, as discussed in [124], and 2) the local descriptor shap

add the following fitting constraint term: urs context [125] is tailored for the images in this work (i.éhet
. u7s Sketches or model views) since they only contain contours. |
Z(ri AL (38) " has been evaluated by [138] to have a high discrimination per
] ’ uzs formance.

un  BOF-JESC extracts a global histogram for each intdgév
uss Wherez = exp(d(s, m)?/c?) is the similarity between thes denotes a binary image obtained from a query sketoHel

us2 query sketch-image anth target 3D model. us: View in this work). Edge point location in a local patch of
The optimal ranking score is obtained by minimizing follows BOF-JESC is quantized into 40 bins as shown in Fig. 15 (i.e.
ing cost function: ues the number of points is recorded in each bin). In our experi-
us Ments, the best performance is achieved by setting thesadiu

2
1< ri r n 9 uss Of the log-polar coordinate to 0.075, 0.15, 0.25 and 0.3Bpf

=5, (_\/D_n - —\/D—”] Wi+ ) (ri=2)% (39) "= "~ \iW=H whereW andH is the width and height of the

b=t =1 e bounding box ofM). The circle with the shortest radius is di-

Whereﬂ >0isa regu|ariza‘[ion parame_tdjiﬂ‘erentiatingj(r) uss Vided into four bins, as shown in Flg 15, which is based on

with respect ta and rearranging, we obtain use the fact that the bins with small areas are more sensitiviedo t
ueo Statistics of the edge points.
r=(-aM)z (40) us  The 40 dimensional local feature of BOF-JESC has the fol-

ue2 lowing characteristics:
uss WhereM = DV2WDY2 ¢ = [rq,....r0]", 2 = [z1,..., 2] ",

use aNda € [0,1) is a tuning paramete Clearly, the matrix ( — 10s o BOF-JESC selects all the junctions (we uses the method
uss M)~ can be calculatedfbline. The ranking score can he. in [124] to extract the junctions iM, and the points with
uss Obtained by simple matrix-vector multiplication. 1195 degree one, e.g. the poiptin Fig. 15(a), are also treated
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1196 as junctions), and the mid-points in the lines connecting * o o R eyt
1197 two adjacent junctions (e.g. the poipin Fig. 15(a)) into T honolceLoe fun3)
1198 the key-point set to generate local features;

—+— Aono(HS-RDE)

—#— Aono(KVLAD)

—— Chen(DBNAA_DERE)
—— Furuya(BF-DSIFT)
—— Furuya(VM-1SIFT)
—8— Furuya(MR-BF-DSIFT)
—— Furuya(MR-D1SIFT)

0.8F AN

0.7

ue o BOF-JESC aligns the reference axis with= 0 of the

1200 log-polar coordinate system to the average direction of the _ | - -1
1201 tangent lines of the ten nearest points in the longest edgr ST
1202 connecting the corresponding key-point, this step obtains . - = = Znang(MFF-EW)

. N . s - = - Zhang(MSD)
1208 a rotation invariance; 3 - - Zhang(spS)

Precisi

—6— Zhang(SHELL)

- - - Zhang(SECTOR)
—— Zhang(SECSHELL)
—*— Zhang(D2)

o
>
T

»s  © BOF-JESC quantizes the edge points on the boundary o

1205 two neighboring bins into the bin with a greater angle (rel- .l —PARORRA
1206 ative to the the reference axis in the anti-clockwise direc-
1207 tion); 0.2F

12s ® BOF-JESC normalizes a 40 dimensional local feature with .|
1209 {1-norm regularization.

——

=0 After the local features based on key-points are extractec °  °* % % el 0 0 000t

11 from all the model views in a database, BOF-JESC employs

212 K-means to obtail “visual words” and finally builds a global Figure 16: Precision-Recall ploperformance comparison of all therenty-
w21 £p-normalized histogram (i.e. @ dimensional feature vector) two runsof the seventeen Query-by-Model retrieval algorithms fromdeven

. . . roups.
1214 fOr each model view in thefline stage. group

w15 5.2.5. Implementation w2 in Table 5 than in Table 6, which shows that the reciprocally
e We sample 42 views for each 3D model uniformly on the upitweighed metrics correlate better with the non-weightedhéefi

127 Viewpoint sphere. The vocabulary is obtained by the folfayvj,,, tions. However, because they also consider tfemtince in the

1z Steps: 1) concentrating the local features of all the moes/ .., number of models in diierent classes, they are more accurate in
w0 iN the database, 2) sampling 1 million local features from-cQ, real applications. Based on the three jumps ahead in the rank
1z0 CeNtrated features, 3) utilizing KNN to obtahh words. The,,, ing order of PANORAMA in Table 6, it can be deduced that it
1z query-to-model distance metric is based on the neareshneigprovides superior performance in retrieving classes witnem

12 DOr (NN) strategy, which finds the closest view to the quglyvariations. From this result, we can say that using view-based
12z iN the feature space, and treats such a minimum query-t%-Viefeatures in combination with advanced feature coding aag-ad
122 distance as the query-to-model distance. The vocabulaeg si, tive rankingyields thebest performance among the set of sub-
225 are set to 800 and 1000. Besides the standard framewoyk, @hitted methos.

126 the bag-of-feature method using k-means, we also evalbate t as can be seen from Figure 16, if we compare approaches
127 performance of the Fisher Vector [126] combined with JESCithout employing a machine learning approdsee the B

w225 features. e Values in the tables)jncluding manifold ranking, overall
120 PANORAMA, Li's ZFDR, Aono’s HSR-DF ad Furuya’s BF-
1220 6. Results ez DSIFT are comparable to Tatsuma’s DBSVC approach. How-
163 €ver,by applying amanifold ranking learning method, Tatsuma
uw 6.1. Query-by-Model retrieval 1zes €t @l achieve an apparent performance improvemehich can

2 In this section, we perform a comparative evaluation of thede validatedby the resulting LCDR-DBSVC method. Com-
122 results of thetwenty-tworuns submitted by theevengroups s pared to DBSVC, LCDR-DBSVC has a 20.6%, 17.4%, 9.0%,
1233 based on the 3D target dataset @B. To providea comprehen=2s» 4.2% and 21.3% gain in terms of non-weighted FT, ST, E,
124 SiVE comparison, we measure the retrieval performancedbas®CG, and AP, respectively. In fact, Furuya et al.’s three “MR-"
125 0N the 7 metrics mentioned in Section 3.5: PR, NN, FT, STruns also have adoptedmanifold ranking method to improve
6 E, DCG, and AP,as well as the proportionally and reciprocally the retrieval performance. This indicates the advantagerof

7 Weighted NN, FT, ST, EandDCG. 21 ploying machine learning approaesin the 3D model retrieval
= Figure 16 shows the Precision-Recall performeamt the 122 research field. Wehouldmention that the above finding is con-
123 twenty-tworunswhereasFigure 17 compares the best runs:of sistent withthe three types of metricsncluding standard, pro-
0 €ach group. Tablesthrough? list the othersix non-weighted: portionally, andreciprocally weighted ones.

1»a and weighted performance metridegether with their rankw»s  To perform an approximatefeciency performance compari-
142 iNg orders (R).As can be seen from Figure 17 and Tables-5son, we asked the contributors to provide timing infornratio

1243 through7, Tatsuma’s LCDR-DBSVC perforsntest, followed:.» terms of average response time per query, as listed in Table 8
2 by Furuya’s MR-D1SIF. The top five methods are the same Obviously, ZFDR and BF-DSIFT are the modfieient ones,

45 fOr the non-weighted and weighted performance metrid¢&e .- followed by the Shape Histogram methods (SECTOR, SHELL,
146 further find that the rank order in Table 7 is more similar tatthss SECSHELL, SDS), MSD, MFF-EW, and VM-1SIFT, whereas
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Table 5: Performance metrics for the performance comparistiretwenty-tworuns of theseventeeiQuery-by-Model retrieval algorithms from tisevengroups.
“R” denotes the ranking ordef all the twenty-two runs, while “B’ denotes the ranking order of all the runs that do not utiimg machine learning techniques or
class information, that is, the runs of the pure shape ddscsithemselves

Contributor Method NN FT ST E DCG AP R Ry

CSLBP-Run-1  0.840 0.353 0.452 0.197 0.736 0.349 12
CSLBP-Run-2  0.842 0.352 0.450 0.197 0.735 0.347 18

Aono CSLBP-Run-3  0.840 0.359 0.459 0.200 0.740 0.355 16
HSR-DE 0.837 0.381 0.490 0.203 0.752 0.378 84
KVLAD 0.605 0.413 0.546 0.214 0.746 0.396 6 -

Chen DBNAADERE 0.817 0.355 0.464 0.188 0.731 0.344 18
BF-DSIFT 0.824 0.378 0.492 0.201 0.756 0.375 95
VM-1SIFT 0.732 0.282 0.380 0.158 0.688 0.269 130

Furuya MR-BF-DSIFT 0.845 0.455 0.567 0.229 0.784 0.453 3-

MR-D1SIFT 0.856 0.465 0.578 0.234 0.792 0.464 2-
MR-VM-1SIFT 0.812 0.368 0.467 0.194 0.737 0.357 10-

Li ZFDR 0.838 0.386 0.501 0.209 0.757 0.387 73
Tatsuma DBSVC 0868 0.438 0.563 0.234 0.790 0.446 41
LCDR-DBSVC 0.864 0528 0661 0255 0823 0541 1 -
MFF-EW 0.566 0.138 0.204 0.076 0.570 0.114 16
MSD 0.504 0.132 0.196 0.071 0.562 0.109 111
SDS 0.486 0.074 0.114 0.041 0.511 0.0230 14
Zhang SHELL 0.483 0.078 0.119 0.043 0.513 0.0699 13
SECTOR 0.398 0.062 0.098 0.035 0.495 0.0230 14
SECSHELL 0.469 0.079 0.118 0.045 0.511 0.0220 14
D2 0.232 0.103 0.168 0.046 0.527 0.089 18 12
[53] PANORAMA 0.859 0.436 0.560 0.225 0.783 0437 52

1o the other methods are much slower. We also note that the be®i-2. Query-by-Sketch retrieval
1e2 performing method LCDR-DBSVC is slower by an order of

s Magnitude. This also raises the issue of scalability oftiexjs™* This section presentscomparative evaluation of theelve

.28 OF new Query-by-Model retrieval algorithms to large corgms® MUNS of thesix methods submitted bie fourgroupsbased on
e and it deserves furthefferts. 13- LSB. We measurdhe retrieval performanceising the seven
1308 Metrics mentioned in Section 3.5: PR, NN, FT, ST, E, DCG

25 Among theseven group contributors, one group (Zharig)and AP.

1z adopts geometry-based techniques, two groups (FuruyasandAs described in Section 3.3.4, the complete query sketch
w2 Tatsuma) utilize view-based techniques, while four groupglataset is divided into “Training” and “Testing” datasets

w200 (Aono, Chen, Li, and PANORAMA [53]) follow a hybrid ap-=: neededy machine learning-based retrieval algorithms. To pro-
w200 proach. If we consider the above evaluation results as welVide complete reference performance dataléarning-based

w20 this demonstrates the popularity and superiority of hyteih- ::« Methodsas well asnon-learning based approachésc(uding
1202 NQUES. ws all of the six participating methods), we evaluate the submit-

6 ted results orthe “Training”, the “Testing”, and the complete

s However, if we classify the contributing methods basedwprdatases. Figure 18compares their PR performance, whilg-

»u the properties of the features used, we find that gmoups:=e bles 9 and 10 compare the other six general and reciprocally
2ss (Aono and Tatsuma) employ a local shape descripfmuy 120 Weightedperformance metrics ahesethree datasst

29 groups (Chen, Li,Zhang, and PANORAMA [53] adopt aic As shown in tle figure and tablg Tatsuma’s SCMR-

o7 global feature, an@ne group (Furuya)adoptsboth local andizx OPHOG isthe best by a large margirfollowed by their

1208 glObalfeatures.The o groups (Tatsuma and Furuya) that ex- OPHOGand Furuya’s CDMR Neverthelessthe overall per-

1200 tract local features have applied the Bag-of-Words frantkwas formance of the top methods from other groups are very ¢lose
1300 and K-means clustering on the local featur@dthin the sub-is2« while the closeness appearance of the other methods in the
100 Mitted methods for Query-by-Model retrieydhis shows thess Precision-Recall plots is partially because of the distitis-

1302 popularity of global shape descripsoand the Bag-of-Wordsss parity between the best method and others. It appears that th
1303 technique in dealing with local features. 1327 Other groups codl catch up with OPHOG in terms of overall
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Table 6: Proportionally weighted performance metrics fogadormance comparisorf thetwenty-tworuns of theseventeeuery-by-Model retrieval algorithms
from the seven groups. “R” denotes the ranking oafeall the twenty-two runs, while “B’ denotes the ranking order of all the runs that do not utiting machine
learning techniques or class information, that is, the rdnBepure shape descriptors themselves

Contributor Method NN FT ST E DCG R Ry

CSLBP-Run-1 0.880 0.379 0.502 0.145 0.800 1T/
CSLBP-Run-2 0.881 0.375 0.495 0.145 0.798 13

Aono CSLBP-Run-3 0.878 0.381 0.505 0.146 0.802 1(®
HSR-DE 0.882 0.405 0.539 0.148 0.812 63
KVLAD 0.617 0.418 0574 0.144 0806 9 -

Chen DBNAADERE 0.859 0.398 0.544 0.136 0.799 128
BF-DSIFT 0.868 0.392 0.529 0.143 0809 74
VM-1SIFT 0.797 0.290 0.406 0.120 0.753 1510

Furuya MR-BF-DSIFT  0.877 0.464 0.607 0.156 0.834 5 -

MR-D1SIFT 0.895 0.473 0.611 0.160 0.839 3 -
MR-VM-1SIFT 0.868 0.388 0.501 0.142 0.798 13-

Li ZFDR 0.879 0.398 0.535 0.148 0.809 7 4
Tatsuma DBSVC 0.898 0.444 0.604 0.162 0.839 3 2
LCDR-DBSVC 0.892 0541 0723 0169 0872 1 -
MFF-EW 0.582 0.159 0.252 0.056 0.654 16-
MSD 0.544 0.157 0.249 0.054 0.652 1711
Zhan SDS 0.485 0.085 0.146 0.029 0.5961 215
9 SHELL 0.486 0.091 0.153 0.031 0.60020 14
SECTOR 0.446 0.071 0.124 0.028 0.5872 216
SECSHELL 0.503 0.091 0.150 0.034 0.6019 113
D2 0.281 0.139 0.234 0.038 0.632 18 12
[53] PANORAMA 0.891 0.472 0.636 0.158 0.840 21

w2s performancee.g., see the Rvalues in Table 9put after em-us2 5.00, 1.25) Hence, the performance of the contributed meth-
129 ploying the manifold rankingbasedmethod SCMR, Tatsuma’ss: ods in retrieving classes with more variatitmsdels is very

130 group achieved much better performance. For example, cenclose. If we consider the comparison and analysis resuttseof
131 paredto OPHOG, SCMR-OPHOGchievesa gain of 77.3%;.sss three types of metrics based on the Query-by-Model retrieva
133 14.5%, 52.94%, 10.3%, and 116.4% in FT, ST, E, D@6 = results in Section 6.1 as welle regard the set of reciprocally
133 AP, respectivgl. Compared to the performance obtained in theweighted metrics athemoreaccurate andobbustweightedver-

13:a SHREC'12 and SHREC’13 sketch-based 3D model retriexakion to evaluate either 2D or 3D query-based retrieval algo-
135 tracks [4][5], the performance of adipproachesias decreasedss rithms.

133 Sharply due tahemuch more challenging data in themé& SB » ) ] )
s benchmarkln fact, there is an additional drop when compat&y N addition, rather than having a consistent evaluation re-
. to the performance achieved by the evaluated Query-by-Mgasult & in the Query-by-Model retrieval algorithms evaluation,
. retrieval algorithms in Section 6.1, which again demoneg#® Ve find there is some discrepancytire case of sketch-based

. the challenges and semantic gaps that exist in sketch-aasew 3D retrieval evaluation: the ranking results of tmethods are
.+« model retrieval. It also seems worthwhileo pay more attens S0mehow dierentwhen based on the reciprocally weighted

1 tion to scalability issues when developing sketch-based 3DeMetrics. For examplef we compare the ranking results in Ta-
. trieval algorithms, especially for large-scale retrieagplica- =+ Ples 9 and 10, we find the ranking order of OPHOG and CDMR
1 tions. More details about the retrieval performance witipeet > (7s m=0.05,@=0.3) to be flipped The reciprocal version is to

. to different classes for each participating method can be ftih@lleviate the bias influence due to théfefences in the number
1 Onthe SHREC'14 sketclirack homepage [2] 160 Of models that each class contains by proportionally weight
130 iNg the performance per query by the reciprocal of the number

1o For the proportionally weighted metrics, we find that tiee = of relevant models for the query. Thereforehighlights the
148 SUlts of the evaluatedhethods are very cles For examples» performance of classes with fewer modedsiations, which is
1340 the proportionally weighte¢FT, ST, E, DCG, Apof SBR-VC ws: usually even lower than the average performance. Thisteesul
s (@=1) are1.0e-05*(1.25, 1.25, 1.25, 0.00, 3.75, 1.26}ile . in the even smaller performance values in Table\W® further
15 for SCMR-OPHOG, they aré&.0e-05*(2.50, 1.25, 2.50, 1.25ys find that this helps dierentiate the performance of the various
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Table 7: Reciprocally weighted performance metrics for théopmance comparison of thaventy-tworuns of theseventeeQuery-by-Model retrieval algorithms
from the seven groups. “R” denotes the ranking oafeall the twenty-two runs, while “B’ denotes the ranking order of all the runs that do not utiting machine
learning techniques or class information, that is, the rdrsepure shape descriptors themselves.

Contributor Method NN FT ST E DCG R Ry

CSLBP-Run-1  0.663 0.303 0.359 0.180 0.571 1O
CSLBP-Run-2  0.668 0.304 0.359 0.180 0.571 1O

Aono CSLBP-Run-3 0.658 0.310 0.365 0.183 0.573 96
HSR-DE 0.656 0.318 0.380 0.189 0.582 85
KVLAD 0.480 0.323 0.434 0.213 0.564 12 -

Chen DBNAADERE 0.626 0.281 0.339 0.169 0.552 149
BF-DSIFT 0.645 0.321 0.389 0.192 0.588 63
VM-1SIFT 0.547 0.235 0.290 0.142 0.510 1510

Furuya MR-BF-DSIFT 0.680 0.376 0.444 0.221 0.619 4 -

MR-D1SIFT 0.689 0.383 0.455 0.227 0.627 3 -
MR-VM-1SIFT 0.626 0.300 0.359 0.179 0.564 12-

Li ZFDR 0.659 0.326 0.392 0.194 0588 6 3
Tatsuma DBSVC 0.707 0.371 0.445 0.224 0628 21
LCDR-DBSVC 0.718 0.428 0506 0255 0658 1 -
MFF-EW 0.446 0.139 0.172 0.078 0.418 16-
MSD 0.395 0.124 0.157 0.070 0.400 1711
Zhan SDS 0.397 0.097 0.113 0.047 0.364 182
9 SHELL 0.392 0.097 0.114 0.048 0.362 1913
SECTOR 0.300 0.063 0.080 0.035 0.3272 216
SECSHELL 0.370 0.095 0.111 0.047 0.357 204

D2 0.160 0.069 0.102 0.046 0.338 21 15
[53] PANORAMA 0.687 0.350 0.421 0.210 0.612 52

1376 methods. 1o 7. Conclusions and future work

1w Similarly, we conducted an approximatéieiency evalua- )

.7 tion. The average response time per queagedon the “Test-« 7.1. Conclusions

1370 INQ” .dataseUSinga merrn computer.is compared in Table 11 The LSB benchmark. This paper describes the building
w0 Obviously, BF-SALIF is t?e most #icient, followed by BOF- 'o0cess ofL SB, a large-scale 3D model retrieval benchmark
1w JESC and SBR-VCo( = 3). OPHO_G' SCMR-OPHO@Gand 0. SUPpPoOrting both 3D model and 2D sketch queries. Compared
w2 SBR-VC (@ = 1) are comparable in terms of speed, whileq other multimodal query-supported 3D retrieval benchisar
s CDMRUis the slowest algorithm by an order of magnitutfée | iis 13 680sketches and 8,987 models of 171 classes make it
1 believe thistiming information is useful for an approximate he currently largest scale benchmark in terms of the number
1 COmparison of the runtime requirements of the algoriteven, . mqdels and sketches as well as the most comprehensive bench-
= though they were obtained onfiiirent computers e mark in terms of the number of object classes and variations
w7 Finally, we classify all participating methods with resper .0 within a class. Compared to previous sketch-based 3D vatrie
153 the techniques employed according to the classificatiom sta benchmarks, it is not only the largest and most comprehensiv
180 dards describedin [10]: localglobal 2D features, Bag-of=.. but also the only currently available comprehensive 3D rhode
1300 Words framework or direct feature matching, fixgdstered...s benchmark. Even compared to prior generic benchmarks, it
1301 Views, and withwithout view selectionThree groups (Furuyasu. is still among the largest and most comprehensive in terms
1302 Tatsumaand Zou) utilize local features while one group (Liy of the number of categories. In addition to th&B bench-

1303 employs a global feature. Two (Furuya and Zou) of the thieeanark, we also developed two versions of commonly used per-
1.« Methods based on local features apply the Bag-of-Featurdesrmance metrics, proportionally-weighted and reciphgea

130 framework whilemanifold ranking is also used in two (Furuyas weighted, by incorporating the model variations in eaclssla
1305 and Tatsuma) of the three local feature-based algoriti@nty 1.0 based on the number of available models it contav&e re-

1397 ONe group (Li) performs view clustering while the others em-gard the reciprocally-weighted version as more accurateits

198 ploy a fixed view sampling. No group includes a view selectienoriginal form in terms of reflecting the real performance 8ta

1390 Process in their methods. 122 Shape retrieval algorithm either using model or sketchigaer
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Table 8: Available iming information comparison of theeventeerQuery-by-Model retrieval algorithmst is the average response time (in seconds) peryquer
“R” denotes the ranking ordef all the seventeen runs, while pRdenotes the ranking order of all the runs that do not utiéimg machine learning techniques or
class information, that is, the runs of the pure shape deecsithemselvesFor PANORAMA [53], we collected the timing information basead the publically
available executable [107].

Contributor

(with computer configuration) Method Language T R Rp
Chen (CPU: Intel(R) Core |3-2$50M @2.3GHz (o.nly using one DBNAA DERE C#. Matlab 58.82 11 10
thread); Memory: 6 GB; OS: Windows 2003 32-bit)
BF-DSIFT C++, CUDA 1.94 2 2
VM-1SIFT C++ 9.60 10
Furuya (CPU: Intel(R) Core i7 3930K @3.20 GHz, MR-BE-DSIFT C++. CUDA 65.17 13 _
GPU: NVIDIA GeForce GTX 670 (the programs ran on a single !
thread); Memory: 64 GB; OS: Ubuntu 12.04) MR-VM-1SIFT C++ CUDA 6587 @ -
MR-D1SIFT G++, CUDA 131.04 15 -
Li (CPU: Intel(R) Xeon(R) CPU.X5675 @3.07. GHz (2 processors, 1%FDR QC++ 177 1 1
cores); Memory: 20 GB; OS: Windows 7 64-bit)
Tatsuma (CPU: Intel(R) Xeon(R) CPU E5-2630 @2.30GHz (2 DBSVC C++, Python 62.66 12 11
processors, 12 cores); Memory: 64 GB; OS: Debian Linux 7.3) LCDR-DBSVC G++, Python 668.61 17 -
Zhang (CPU: Intel(R) Xeon(R) E5620 @ 2.40 GHz; Memory: 12.00 MFF-EW C++, Matlab 8.05 9 -
GB; OS: Windows 7 64-bit) MSD C++, Matlab 4.10 8 8
SECSHELL Cr+, Matlab 3.48 4 4
(CPU: Intel(R) Core(TM) i5-2450M @ 2.50 GHz; Memory:  SDS Gr+, Matlab 3.91 6 6
2.45 GB; OS: Windows 7 32-bit) SHELL C++, Matlab 3.65 5 5
SECTOR G-+, Matlab 3.29 3 3
D2 C++, Matlab 4.00 7 7
[53] (CPU: Intel(R) Xeon(R) CPU ).<5675 @3.07 .GHZ (2 processors, PANORAMA Cit 3702 16 12
12 cores); Memory: 20 GB; OS: Windows 7 64-bit)
09  Aono(KVLAD) 143 b_ased on both _non-weighted _and Weigh_ted _performqnce met-
0sl I @ e | 1z Fics. A comparison of approximate runtime information was
—¥— Li(ZFDR) 13 also performed to provide a reference on tifieceency of the
= - . .
07l ool s evaluated methods, which also serves as evaluation of #he sc
—*— PANORAMA 3 ability of each method w.r.t large-scale retrieval scevgaor

o6y 16 real applications. According to the evaluation resudisiong

17 the submitted algorithms, hybrid methodsamifold ranking

13 learning methods, and Bag-of-Words approachesmarepop-

130 Ular and promisig in the scenario of Query-by-Model retrieyal
10 Which partiallyillustrates a current research trend in the field of
ua comprehensive 3D model retrieval.

Precision

o o

B o
.

o
w
T

o
N
T

ue  Evaluation of Query-by-Sketch retrieval algorithms.
143 Based on the completeSB benchmark, we organized another
‘ ‘ ‘ ‘ 1 SHREC'14 track on large scale sketch-based 3D retrievad. T
0 0.2 0.4 08 08 1 15 Second track igneantto foster this challenging and interesting
145 research directigrencouraged by the successltd SHREC'12
Figure 17: Precision-Recall plot performance comparisorheftiest runef 47 @nd SHREC'13 sketch-based 3D shape retrieval tracks. Thoug
the Query-by-Model retrieval algorithms froeach group. s the latest benchmark isby far the mostchallengingso far,
140 We still attracted fourgroups who have successfully partici-
uso pated in the track and contributédelve runs ofsix methods
uzz We also hope that the large-scale sketch retrieval bendhmamwhich have been comparatively evaluated in this paper as wel
126 Will prove useful for otheresearchers iour community. 12 \We have noticed that the obtained retrieval performancaris f
ws  Evaluation of Query-by-Model retrieval algorithms. 1ss from satisfactory, and the performance of existing skétased
126 Based on the 3D model dataset of th&8B benchmark, we orwuss retrieval methods apparently drops when scaled to a signifi-
127 ganized the SHREC'l4arge scalecomprehensive 3D modelss cantly larger collection. Local feature and manifold ramki
2 retrieval track. In this paper, a comprehensive evaluatibiss based approaches also dominate the evaluated methods-and of
120 twenty (twelve track participating aneight state-of-the-art ors, ten achieve superior retrieval accuracy, but their peréoroe
130 New) Query-by-Model retrieval algorithms has been corellicts leaves room for further improvements.
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use 7.2. Future work 1512

1460

The LSB benchmark provides a common platform to evaft-

uer ate 3D model retrieval approacheglie contexbf a largescale **
ue2 retrieval scenario. tlhelps dentify state-of-the-art methods &%
ues Well as future research directions ingheeea. For promising®*
1es future work on sketch-based 3D retrieval algorithms, paas ***
ues fer to [10]. Here, we mainly list several important reseadgh*™
uss Fections that apply to both sketch and model query based*3D
uer retrieval algorithms.
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e Benchmark. Since the current version of oltSB bench-

mark contains only 171 of the full set of 250 classes
from Eitz et al's sketch dataset, there is still room fo
further improvement by finding models from additiona

in the pure content-based 3D model retrieval framework
to achieve satisfactory accuracy. Therefore, we recom-
mend utilizing techniques from other related disciplines,
such as machine learning, especially representation-learn
ing [140] including manifold learning and deep learning
(i.e., Cdfe [141]), image retrieval (i.e., ImageNet [142]),
and pattern recognition (i.e., [143], to develop higheelev
knowledge-based 3D retrieval algorithms.
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Figure 18:Precision-Recall plot performance comparisons dietént datasets of olwrSB benchmark for the twelve runs of six Query-by-Sketch resiievethods
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Table 9: Performance metrics comparisondifiierent datasets of olSB benchmark for the twelve runs of six Query-by-Sketch resienethods from the four
participating groups “R” denotes the ranking ordeaf all the twelve runs, while “y’ denotes the ranking order of all the runs that do not utiing machine
learning techniques, that is, the runs of the pure shapeigass themselves
Contributor Method NN FT ST E DCG AP R Rp
Training dataset

BF-fGALIF 0.113 0.050 0.079 0.036 0.321 0.045 94
Furuya CDMR (osn=0.1,a=0.6) 0.069 0.046 0.074 0.031 0.308 0.048 7-
CDMR (osn=0.1,a=0.3) 0.104 0.055 0.087 0.039 0.324 0.053 5-
CDMR (osu=0.05,0=0.6) 0.085 0.058 0.094 0.040 0.325 0.060 2-
CDMR (osw=0.05,0=0.3) 0.109 0.057 0.090 0.041 0.329 0.055 4-
Li SBR-VC (@=1) 0.097 0.050 0.081 0.038 0.320 0.050 62
SBR-VC @ = 3) 0.094 0.047 0.077 0.035 0.316 0.046 83
Tatsuma OPHOG 0.158 0.066 0.097 0.051 0.340 0.060 21
SCMR-OPHOG 0.158 0.118 0.172 0078 0375 0132 1 -
BOF-JESC (Words8Q¥ Q) 0.107 0.043 0.068 0.031 0.312 0.042 105
70U BOF-JESC (Words10Qv'Q) 0.101 0.040 0.064 0.028 0.307 0.039 116
BOF-JESC (FVPCA32Words128) 0.099 0.040 0.062 0.027 0.304 0.038 17
Testing dataset
BF-fGALIF 0.115 0.051 0.078 0.036 0.321 0.044 94
Furuya CDMR (osu=0.1,a=0.6) 0.065 0.046 0.075 0.031 0.308 0.047 7-
CDMR (osn=0.1,a=0.3) 0.100 0.056 0.087 0.039 0.325 0.052 5-
CDMR (s w=0.05,0=0.6) 0.081 0.058 0.094 0.040 0.326 0.060 3-
CDMR (0sw=0.05,0=0.3) 0.109 0.057 0.089 0.041 0.328 0.054 4-
Li SBR-VC (@=1) 0.095 0.050 0.081 0.037 0.319 0.050 62
SBR-VC @ = 3) 0.083 0.047 0.075 0.035 0.315 0.046 83
Tatsuma OPHOG 0.160 0.067 0.099 0.052 0.341 0.061 21
SCMR-OPHOG 0.160 0115 0170 0079 0376 0131 1 -
BOF-JESC (Words8Q¥Q) 0.086 0.043 0.068 0.030 0.310 0.041 105
Zou BOF-JESC (Words10Qv'Q) 0.082 0.038 0.062 0.027 0.304 0.037 116

BOF-JESC (FVYPCA32Words128) 0.089 0.038 0.060 0.026 0.302 0.036 12

Complete benchmark

BF-fGALIF 0.114 0.050 0.079 0.086 0.321 0.045 94
Furuya CDMR (osv=0.1,2=0.6) 0.068 0.046 0.074 0.031 0.308 0.048 7-
CDMR (osn=0.1,a=0.3) 0.102 0.055 0.087 0.039 0.324 0.053 5-
CDMR (osw=0.05,a=0.6) 0.084 0.058 0.094 0.040 0.325 0.060 3-
CDMR (osn=0.05,a=0.3) 0.109 0.057 0.090 0.041 0.329 0.054 4-
Li SBR-VC (@=1) 0.096 0.050 0.081 0.038 0.319 0.050 62
SBR-VC @ = 3) 0.090 0.047 0.077 0.035 0.316 0.046 83
Tatsuma OPHOG 0.159 0.066 0.098 0.051 0.341 0.061 21
SCMR-OPHOG 0.158 0.117 0.171 0078 0376 0132 1 -
BOF-JESC (Words8Q¥ Q) 0.099 0.043 0.068 0.031 0.311 0.042 105
Zou BOF-JESC (Words10QvQ) 0.094 0.039 0.063 0.028 0.306 0.039 116

BOF-JESC (FVYPCA32Words128) 0.095 0.039 0.061 0.027 0.303 0.037 12
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Table 10:Reciprocally weighted performance metrics comparison fergint datasets of tHeSB benchmark for the twelve runs of six Query-by-Sketch retfiev
methods from the four participating groups. “R” denotes #ieking order of all the twelve runs, while Rdenotes the ranking order of all the runs that do not
utilize any machine learning techniques, that is, the runk®pure shape descriptors themselves.

Contributor Method NN FT ST E DCG AP R Rp
Training dataset 1.0e-0%
BF-fGALIF 0.435 0.274 0414 0.175 2.038 0.344 42
Furuya CDMR (osn=0.1,a=0.6) 0.186 0.140 0.222 0.126 1.693 0.159 11-
CDMR (osy=0.1,a=0.3) 0.389 0.259 0.382 0.183 1951 0.304 6-
CDMR (s u=0.05,0=0.6) 0.336 0.273 0.408 0.187 1.930 0.316 5-
CDMR (0sn=0.05,0=0.3) 0.442 0.301 0.454 0.201 2.055 0.369 2-
Li SBR-VC (@=1) 0.259 0.145 0.267 0.164 1.868 0.198 84
SBR-VC @ = 3) 0.259 0.158 0.277 0.155 1.872 0.195 95
Tatsuma OPHOG 0.528 0.295 0.458 0.233 2.089 0.348 31
SCMR-OPHOG 0526 0399 0615 0318 2173 0490 1 -
BOF-JESC (Words80¥ Q) 0.334 0.149 0.260 0.137 1884 0.221 73
Zou BOF-JESC (Words10Qv'Q) 0.312 0.139 0.203 0.124 1.824 0.189 106
BOF-JESC (FVPCA32Words128) 0.327 0.146 0.199 0.103 1.746 0.157 127
Testing dataset 1.0e-0%
BF-fGALIF 0.802 0.520 0.735 0.289 3.408 0.596 42
Furuya CDMR (osn=0.1,a=0.6) 0.299 0.237 0.406 0.222 2.861 0.281 11-
CDMR (osn=0.1,a=0.3) 0.679 0.467 0.719 0.308 3.323 0.553 6-
CDMR (osv=0.05,0=0.6) 0.576 0.467 0.782 0.318 3.305 0.583 5-
CDMR (osu=0.05,a=0.3) 0.789 0526 0.773 0.330 3.430 0.626 2-
Li SBR-VC (@=1) 0.449 0.264 0.425 0.264 3.051 0.291 95
SBR-VC @ = 3) 0.414 0.265 0.405 0.259 3.088 0.311 84
Tatsuma OPHOG 0.917 0.509 0.777 0.396 3.539 0.615 31
SCMR-OPHOG 0993 0743 1035 0541 3676 0886 1 -
BOF-JESC (Words8Q¥ Q) 0.462 0.271 0.467 0.236 3.149 0370 73
Zou BOF-JESC (Words10Qv'Q) 0.403 0.208 0.356 0.194 3.020 0.286 106
BOF-JESC (FVPCA32Words128) 0.455 0.225 0.336 0.170 2.910 0.254 127
Complete benchmark 1.0e-0%
BF-fGALIF 0.283 0.180 0.265 0.109 1.275 0.218 42
Furuya CDMR (osn=0.1,a=0.6) 0.078 0.065 0.109 0.058 0.760 0.073 12
CDMR (osn=0.1,a=0.3) 0.247 0.167 0.250 0.115 1.229 0.196 6-
CDMR (osv=0.05,a=0.6) 0.212 0.172 0.269 0.118 1.219 0.206 5-
CDMR (osw=0.05,0=0.3) 0.284 0.192 0.286 0.125 1.285 0.232 2-
Li SBR-VC (@=1) 0.164 0.094 0.164 0.101 1.159 0.118 95
SBR-VC @ = 3) 0.160 0.099 0.161 0.097 1.166 0.120 84
Tatsuma OPHOG 0.335 0.187 0.288 0.147 1.314 0.223 31
SCMR-OPHOG 0345 0260 038 0200 1366 0316 1 -
BOF-JESC (Words8Q¥Q) 0.196 0.097 0.167 0.087 1.179 0.138 73
Zou BOF-JESC (Words10Qv'Q) 0.179 0.084 0.129 0.076 1.137 0.114 106

BOF-JESC (FVPCA32Words128) 0.192 0.089 0.125 0.064 1.091 0.097 1%

Table 11: Timing information comparison of tis& Query-by-Sketch retrieval algorithmd: is the average response time (in seconds) per query base@ on th
“Testing” dataset‘R” denotes the ranking order of all the twelve runs, whilg,"Rienotes the ranking order of all the runs that do not utiéing machine learning
techniques, that is, the runs of the pure shape descriptensselves.

Contributor (with computer configuration) Method Language T R Rp
Furuya (CPU: Intel(R) Core i7 3930K @3.20 GHz, GPU: NVIDIA GeForce BF-fGALIF C++ 1.82 1 1
GTX 670 (on a single thread); Memory: 64 GB; OS: Ubuntu 12.04) CDMR C++, CUDA 126.81 7 -
Li (CPU: Intel(R) Xeon(R) CPU X5675 @3.07 GHz (2 processors;d2s);  SBR-VC (@=1) C/C++ 27.49 6 5
Memory: 20 GB; OS: Windows 7 64-bit) SBR-VC (@ = %) C/C++ 15.16 3 3
Tatsuma (CPU: Intel(R) Xeon(R) CPU E5-2630 @2.30GHz (2 processists, OPHOG G-+, Python 23.85 4 4
cores); Memory: 64 GB; OS: Debian Linux 7.3) SCMR-OPHOG G+, Python 25.67 5 -
Zou (CPU: Intel(R) Xeon(R) W3550@3.07GHz (the programs ran om@lsi BOF-JESC Matlab 6.10 2 2

thread); Memory: 24 GB; OS: Windows 7 64-bit)
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