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Abstract

Due to the large and growing number of photographs taken with progressively higher reso-
lution, the volume of image data being generated, stored, and processed increases steadily.
Compressing images losslessly is important for enhancing storage efficiency, expediting
transmission, and reducing energy consumption while preserving image quality. This pa-
per presents LICO, a new lossless compression algorithm for color images. On the 30
CLIC’24 images, our serial and parallel implementations of LICO deliver a compression
speed that is 13× to 46× and a decompression speed that is 14× to 135× higher than
JPEG2000. Furthermore, LICO is both faster and compresses more than PNG, TIFF,
BZIP2, GZIP, and Zstandard.

Introduction

People are taking more and more photographs of ever increasing resolution, resulting
in a large industry centered around areas such as computer vision, image processing,
and object detection [1, 2]. As a result, the compression of image data has become
important for many reasons, including storage efficiency, faster transmission, and
improved processing speed, especially in environments where system resources are
limited. Some important domains such as medical imaging [3] and forensic science [4]
require images to remain pristine, that is, they require lossless compression.

One use-case of fast lossless image compression is in handheld cameras [5], where
high-resolution pictures need large amounts of memory. Compression can help but
must be performed quickly on a small processor that runs off of a battery.

Another example where both high-speed and lossless compression is important
is space-based imaging [6]. Images captured by space probes are used for mapping,
navigation [7], Geographic Information Systems (GIS) [8], and even emergency re-
sponse and disaster management, where the preservation of each pixel may be crucial.
Space probes typically have onboard computers with limited memory and processing



capacity that are powered by solar panels. Typically, the transmission of data to
Earth requires a large amount of energy that is proportional to the size of the data.

Many satellites already use compression. However, lossless image compressors
such as JPEG2000 and PNG might be too complex and slow. If the compression is
too slow, images are either lost because they cannot be sent, which lowers the data
return, or must be transmitted in uncompressed format, which may raise costs and
energy consumption due to increased space-to-ground communication.

In this paper, we introduce Lossless Image COmpressor or “LICO”, a new lossless
image compression algorithm along with our serial and parallel implementations
thereof that achieve not only a high compression ratio but also a higher compression
and decompression speed than leading compressors from the literature. This paper
makes the following contributions.

• A new lossless image compression algorithm as well as our high-speed serial
and OpenMP-parallelized implementations.

• A detailed compression-ratio comparison of six widely-used lossless compressors
on the CLIC’24 images.

• A detailed compression-throughput comparison of six widely-used lossless com-
pressors on the CLIC’24 images.

The serial C++ and parallel OpenMP LICO code is freely available in open source [9].

Related Work

There are several widely-used formats for storing, exchanging, editing, and compress-
ing images. The Tagged Image File Format (TIFF) [10] supports lossless compression
using multiple approaches, including LZW [11] and ZIP [12]. Both approaches reduce
the size by replacing repeating sequences of bytes with shorter sequences.

Potable Network Graphics (PNG) [13] is another widely-used image file format
that supports lossless compression. It comprises a filtering stage followed by De-
flate [14] and Huffman coding [15], the combination of which results in a high com-
pression ratio. Huffman coding replaces frequently occurring values with shorter
code words. Deflate is a combination of Huffman and LZ77 [16]. Since both Deflate
and Huffman are slow in nature, PNG has a relatively low throughput.

JPEG2000 [17], which is both a compressor and an image format, offers several
benefits over the original JPEG [18], including lossless compression and a higher
image quality. It employs wavelet transforms [19] for both lossy and lossless com-
pression with a single algorithm. This transform only uses integer coefficients, which



eliminates the need for quantization, making it suitable for lossless compression.
JPEG2000 employs various entropy-encoding methods to decrease redundancies.

There are also general-purpose compressors that are very popular. Bzip2 [20] is
such a compressor that combines the Burrows-Wheeler Transform (BWT) [21] with
Run-Length Encoding (RLE) [22] and Huffman. Gzip is another example that uses
the above-mentioned Deflate approach. Whereas Bzip2 typically achieves a higher
compression ratio, Gzip tends to be substantially faster. Zstandard [23] is a more
recent general-purpose compressor. It not only achieves high compression ratios
but also high throughputs. It includes an entropy coding stage that is based on
Huff0 [24], a fast implementation of Huffman coding for modern CPUs. Zstandard
further uses Finite State Entropy (FSE) [25], a high-speed compression algorithm
based on Asymmetric Numeral Systems (ANS) [26]. The combination of these fast
algorithms results in Zstandard’s high compression ratio and speed.

In this paper, we present serial and parallel CPU implementations of LICO.
Our new algorithm is based on difference coding, bit and byte shuffling, and zero
elimination, all of which are fast transformations. It achieves higher compression
ratios than most of the above-mentioned compressors on a wide range of real-world
images. Moreover, it delivers high compression and decompression throughputs,
making it an attractive alternative to existing image compressors in environments
where both speed and compression ratio are critical. Note that a high speed also
means less energy consumption during compression and decompression.

Approach

LICO takes images in uncompressed BMP3 format as input. BMP is a widely used
image file format that is supported by most editing, viewing, and conversion tools
available on many operating systems. BMP3 is probably the most widely used version
of BMP. It represents each pixel by three bytes, one each for red, green, and blue.

Stage 1

per-channel 1.5D Lorenzo

Stage 2

within-pixel cross-channel
difference coding

Stage 3

two's-complement to
magnitude-sign conversion

Stage 4

separation of interleavings

Stage 5

matrix transposition

Stage 6

bit shuffling

Stage 7

zero elimination at 4-byte
granularity

Stage 8

zero elimination at 1-byte
granularity

Figure 1: LICO algorithm pipeline stages



The LICO algorithm consists of the 8 data transformations outlined in Figure 1.
Stage 1 exploits inter-pixel correlations by applying a variation of the Lorenzo predic-
tor [27] to each color channel in the pixel matrix. We call this step “1.5-dimensional”
(1.5D) Lorenzo. 1D Lorenzo predicts each pixel based on the neighboring pixel along
one dimension. 2D Lorenzo combines the north, west, and northwest pixels’ colors
to form a prediction for the current pixel. In either case, the predicted color values
are subtracted from the actual values, leaving a difference sequence. 2D Lorenzo
tends to make more accurate predictions than 1D Lorenzo but is slower since it ac-
cesses three neighbors. As a compromise, our 1.5D Lorenzo stage uses the northern
neighbor only for predicting the pixels in the first column and the western neighbor
for predicting the remaining pixels. We found this approach to yield more accurate
predictions than 1D Lorenzo and to be faster than 2D Lorenzo.

Stage 2 exploits intra-pixel correlations by computing another difference sequence.
If neighboring pixels have the same color but different brightness, the result of the
first stage will be three color-value differences per pixel that tend to be similar. This
is why we subtract the first and third from the middle color channel for each pixel.

Stage 3 converts each value from two’s-complement to magnitude-sign format. A
difference sequence typically consists of values that cluster around zero. However,
about half of these values are negative, which translates into many leading ‘1’ bits
in two’s-complement representation. The positive values, in contrast, tend to have
many leading ‘0’ bits. Changing the representation to magnitude-sign format moves
the sign bit to the least-significant position and creates many leading ‘0’ bits for both
positive and negative values, which increases the compressibility of the data.

Stage 4 separates the interleaved magnitude-sign differences of the three color
channels into three separate non-interleaved matrices. We do this because only two of
the three channels are intra-pixel decorrelated, meaning the channels exhibit different
behaviors. Thus, grouping the values by channel improves compressibility.

Stage 5 transposes the three matrices. Since the 1.5D Lorenzo transformation in
the first stage leaves some correlation between neighboring pixels in the same column
unexploited, we transpose the three matrices so that the correlating values end up
next to each other in memory (as the matrices are stored in row-major format).

Stage 6 applies bit shuffling to the transformed values. This groups the most-
significant bit of each value together, followed by all second-most-significant bits, and
so on. For neighboring values that have many common leading ‘0’ bits, this tends to
produce long sequences of ‘0’ bits, which are easy to compress.

Stage 7 operates on the resulting data at integer (i.e., 4-byte) granularity. This
stage generates a bit map in which each bit specifies whether the corresponding word
in the input is zero or not. It outputs the non-zero words, compresses the bitmap



using a similar method, and then outputs the compressed bitmap.
Stage 8 is identical to Stage 7 except it operates at byte granularity. This elimi-

nates zero bytes that the prior stage could not handle due to its larger word size.
Note that, perhaps with the exception of the last two stages, each stage performs

a very simple transformation that requires little computation. To minimize memory
accesses, we combine some transformations, i.e., we load a value, perform multiple
transformations on it, and only then store the result back to memory. To further
boost the performance, we store the result to a new location to implement both the
separation of the data into three matrices and the transposition of those matrices.

The parallel version of LICO uses OpenMP to concurrently process the rows of
pixels in the first five stages. The sixth stage is parallelized across sets of 8 bytes.
The last two stages divide the data into chunks of 16 kilobytes and process them
independently. The decoder employs the same parallelization strategy.

Methodology

We compare LICO to the three image and three general-purpose compressors listed
in Table 1. To compile and run the programs, we followed the instructions in their
source-code repositories. Our evaluation system is based on a 64-bit Intel Xeon Gold
CPU with 2 sockets and 16 cores per socket. We compiled all codes with g++ version
12.2.1. For LICO, we used the −O3 and −march = native flags. For the parallel
version of LICO, we further used the −fopenmp flag to enable OpenMP.

The general-purpose compressors Gzip, Bzip2, and Zstandard support multiple
levels to trade off compression ratio and throughput. We show results for all 9 levels
of Gzip and Bzip2 and all 22 levels of Zstandard. TIFF supports multiple lossless
compression algorithms. We show results for TIFF-LZW, which uses the Lempel-
Ziv-Welch algorithm, and TIFF-ZIP, which uses the Deflate algorithm.

Table 1: Lossless Compressors used for Comparison

Compressor Version Source Type Ser/Par

JPEG2000 2.5.0 jpeg.org/jpeg2000/ Image Serial
PNG 1.6.40 libpng.org/pub/png/pngcode.html Image Serial
TIFF 4.6.0 simplesystems.org/libtiff/ Image Serial
Bzip2 1.1.0 github.com/libarchive/bzip2 General-purpose Serial
Gzip 1.13 gnu.org/software/gzip General-purpose Serial
Zstandard 1.5.1 github.com/facebook/zstd General-purpose Parallel

We utilize the full set of 30 images from the CLIC’24 challenge [28, 29] as inputs.
The smallest image has a resolution of 2048 × 1152 pixels and the largest has a
resolution of 2048× 2048 pixels. Since these images are distributed in PNG format,



we first converted them to the uncompressed BMP3 format and use the resulting
BMP files as inputs. The sizes of these BMP files range from 7 to 12 megabytes.

We evaluate each compressor by its compression ratio as well as its compression
and decompression throughput. We measure the compression ratio by dividing the
initial file size by the compressed file size and the compression and decompression
throughput by diving the initial file size by the compression or decompression time.
This time does not include reading/writing the data from/to secondary storage since
we only measure the actual compression and decompression time. To eliminate out-
liers, we use the median runtime of 9 identical runs for computing the throughputs.

Results

In this section, we compare the compression ratio, compression throughput, and
decompression throughput of our serial and parallel LICO implementations to six
widely-used lossless image and general-purpose compressors. Serial and parallel
LICO yield the same compression ratio as they implement the same algorithm. In
fact, their outputs are guaranteed to be bit-for-bit identical.

Figures 2 and 3 show scatter plots of the performance of each compressor. Figure 2
displays the compression ratio vs. compression throughput, and Figure 3 displays the
compression ratio vs. decompression throughput. For all three metrics, a higher value
indicates better performance. Hence, the higher-quality compressors are closer to the
upper right corner of the charts. Due to the large range of throughputs, both figures
have a linear y-axis but a logarithmic x-axis.

Each dot in the two figures represents a compressor’s geometric-mean perfor-
mance over the set of 30 images. For example, Figure 2 shows that serial LICO
delivers a geometric-mean compression ratio of over 2.1 and a geometric-mean com-
pression throughput of almost 165 MB/s. We color the results of Bzip2, Gzip, and
Zstandard in magenta, red, and blue, respectively. The numbers indicate the level.

The black line highlights the Pareto front [30], that is, the best compressors in
the 2D metric space. The compressors on this front outperform all other evaluated
compressors in at least one of the two metrics.

The Pareto front in Figure 2 includes only JPEG2000 and parallel LICO. If we
only considered serial codes, JPEG2000 and serial LICO would be the only two
compressors on the Pareto front. Whereas JPEG2000 achieves a higher compression
ratio, both LICO and parallel LICO outperform it in compression throughput. Since
the x-axis is logarithmic, the seemingly small difference is actually large. LICO
compresses almost 13× and parallel LICO almost 46× faster than JPEG2000.

Zstandard is the only compressor other than LICO-par that is parallel. While
the parallel implementation of LICO outperforms all compressors in throughput, it is
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Figure 2: Compression Ratio vs. Compression Throughput (Bzip2 is magenta, Gzip is red,
and Zstandard is blue; the numbers indicate the compression level)

worth noting that even the serial version of LICO is faster than all serial compressors
and 20 of the 22 levels of parallel Zstandard. Furthermore, Zstandard achieves a much
lower compression ratio than LICO for all 22 levels. LICO ’s compression ratio is
only second to JPEG2000’s. It outperforms all other evaluated compressors in both
compression ratio and compression speed. We also ran JPEG XL, the most recent
version of JPEG, but even at its best-compressing lossless level, it only achieves a
compression ratio of 1.53, which is lower than JPEG2000 and LICO.

Figure 3 shows similar results but for decompression. The Pareto front again
only contains JPEG2000 and parallel LICO. The serial Pareto front would again
only contain JPEG2000 and serial LICO. The decompression speed of parallel LICO
is almost 135× faster than JPEG2000, which is serial, and almost 2× the speed of
parallel Zstandard in its fastest mode. Serial LICO is faster than all serial com-
pressors and nearly 14× faster than JPEG2000. Similar to compression, LICO also
outperforms all evaluated compressors in speed during decompression.

Figures 2 and 3 only show geometric-mean results. To provide more detail, Ta-
ble 2 lists the number of images on which each compressor is the fastest or best.

JPEG2000 reaches the highest compression ratio on the majority of the images.
On the remaining images, Bzip2 in its best mode provides the highest compression.
However, recall that the average compression ratio of LICO is higher than Bzip2’s.
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Figure 3: Compression Ratio vs. Decompression Throughput (Bzip2 is magenta, Gzip is
red, and Zstandard is blue; the numbers indicate the compression level)

Parallel LICO dominates in throughput. It delivers the fastest compression and
especially decompression on the majority of the images. Zstandard is the only other
compressor that is sometimes the fastest, but its compression ratio is much lower.

Summary and Conclusion

In this paper, we present LICO, a new lossless compression algorithm for real-world
images. It is based on 8 data transformations, all of which are surprisingly simple.
Yet, the resulting algorithm compresses well and is fast. In fact, our evaluation of
the 30 images from the CLIC’24 contest shows that LICO compresses and decom-
presses faster than JPEG2000, PNG, TIFF, Bzip2, Gzip, and Zstandard. Moreover,
it reaches a higher geometric-mean compression ratio than all of these compressors
except JPEG2000. The combination of efficiency and effectiveness makes it an at-
tractive option in settings where speed, compression ratio, and energy consumption
are critical, such as in hand-held cameras and space probes.
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Table 2: Number of images on which compressors achieve fastest compression, fastest
decompression, and highest compression ratio

Compressor Fastest Fastest Highest Com-
Compression Decompression pression Ratio

LICO 0 0 0
LICO-par 20 29 0
JPEG2000 0 0 25
PNG 0 0 0
TIFF-LZW 0 0 0
TIFF-ZIP 0 0 0
Gzip-best 0 0 0
Gzip-fast 0 0 0
Bzip2-best 0 0 5
Bzip2-fast 0 0 0
Zstd-best 0 0 0
Zstd-fast 10 1 0
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