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MICROPROCESSOR PERFORMANCE has been

improving at roughly 60% per year. Memory access times,

however, have improved by less than 10% per year.1 The

resulting gap between logic and memory performance

has forced microprocessor designs toward complex and

power-hungry architectures that support out-of-order and

speculative execution. Moreover, processors have been

designed with increasingly large cache hierarchies to

hide main memory latency. This article examines how 3D

IC technology can improve interactions between the

processor and memory.

Three-dimensional ICs, as shown in Figure 1, con-

sist of planar device layers stacked one atop another

and interconnected by short, vertical wires.2 With the

end of conventional device scaling in sight, 3D ICs let

scaling continue by shifting the focus from device scal-

ing to circuit and system scaling. By stacking multiple

planar device layers with short, vertical separations,

designers can build systems that exhibit lower inter-

connect latencies; higher packing densities of logic,

memory, and other circuits; and heterogeneous inte-

gration of circuits of different materials (for example,

CMOS, SiGe, and III-V), signals (digital, analog, and

RF), or technologies (microelectromechanical sys-

tems, optics, and so forth). In addition to lower wire

latency through shorter paths, 3D IC technology offers

unparalleled bandwidth. These short,

vertical, on-chip connections are not

pin limited, as in 2D designs that must

go off chip; they can be anywhere on a

3D chip. For maximum efficiency, 3D

designs must take advantage of the

increased device density and the low-

latency, high-bandwidth interconnec-

tions.

How 3D technology bridges the
processor-memory performance gap

Unlike a conventional 2D chip, on which logic and

memory units reside at opposite ends, a 3D chip can

have logic and memory stacked together to shorten the

critical path. More importantly, bringing main memory

onto the chip can significantly reduce latency.

Bandwidth between the CPU and DRAM improves dra-

matically with on-chip buses that can fetch hundreds to

thousands of bits at once. Power consumption also

drops because the large capacitive loads due to off-chip

accesses are removed. Many commercial processors,

including IBM’s Blue Gene/L processor and ATI’s graph-

ics processor for the new Xbox 360, have exhibited the

performance benefits of embedded DRAMs.

Considering the densities of current technology puts

things in perspective. There are two types of embedded

DRAM. Dense DRAM has 16 to 20 times the capacity of

SRAM and is designed for high density, low cost, and low

leakage.3 Alternatively, designers can build DRAM using

logic technology, which is more expensive but allows

for higher performance. The density of logic-based

DRAM ranges from four to eight times that of SRAM.

International Technology Roadmap for Semiconductors

data (http://public.itrs.net) for 90-nm technology shows
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that one 2-cm2 chip can accommodate about 256 Mbytes

of dense DRAM. About the same number of Mbytes in

logic-based DRAM requires five chips. For comparison,

only about 64 Mbytes of SRAM can fit on four chips. With

density and chip area in mind, we consider only cache

sizes up to 64 Mbytes and embedded main memory sizes

up to 256 Mbytes. None of the benchmark programs in

this study has a memory footprint exceeding 200 Mbytes.

For applications that use more memory, it’s possible to

envision a nonuniform memory access architecture in

which the embedded main memory serves as local

memory for the CPU.

Researchers have used textbook memory latency

models to characterize the performance benefits of

stacking caches and main memory atop the processor.4

However, these results don’t apply to today’s sophisti-

cated microprocessors. In this study, we conduct simu-

lations on representative application programs to

evaluate the performance of stacked memory for a

superscalar, out-of-order processor.

Methodology
We analyze the performance improvements of 3D IC

technology using an extended version of the SimpleScalar

Version 4.0 simulator.5 The baseline 2D processor core

represents current technology (3-GHz CPU; 750-MHz

memory; and 64-Kbyte L1-instruction, 64-Kbyte L1-data,

and 1-Mbyte L2 caches). We provide the CPU and mem-

ory frequencies only for reference; the simulator accepts

inputs in units of CPU clock cycles and doesn’t actually

require frequency values. Table 1 shows details of the sim-

ulated processor. We use all 12 integer and 10 of the 14

floating-point programs from the SPEC CPU2000 bench-

mark suite (http://www.spec.org/osg/cpu2000), omitting

the four Fortran 90 programs for lack of a compiler. The
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Figure 1. 3D ICs consist of planar device layers

separated by silicon dioxide or other insulating

materials and interconnected by short, vertical

wires.

Table 1. Baseline 2D processor configuration.

Feature Specification

Baseline processor

Fetch/dispatch/commit width 4/4/4 instructions/cycle

Instruction window/reorder buffer/load-store queue 64/128/64 entries

Integer/floating-point registers 208

Load-store/integer/floating-point units 2/4/2

Execution latencies Similar to those of the Alpha 21264

Branch predictor 8-K entry bimodal/gshare hybrid

Return address stack 16 entries

Branch target buffer 2,048 sets, four-way set associativity

Minimum branch misprediction penalty 16 cycles

Baseline processor’s memory subsystem

Cache sizes 64-Kbyte L1 instruction, 64-Kbyte L1 data, 1-Mbyte L2

Cache associativity Two-way L1, four-way L2

Cache (load-to-use) latencies Three-cycle L1, 11-cycle L2

Cache line sizes 64-byte L1, 64-byte L2

Miss status holding registers 64-entry L1, 64-entry L2

Main memory latency 300 cycles + cache access time

Hardware stream prefetcher Between L2 and main memory;16 streams; maximum prefetch distance: 16 strides



programs run with the SPEC-provided reference inputs.

We use the SimPoint toolset to identify representative sim-

ulation points.6 We simulate each program for 500 million

instructions after fast-forwarding past the number of

instructions determined by SimPoint.

We set out to investigate various scenarios:

■ Examine the potential benefits of stacking an exist-

ing L2 cache above the CPU.

■ Examine the benefits of stacking main memory atop

the CPU. This study includes on-chip main memory

fabricated using standard DRAM technology and

that made from the faster logic technology.

■ As an alternative to stacking main memory atop the

CPU, expand the existing cache hierarchy. This

includes increasing the L2 cache size and adding an

L3 cache.

■ Consider the impact of stream prefetching7 on dif-

ferent cache organizations.

■ Combine the optimized cache hierarchy with stream

prefetching and on-chip main memory.

To quantify the performance benefits of on-chip

main memory, we must examine the different compo-

nents that contribute to the latency. In general, main

memory latency includes the time to request data from

the DRAM core (memory controller latency) and the

time to retrieve the data from the DRAM core (core

access latency). Other components of memory latency,

such as the delay through the bus interface unit, are not

covered here. Core access latency includes the time

needed to decode the address signals, activate the word

line, select and amplify the bit lines, and transfer the

data out of the DRAM chip. Bringing the DRAM onto the

CPU chip lets us significantly reduce the core access

time.3 With on-chip buses, data moves between the

DRAM and the CPU at far higher frequencies than are

possible over long, off-chip wires with large capaci-

tances. Moreover, on-chip DRAM obviates address mul-

tiplexing and removes the off-chip drivers and receivers.

Although it’s still possible to fabricate the DRAM core

using DRAM technology, designers can use the faster

logic technology to build the peripheral circuitry, offer-

ing further speed improvements.

Memory controller latency includes the time need-

ed to translate from physical addresses to memory

addresses as well as the time to schedule the memory

request, which means converting memory transactions

to command sequences and queuing them. The DRAM

core speed limits the memory controller’s speed. In

other words, the memory controller needn’t schedule

memory accesses much faster than the rate at which the

DRAM core returns data. However, with the faster core

speed that results from bringing the DRAM on chip, we

can also run the memory controller faster. Based on the

estimates from an IBM process, bringing main memory

onto the CPU chip reduces core latency by roughly 60%;

latency would further decrease with on-chip DRAM

made using logic technology.3 This should let us run the

memory controller at twice its original speed.

With these ideas in mind, let’s examine different sce-

narios for main memory. We assume that the baseline

2D processor has an average main memory latency of

300 cycles. Although this value can be higher or lower,

we are concerned only with trends and not absolute val-

ues. We assume that half of the 300 cycles are due to the

memory controller latency and half to the DRAM core

access latency. Using the estimated access times of an

IBM process, we first analyze the performance of an on-

chip DRAM macro fabricated with standard DRAM tech-

nology. Then we assume that the on-chip DRAM is

made using the faster logic technology. The next two

cases examine on-chip DRAM with memory controller

latency improved by 50% because of the faster core

latency. The various memory latencies (in CPU cycles)

appear in Table 2.

Cacti Version 3.2, an updated version of Cacti

Version 3.0, determines the L2 cache access latencies.8

Finding the optimum cache access times involves vary-

ing the number of cache banks, the word line and bit

line configurations, and the cache line size. We fixed

the associativity to four ways in all cases. Cache laten-

cies appear in Table 2. We have assumed uniform

cache access. In reality, this is a worst-case scenario

because large caches are likely to require nonuniform

access.9 For instance, we can design an on-chip network

to access different parts of a large cache with different

latencies, depending on the number of data hops

through the network.

Stacking existing L2 cache and main
memory

There are two possibilities for improving the baseline

processor. The first is to stack the L2 cache atop the CPU.

Unfortunately, the benefit of stacking a standard L2

cache (with just a few megabytes) is small because prop-

er floorplanning would already have placed the L2 strate-

gically to minimize critical paths (for example, to the L1

cache). Also, even if 3D does reduce L2 cache latency,

the reduction is at most 1 to 2 cycles out of the roughly
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10-to-15-cycle load-to-use latency typical of today’s L2

caches. Suppose that with better floorplanning in a 3D

design, we reduce L2 latency (hypothetically) by 2

cycles. This reduction produces little performance

improvement, as Figure 2 illustrates. In fact, an average

speedup over the baseline processor of 0.7% and 0.4%

for integer and floating-point programs, respectively, is

negligible.

On the other hand, stacking main memory (instead

of the existing L2 cache) atop the CPU provides a large

boost in performance. This is especially true for certain

benchmark programs like mcf (a combinatorial opti-

mization program used for vehicle scheduling) that

have numerous misses from the L2. In Figure 2, we con-

sider four scenarios of on-chip main memory. First, we

examine standard DRAM technology with a bus width

of 8 bytes, which is consistent with a single channel of

double-data-rate synchronous DRAM (SDRAM) in use

today. The average speedup is 13% for integer and 25%

for floating-point programs. We also consider the same

DRAM with a much wider bus (64 bytes). This width is

possible, given that buses now remain completely on

chip. The relative improvement of a 64-byte bus over an

8-byte bus is only 1% to 2%. The primary reason for the

small improvement is because the latency due to trail-

ing-edge data (data sent from the memory after the ini-

tial burst of data is sent) is only 7 cycles, compared with

the 219-cycle latency due to the rising edge (initial

burst). This is only about a 3% difference in latency.

However, a 3% increase in latency translates to less than

a 3% decrease in performance, mainly because the

processor is waiting for memory only for a fraction of

the total execution time.

Thus far, we’ve assumed that despite the reductions

in core latency, memory controller latency remains the

same as that of standard off-chip DRAMs. However, as

mentioned earlier, lower memory controller latency is

likely to accompany lower core latency. Integrating the

memory controller on chip and improving controller

design can greatly reduce memory latency, as AMD’s

Opteron processor shows (http://www.amd.com/us-

en/assets/content_type/DownloadableAssets/Hammer_i

n_Context_-_Fred_Weber.pdf). Assuming a 50% reduc-

tion in memory controller latency, the speedup of the

dense DRAM macro over the same macro with no mem-

ory controller improvement is 12% and 27%, respective-

ly, for integer and floating-point programs. This illustrates

the importance of memory controller optimization.

Switching to logic technology provides an addition-

al 6% and 15% boost in performance for integer and

floating-point programs over the dense DRAM macro.

This is because designers can use the faster logic tech-

nology for both the DRAM cells and the peripheral cir-

cuits, such as decoders and word line drivers. However,

given the density issue of implementing main memory

with logic technology (256 Mbytes implemented on five

chips), pursuing this option is unlikely.

For both the integer and the floating-point programs,

the mean performance gain is still far less than that of

the perfect L2 cache case, which represents a hypothet-
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Table 2. Changes to the baseline configuration. The top portion shows the reduction in main memory latency (in CPU

cycles). The bottom portion describes the different cache configurations.

Feature Specification

Latency of on-chip main memory

Standard memory controller

Dense DRAM 208 cycles + cache access time

Logic-based DRAM 179 cycles + cache access time

Improved memory controller 50% of original controller latency

Dense DRAM 133 cycles + cache access time

Logic-based DRAM 104 cycles + cache access time

Cache configurations

Cache sizes 2, 4, 8, 16, 32, and 64 Mbytes

Cache associativity Four way (fixed)

Number of banks 8 banks for 2 to 32 Mbytes, 4 banks for 64 Mbytes

Cache (not load-to-use) latencies Assume uniform access (worst case)

9, 13, 18, 31, 49, 86 cycles

Cache line sizes 128 bytes for 2 Mbytes, 256 bytes for 4 to 64 Mbytes
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Figure 2. Benchmark performance of 3D processors with a hypothetical 2-cycle reduction in L2 hit latency:

integer (a) and floating-point (b). The figure shows four possible scenarios of stacked on-chip main memory with

different memory bus widths and compares both dense DRAM and logic-based DRAM macros. “Improved”

indicates a memory controller latency improvement of 50%. We also plot the perfect L2 case, in which all

accesses hit in the L2.



ical configuration in which all accesses hit in the L2

cache (no accesses to main memory). This suggests that

perhaps a different cache design would work better for

3D technology. In the rest of the article, on-chip main

memory refers to the dense DRAM macro with improved

memory controller (50% of the original latency). We

choose this DRAM configuration because it offers the

best trade-off between density, cost, and speed.

Expanding the L2 cache
With the larger circuit densities that 3D IC technolo-

gy offers, designers can expand the cache hierarchy to

migrate data closer to the processor. The baseline 2D

processor has a 1-Mbyte L2 cache. With 3D, it’s possible

to enlarge the L2 cache, which might provide addition-

al benefits despite the accompanying increase in access

time. We investigated the processor performance for

various L2 cache sizes up to 64 Mbytes, with latencies

listed in Table 2.

The curves for the off-chip dense DRAM in Figure 3

show the average speedup over the SPEC benchmark

suite. For the integer programs, the peak performance

is clearly at 8 Mbytes. This illustrates the trade-off

between fitting the working set into the cache (offering

better performance) and the increased access latency

for larger caches (offering poorer performance). With

the integer programs, the average working set of 4 to 16

Mbytes works well with small caches. With floating-

point programs, however, performance peaks at 16

Mbytes because of the larger working sets.

Implementing stream prefetching
It would be useful to take advantage of large-cache

availability by observing program behavior and prefetch-

ing useful data into the cache. This is the role of the hard-

ware stream prefetcher. We simulated an aggressive

hardware stream prefetcher between the L2 cache and

main memory.7 (Later, when we add an L3 cache, the

prefetcher prefetches data to both the L2 and L3 caches

from main memory.) The stream prefetcher tracks the

history of the last 16 miss addresses in a global history

table, detects arbitrary-sized strides, and allocates a

stream after a particular stride has been observed twice.

It can simultaneously track 16 independent streams and

prefetch up to 16 strides ahead of the processor’s data

consumption. Prefetches go directly into the L2 cache

and are tagged. If the processor later requests the

prefetched cache line, the prefetcher issues a request for

the next element of the corresponding stream.

Adding stream prefetching significantly improves the

performance of the integer programs with small caches.

(Compare the curves for off-chip dense DRAM with and

without stream prefetching in Figure 3.) With larger

caches, prefetching provides little gain, because most

of the active working set already fits in the cache.

Floating-point programs, which have larger working sets

and tend to exhibit more streaming-data access pat-

terns, show a substantial performance gain for all cache

sizes up to 64 Mbytes. However, performance begins to

degrade at larger sizes because of the increased cache

latency. With stream prefetching, a processor with a
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larger L2 cache and off-chip main mem-

ory (the middle curves in Figure 3) can

perform better than the baseline proces-

sor with on-chip memory (Figure 2).

We can obtain an even greater per-

formance gain by combining a larger L2

cache, stream prefetching, and on-chip

main memory. Notice that with floating-

point programs, the reduced memory

latency provided by bringing memory

on chip means that a smaller L2 cache

(4 Mbytes) is needed to obtain peak

performance.

Deepening the cache
hierarchy

A larger L2 cache, though desirable,

increases the access latency, which

affects all data in a uniformly accessed L2

cache. One alternative is to use a nonuni-

form cache access scheme.9 Another is to

deepen the cache hierarchy by adding an

L3 cache. Figure 4 examines different L2-

L3 combinations and shows the perfor-

mance relative to the baseline 2D

processor. As in the previous figure, we

compare the performance of off-chip

dense DRAM (dot-dashed lines), off-chip

dense DRAM with prefetching (dashed

lines), and on-chip dense DRAM with

prefetching (solid lines).

Combining a small but fast L2 cache

with a larger but slower L3 cache gener-

ally produces much better performance

than with a single large L2 cache. We

observe the same trends as before: The

use of stream prefetching and on-chip

main memory reduces the cache sizes

required to achieve peak performance.

Note that obtaining optimum perfor-

mance for integer and floating-point pro-

grams on the system with off-chip DRAM

requires dramatically different cache

organizations. For instance, a processor

with off-chip DRAM and prefetching

requires a 16-Mbyte L3 cache to work best

with integer applications but a 64-Mbyte

L3 cache for floating-point applications.

With on-chip DRAM and prefetching

(solid lines in Figure 4), a processor with
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1-Mbyte L2 and 8-Mbyte L3 caches can provide nearly

optimal performance for both integer and floating-point

applications.

Combining better caches with faster
DRAMs

Working in 3D makes it easy to combine different

types of technology because each one can be fabricat-

ed on a separate substrate before wafer or die stacking.

Therefore, it’s possible to stack both caches and main

memory on separate layers. Figures 3 and 4 show per-

formance with a combination of large cache sizes and

an on-chip DRAM macro (using dense DRAM technol-

ogy) for main memory. On-chip DRAM as main memo-

ry delivers an additional improvement over off-chip

DRAM. This is true for both the large L2 (Figure 3) and

the L2 and L3 combinations (Figure 4).

It might appear at first that off-chip DRAM with stream

prefetching can achieve the speedups of on-chip main

memory with stream prefetching. However, the speedup

with off-chip DRAM generally occurs with larger cache

sizes. For example, on-chip main memory with prefetch-

ing delivers an average speedup of 126% for floating-

point programs when L2 = 1 Mbyte and L3 = 8 Mbytes.

Off-chip DRAM with prefetching provides a speedup of

117%, but here L2 = 2 Mbytes and L3 = 64 Mbytes. As

mentioned earlier, a 64-Mbyte cache requires a silicon

area of up to four chips. So even though off-chip DRAM

with prefetching can achieve good speedups, it requires

an unreasonably large cache. With L2 = 1 Mbyte and L3

= 8 Mbytes, off-chip DRAM with prefetching offers only

a 106% speedup, 20% less than that of on-chip memory.

The performance for integer programs is about 9% poor-

er than for the on-chip counterpart with L2 = 1 Mbyte and

L3 = 8 Mbytes.

With on-chip main memory, stream prefetching, and

a cache combination of L2 = 1 Mbyte and L3 = 8 Mbytes,

the speedup over a baseline 2D processor is about 59%

and 126% for the integer and floating-point programs,

respectively. These speedup values are very close to the

ideal values of 67% and 136% for a perfect L2 cache. In

other words, the addition of on-chip memory provided

the extra boost to achieve performance of only 8% and

10% below the perfect L2 cases. Small L2 and L3 cache

combinations permit these large speedups because of

the significant reduction in main memory latency.

Designers can implement these small L2 and L3 caches

within the CPU die, followed by wafer- or chip-stacking

of a DRAM main memory. This simple two-layer proces-

sor-memory design can achieve near-ideal performance.

OUR WORK examines the performance of a single-core,

single-threaded processor under representative work-

loads. We have shown that reducing memory latency

by bringing main memory on chip gives us near-perfect

performance. As the industry moves toward multicore,

multithreaded, and multimedia applications, there is an

increasing drive not only for low memory latency but

also for high memory bandwidth. Three-dimensional IC

technology can provide the much needed bandwidth

without the cost, design complexity, and power issues

associated with a large number of off-chip pins. The

principal challenge remains the demonstration of a

highly manufacturable 3D IC technology with high yield

and low cost. ■
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