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Abstract—The widespread deployment of multicore-based
computer systems over the last decade has brought about
drastic changes in the software and hardware landscape. Yet,
many undergraduate computer science (CS) curricula have not
embraced the pervasiveness of parallel computing. In their first
years, CS undergraduates are typically exclusively trained to
think and program sequentially. However, too firm a root in
sequential thinking can be a nontrivial barrier for parallel
thinking and computing. Thus, there is an urgent need to teach
multicore and parallel computing concepts earlier and often in
CS programs.

This paper describes our efforts at addressing the rapidly
widening gap between highly parallel computer architec-
tures and the sequential programming approach taught in
traditional CS courses. At Texas State University, we have
adopted the early-and-often mode of integrating parallelism
into the undergraduate curriculum. In this approach, parallel
computing concepts are introduced and reiterated through a
series of short, self-contained modules across several lower-
division courses. Most of these concepts are then combined
into a newly designed senior-level capstone course in multicore
programming. Evaluations conducted during the first year
show encouraging results for the early-and-often approach in
terms of learning outcomes, student interest and confidence
gains in computer science.

I. INTRODUCTION

The ubiquity of parallel computing resources presents a
pressing challenge to the entire computer science discipline.
The thrust of this challenge is to find ways to better equip
computer science students with skills to face an increas-
ingly parallel world. Although there is general agreement
that undergraduates should learn parallel and distributed
computing (PDC) concepts, there is debate about when
parallel programming should be taught and to what extent.
Recently, the NSF/IEEE-TCPP PDC committee and ACM
have emphasized the need for integrating PDC topics across
the curriculum [1], [2]. Although these initiatives have gar-
nered strong support from the community, there remain key

challenges in realizing this vision. The pedagogy of teaching
current PDC topics to undergraduates is yet to mature
and major curriculum revisions are problematic, particularly
for departments where revisions to the curriculum require
significant planning and effort, including training of faculty
teaching lower-level classes, complying with administrative
policies of the university curriculum board, and tracking
graduation credits for majors under the revised curriculum.
This paper describes our experiences in implementing the
early-and-often approach to integrating parallel computing
into the undergraduate curriculum.

The early-and-often approach, originally proposed by
Brown et al. [3], aims to introduce PDC concepts through a
series of modules dispersed across several courses in the
curriculum. At Texas State University, we have adopted
a similar module-driven approach with special emphasis
on how the modules are developed and when they are
introduced. Fig. 1 presents an overview of our integration
strategy. The development and deployment of the modules
is based on three key principles that provide several peda-
gogical advantages. We discuss these ideas next.

Introduce parallel topics at the right level of abstraction:
To gain mastery in parallel programming (and sequential
programming, for that matter), students need to learn how
to think about problems at different levels of abstraction
and acquire the ability to switch between levels rapidly. It
is very important to determine the right level of abstraction
for introducing different aspects of parallel problem solving.
Exposing students to multiple levels all at once is likely to
create confusion. Moreover, choosing too low a level may
hide some of the natural parallelism available in an algorithm
and result in lost opportunity. We advocate an approach that
starts with the most abstract forms of concurrency and par-
allelism, and progressively reveals lower-level mechanisms
required for more complex forms of process interaction.
For example, students can learn about Amdahl’s law for
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Figure 1. Parallel computing modules and their coverage in undergraduate courses

parallel programs without being able to program in parallel
or having knowledge of synchronization and communication
primitives. Concepts that students can grasp at a higher
level of abstraction are introduced first and reinforced in
subsequent years as students are gradually exposed to lower-
level concepts. Finally, we tie all the ideas together in the
form of a capstone course at the senior level. Some topics,
such as performance of parallel programs, span multiple
levels of abstraction and are therefore part of several course
modules.

Provide “parallel context” to key topics in the existing
curriculum: Many theories and concepts covered throughout
the CS curriculum can enhance a student’s comprehension
of parallel computing principles. However, such topics are
often not taught in a parallel context. For example, almost
all data structures courses introduce recursion, and in many
cases, a divide-and-conquer algorithm is used as a primary
example. Yet, the fact that divide-and-conquer algorithms
naturally lend themselves to parallelism is rarely empha-
sized. Similarly, in later algorithms courses, the complexity
analysis of divide-and-conquer traditionally ignores parallel
implementations. Our approach incorporates parallel context
to key ideas such as divide-and-conquer algorithms and
recursion. Since the modules are dispersed over several
courses and do not introduce completely new concepts but

rather extend topics that are already being covered, we do not
expect these modules to cause significant strain on covering
original course content. What material, if any, needs to de-
emphasized or condensed to make room for the module is
left to the decision of the individual instructor.

Encourage adoption across different institutions: The
modules we developed are self-contained with lecture notes,
assignments, exercises, exam questions, and solutions. The
estimated duration for each module is between one and
four 1.25-hour lectures. Some modules include lab time.
Although the modules provide a textbook treatment of
the material, they are not tied to any specific textbook
or lab manual. This enables straightforward adoption of
the modules at other institutions. The course modules are
designed so that they are mostly language independent. Of
course, some modules require the use of specific parallel
languages or APIs. In these cases, we develop multiple
modules for the same concepts using alternate language
interfaces. Generally, modules do not entail any prerequisites
other than the ones prescribed for the course in which
the module is taught. However, the introduction of some
modules may need to be postponed until later in the semester
when requisite material has been covered.



Table I
PDC MODULES AND COURSE INFORMATION

Module Course Enrollment
1. Parallelization techniques (B) CS II (CS2308) 43
2. Intra-processor parallel architecture (C1) Assembly Language (CS2318) 52
3. Inter-processor parallel architecture (C2) Computer Architecture (CS3339) 27
6. Performance: basic concepts (E1) Data Structures (CS3358) 47
5. Task orchestration: scheduling and mapping (D2) Operating Systems (CS4328) 30

II. FIRST YEAR IMPLEMENTATION

A. Module Development and Teaching

To date, we have developed five modules covering some
of the core PDC concepts. The developed modules were
introduced in seven sections of five undergraduate courses
during the previous academic year. The modules, the courses
in which they were taught, and the enrollment in each
class are listed in Table I. Three of the modules were
introduced in lower-level courses1, while the other two were
introduced in courses with mostly juniors and seniors. The
modules were taught by four different instructors. Except for
the module on Inter-Processor Architecture (C2) introduced
in the Computer Architecture course, all modules were
taught by faculty who were not directly involved in the
development of the module. We conducted short training
sessions for faculty with no prior experience in teaching
parallel computing.

The teaching material associated with each module is
available on a web site we set up to support our dissemina-
tion efforts [4]. To help the reader understand the structure
and content of our modules, we briefly describe two sample
modules.

B. Task Orchestration: Scheduling and Mapping on Multi-
core Systems (Module D1)

Description: This module extends scheduling algorithms
covered in a typical upper-level operating systems course
and introduces concepts and algorithms for thread schedul-
ing on multiprocessor systems. A priority-based algorithm
for optimal throughput is presented and then modified to
use power consumption as the main objective function. The
notions of energy efficient computing and load balancing
to improve throughput are discussed in this context. The
module further includes a processor-affinity-based schedul-
ing algorithm for multicore platforms. A producer-consumer
application is used as an example to illustrate the effects
of thread affinity on shared-cache locality and performance.
The module briefly covers simultaneous multithreading
(SMT) and issues related to scheduling of hardware threads.

Topics and Learning outcomes (per NSF/IEEE-TCPP
PDC Curriculum):

1(although Data Structures is a 3000 level course CS majors typically
enroll in this course in their third semester)

• [Programming] Tasks and threads: understand what it
means to create and assign work to threads in a parallel
program and how this assignment affects performance;
know how to assign work using OpenMP

• [Programming] Synchronization: understand the need
for inter-thread synchronization; be able to write shared
memory programs with critical regions, producer-
consumer communication, and get speedup; know the
notions of mechanisms for concurrency (monitors,
semaphores, etc.); understand safety considerations of
parallel execution, including thread-safe functions.

• [Programming] Load balancing: understand the effects
of load imbalances on performance and power; under-
stand ways to balance load across threads or processes

• [Programming] Scheduling and mapping: understand
how the operating system schedules threads to com-
putation cores; understand the performance impact of
such mapping

Recommended Length: One lecture of approximately one
hour and fifteen minutes.

Recommended Course (and rationale): Operating Sys-
tems. Scheduling of tasks is a topic discussed at some length
in any standard Operating Systems course. This provides the
ideal context for exposing students to concepts related to
scheduling of tasks on multicore processors.

Source Code: Pthreads implementation of a producer-
consumer application.

C. Performance: Basic Concepts (Module E1)

Description: Improved performance is the main advan-
tage of parallel computing over traditional sequential com-
puting. This module introduces basic concepts and terms
in performance of computing, including various techniques
typically covered in computer architecture for performance
enhancement, the notion of speedup, and Amdahl’s law.
It also introduces a basic approach to designing a parallel
algorithm.

Topics and Learning Outcomes (per NSF/IEEE-TCPP
PDC Curriculum):

• [Cross Cutting] Why and what is parallel/distributed
computing? : Know the common issues and differences
between parallel and distributed computing; history and
applications. Microscopic level to macroscopic level
parallelism in current architectures



• [Programming] Performance metrics: Know the basic
definitions of performance metrics (speedup, efficiency,
work, cost), Amdahl’s law; know the notions of scala-
bility

• [Programming] Speedup: Understand how to compute
speedup, and what it means

• [Programming] Efficiency: Understand how to com-
pute efficiency, and why it matters

• [Programming] Amdahls law: Know that speedup is
limited by the sequential portion of a parallel program,
if problem size is kept fixed

• [Algorithm] Sorting: Observe several sorting algo-
rithms for varied platforms - together with analyses
(only Quicksort is covered in this module)

Recommended Length: Two to three lectures, with ap-
proximately one hour and fifteen minutes devoted to each
lecture.

Recommended Course (and rationale): Data Structures.
In our curriculum, this course requires CS I and CS II
as background. Most students also have completed CS2420
(Digital Logic), and some have completed CS3339 (Com-
puter Architecture). CS II covers fundamental aspects of
C++ programming. The content of this module is taught
near the end of the semester. Therefore, students should
have sufficient background to learn the notion of parallel
computing and contrast parallel computing with sequential
computing.

III. CHALLENGES

A. Coverage

Module B (Parallelization Techniques) focuses on non-
recursive methods of parallel decomposition. We had
planned four lectures. The first lecture introduces these ideas
at the algorithmic level. Scanning arrays for minimum and
maximum values is used as an example. The second lecture
illustrates programming issues related to data parallelism on
the example of parallel Ranksort using OpenMP. Metrics
for evaluating the parallel performance are also covered.
The third lecture introduces parallel graph algorithms using
linked-list operations as an example. The final lecture pro-
vides an overview of amorphous data-parallelism, a general,
data-driven approach to parallelizing arbitrary algorithms.

We selected our equivalent of CS II for introducing this
module. The first lecture on finding the maximum value in
an array in parallel worked as planned except the instructor
felt the slides were too dense. We have since spread out their
content and added intermediate steps. As the course covers
several sorting algorithms, we thought Ranksort would be a
simple addition. However, this (sequential) algorithm proved
more difficult for the students to understand than we had
anticipated, making the module take longer and forcing the
instructor to add examples. We have now updated the slides

accordingly. At this point, we realized that the latter lectures
would be too advanced for this course. After all, pointers and
a first introduction to linked lists are only covered towards
the end of the semester. As a consequence, we felt the
students’ grasp of this newly acquired knowledge was too
basic to talk about parallel operations on linked lists or other
graph-based data structures. Hence, we did not teach the
last two lectures. Instead, we decided to (re-)introduce the
entire module in the follow-on data-structures course, which
we are teaching this semester. That course starts out with
a review of pointers and linked lists, hopefully making it
more suitable. Furthermore, it covers sorting algorithms and
algorithm complexity as well as general graphs and graph
algorithms, which should also make the final two lectures
of Module B appropriate for this course.

B. Content Substitution

Integrating parallel computing into the curriculum through
a series of short, self-contained modules introduces several
challenges, especially when the integration occurs early in
the curriculum and involves lower division courses. Since
the integration is not done in a vacuum and many of the
lower-division courses are already facing the challenge of
prioritizing relevant material, one has to make decisions con-
cerning the elimination, condensing, or change of teaching
pace of existing topics in order to enable introducing the
relevant PDC modules.

We have identified three main remedies to the issue of
integrating the new modules into existing courses that do
not involve content elimination:

• Identify areas that are covered in more than one course
and better synchronize the coverage.

• Identify areas where students seem to have less diffi-
culty and increase the pace.

• Identify areas that can be partially covered by home-
work and self-learning.

For example, we wanted to introduce one lecture on intra-
core parallelism (exploiting task-level parallelism and data-
level parallelism in a single core) into our assembly language
course. To be able to do so, we decided to shorten the
discussion on the compiler, assembler, linker, and loader
chain of operations for the following two reasons. First, we
identified an unnecessary overlap of this coverage with the
later computer architecture course. Second, we discovered
that we could switch from the GCC tool chain, which
requires a detailed understanding of this interaction, to the
SPIM simulator, which does not require this understanding.

If none of the above remedies are available, one may
have to make the ‘painful’ decision to eliminate or condense
existing material. This is not an easy task and probably
involves a trade-off between eliminating/condensing ‘basic,
potentially out-of-date’ material and eliminating/condensing
‘new and trendy’ material. The ultimate decision will likely
have to be made by the undergraduate curriculum committee.
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Figure 2. Student Learning Outcome in CS II (CS2308)

C. Consistency Across Sections

Texas State University has a consistently high enrollment
in computer science. As the university is determined to keep
class sizes small, the lower division courses in the computer
science department are split into multiple sections taught by
different instructors (with as many as 11 sections for the
CS I course). This poses several administrative challenges
in introducing new content even if the material is contained
within a single module. For instance, the CS I course adheres
to a strict schedule of content coverage to ensure that
lecture and laboratory sections are synchronized. Introducing
a new PDC module in this setup would disrupt this schedule
and require significant changes in the way the course is
currently being taught. Furthermore, for courses taught by
multiple faculty, we need to ensure that all instructors receive
adequate training so that the coverage is consistent across
all sections and that the evaluation is being conducted in
a uniform way. We plan to conduct a longitudinal study to
evaluate the effectiveness of the developed modules. For this
reason, in our first year, we chose to introduce the modules
in only a subset of sections of every multi-section course.
This approach creates multiple paths through the enhanced
curriculum, providing better data for our final evaluation.
This strategy may be reasonable during the initial phase,
however, for a more complete adoption, proper co-ordination
of a multi-section course will be needed.

IV. EVALUATION AND ASSESSMENT

We instated two forms of evaluation during the first
year. The assessment plan for student learning outcome
was designed by the involved faculty whereas teaching
effectiveness and student engagement was evaluated through
an independent external evaluator. Additionally, we started
collecting and compiling data for a longitudinal study of
student understanding of parallel concepts. The initial results
of that study are expected in 2015.
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Figure 3. Student Learning Outcome in Assembly Language (CS2318)
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Figure 4. Student Learning Outcome in Computer Architecture (CS3339)

A. Learning Outcome

For each module, a set of learning outcomes was iden-
tified, and these outcomes were mapped to the outcomes
listed by the NSF/TCPP curriculum for PDC topics [1] (see
Sections II-B and II-C). For each section, a final exam ques-
tion was prepared to assess student comprehension of the
content introduced by the module. Although programming
assignments and homework problems were associated with
the material for some modules, to be consistent, we only
considered student performance on final exam questions to
determine learning outcome. Aside from numeric scoring
(which was different for different sections) a rubric was
created for each question that graded student response on a
scale of very poor, poor, fair, good and very good. A grade
of fair or better was considered a passing grade.

Figs. 2-6 present student performance on final exam
questions for each course where a module was implemented.
Evaluation of student learning outcomes shows that 60% of
the students who were exposed to the PDC module received
a passing grade on the final exam question. This number
indicates that our initial implementations of the modules
were relatively successful. However, the individual course-
based breakdown of student performance identifies problem
areas that will need to be addressed in future semesters.
Specifically, in CS2318: Assembly Language, where the
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Figure 5. Student Learning Outcome in Data Structures (CS3358)
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Figure 6. Student Learning Outcome in Operating Systems (CS4328)

module on intra-core parallel architecture was introduced,
student performance was below par. Around 38% of the
student responses fell in the very poor category. We surmise
that this poor showing is explained by two factors. First, the
material covered in this module may have been too advanced
for this particular class. Second, many of the students in
this class were transfer students who may not have had
the required background or programming maturity (as did
students from Texas State) to tackle the presented material.
We intend to address both issues by re-aligning the module
content for the sophomore-level courses in future semesters.

B. Teaching Effectiveness and Student Engagement

We conducted an independent external evaluation to as-
sess changes in student confidence and interest in com-
puter science, as well as the students’ perceptions of their
classroom learning experiences. To obtain these measure-
ments, the Student Assessment of Learning Gains (SALG)
survey [5] was administered electronically at the end of
the semester to the students enrolled in courses where the
modules were introduced.

The strongest reported gains were in confidence and inter-
est in computer science in general, and parallel computing
in particular. The students also thought that the learning
experiences and instructional environment in the classroom
helped their learning. They rated their interactions with peers
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and instructors positively and also reported that specific class
activities, such as lectures, examples, and asking questions,
were helpful. The students were slightly positive that course
assignments, projects, and tests helped their learning. Fig. 7
summarizes the scale means of the total sample of students
from the four SALG survey scales. We highlight specific
aspects of the assessment in the sections that follow.

1) Student Interest: Fig. 8 provides a course-wise break-
down of student responses with respect to confidence and
interest gains. Overall, 75% of the students reported that the
course had increased their “enthusiasm for this subject” a
“moderate” or “great” amount. Similarly, a full 92% of the
students reported that the course had increased their interest
in taking more CS courses. Students overwhelmingly (86%
of the students) reported that the course had increased their
confidence that they can succeed in computer science.

In an open-ended question, the vast majority of the
students affirmed that the courses with parallel computing
modules increased their interest in the field of Computer
Science. The students were asked to comment on how the
course influenced their interest in the subject. Overall, 80%
of them reported that the course had positively impacted
their interest in the subject matter. A significant minority of
the students expanded their answer and noted that they had
learned new skills or gained a greater depth of knowledge
about the course material. A few students stated that they
were already highly interested in the material, and the course
served to sustain their interest rather than increase it.

Although the students’ perspectives on the modules varied
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by course, particularly between early and more advanced
courses, more than 50% of the students in each course rated
the module as “somewhat” or “very” helpful to their learn-
ing. The students’ ratings of the modules increased in the
more advanced courses in the major (those at the 3000 and
4000 level). The students in the lower courses may not have
had the prior knowledge or experience to fully understand
the parallel computing concepts, and modification of the
modules in the future may be needed.

2) Classroom Learning Experience: The students rated
the learning environment in their course positively. The
“learning experiences” scale measures the efficacy of the
general instructional approach and curriculum in the course.
The learning environment in each course was rated between
“somewhat helpful” (3.0) and “very helpful” (4.0). The
mean over all courses was 3.3. The differences among the
courses are not statistically significant. Thus, the students
were generally satisfied with the teaching strategies used
in their CS courses. For instance, 89% of the students
found the “instructional approach taken in this class” to be
“somewhat” or “very” helpful. Similarly, 88% of students
felt that their learning was enhanced by the way that the
class sessions, activities, and assignments fit together. Fig. 9
documents the course means for the “learning experiences
scale” (3=somewhat helpful, 4=very helpful).

V. SUMMARY

Overall, we rate our first-year venture to introduce PDC
topics in the undergraduate curriculum a success. The eval-
uation and assessment results show that the students devel-
oped a reasonable understanding of the parallel computing
concepts introduced through our modules. Furthermore, the
module-based approach was rated favorably by the students
with respect to their learning experience. We also identified
several problem areas in implementing the early-and-often
approach. In one instance, the material proved to be too
advanced for the course, prompting us to split the content
into two separate modules. In another instance, truncating
existing material to accommodate module contents proved
challenging. We have identified solution strategies for these
problems and intend to implement them in the coming year

as we move forward with our efforts of integrating PDC into
the undergraduate curriculum.
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