
Adaptive Per-File Lossless Compression
of Floating-Point Data

Andrew Rodriguez
Department of Computer Science

Texas State University
San Marcos, Texas, USA

andrew.rodriguez@txstate.edu

Noushin Azami
Department of Computer Science

Texas State University
San Marcos, Texas, USA
noushin.azami@txstate.edu

Martin Burtscher
Department of Computer Science

Texas State University
San Marcos, Texas, USA

burtscher@txstate.edu

Abstract—The large amount of floating-point data generated
by scientific applications makes data compression essential for
I/O performance and efficient storage. However, floating-point
data is difficult to compress losslessly, and most compression
algorithms are only effective on some files. In this paper, we study
the benefit of compressing each file with a potentially different
algorithm. For this purpose, we created AdaptiveFC, which is
based on a tool that can chain data transformations together to
generate millions of compression algorithms. AdaptiveFC uses
a genetic algorithm to quickly identify an effective compressor
in this vast search space for a given file. A comparison of
AdaptiveFC to 15 leading lossless GPU compressors on 77 files
from 6 datasets in the SDRBench suite shows that per-file
compression yields higher compression ratios on average than
any individual algorithm.

Index Terms—data compression, floating-point data, genetic
algorithm, GPU processing

I. INTRODUCTION

Scientific applications and instruments often emit huge
amounts of floating-point data. For example, the Hard-
ware/Hybrid Accelerated Cosmology Code (HACC) generates
petabytes of data in a single simulation [1], and the Large
Hadron Collider (LHC) produces approximately one petabyte
of data per second [2]. Storing and processing such large
amounts of data requires workarounds to be performant. In
case of the LHC, a bank of processors located near the data-
collection equipment makes real-time decisions about which
data should be retained. The retained data is then compressed
and archived. Users later decompress the data as needed.
In such archival environments, users typically favor high
compression ratios (and, to a lesser degree, fast decompression
speeds) over fast compression speeds.

Effective data compression can reduce storage requirements,
minimize data transfer times, and improve I/O speed in such
environments. In many cases, it is important to preserve the
data in its entirety (e.g., when computing certain derived quan-
tities), which emphasizes the need for lossless compression.
However, floating-point data is generally difficult to compress
well in lossless mode. Although there have been compressors
designed specifically for floating-point data, they are unable to
achieve high compression ratios on the wide range of scientific
data in existence because the values and patterns are highly

application dependent. Thus, any one compression algorithm
is unlikely to work well for all floating-point inputs.

In this paper, we study the benefit of compressing each
floating-point file with a customized algorithm that is designed
to achieve a high compression ratio on just this one input. For
this purpose, we use LC [3], the successor of CRUSHER [4]–
[7], both of which are tools that can automatically synthesize
compression pipelines from a library of data transformations.
We use it to generate compression algorithms that are tailored
to a specific input and evaluate the benefit over using a single
compressor for all inputs. Although we focus on floating-point
data, our approach can be applied to any data type.

We named our approach “AdaptiveFC”. It is based on a
genetic algorithm (GA) to quickly search the millions of
lossless compression algorithms LC can synthesize. It is orders
of magnitude faster than an exhaustive search of all algorithms
in the search space. We compare AdaptiveFC against 15 lead-
ing special-purpose and general-purpose GPU compressors
on 77 floating-point inputs from 6 scientific datasets in the
SDRBench suite [8]. We found that our approach is the top
compressor overall and on 4 of the 6 datasets. The remaining
two datasets both have a unique compressor that compresses
its files the most, demonstrating that no single algorithm is a
good choice for all datasets. This paper makes the following
main contributions.

• It shows that different datasets prefer different compres-
sion algorithms and that per-file customized algorithms
can deliver substantial benefits.

• It provides a detailed compression ratio comparison of 16
algorithms (including ours) on 6 floating-point datasets
with 77 files from various scientific domains.

• It shows that AdaptiveFC yields the highest compression
ratio on 4 of the 6 datasets, is in the top 3 compressors
on the other 2 datasets, and compresses the most overall.

AdaptiveFC is freely available in open source as part of the
LC Framework [3].

The remainder of the paper is organized as follows. Section
2 summarizes related work. Section 3 explains how Adap-
tiveFC works. Section 4 discusses the experimental evaluation
methodology. Section 5 presents and analyzes the results.
Section 6 concludes the paper.



II. RELATED WORK

In prior work, we modified CRUSHER to perform on-the-fly
synthesis of an optimized floating-point compressor for a given
input [6]. This work also uses a GA, as well as several other
techniques, to accelerate the synthesis. Moreover, it extracts
a short segment of the input and utilizes only this segment
to make the synthesis fast enough for real-time operation. In
contrast, in this paper, we use the GA to perform a search with
the entire input file and focus on compression ratio rather than
synthesis speed.

Devarajan et al. showcase a dynamic and modular compres-
sion framework that intelligently applies compression libraries
(bzip2, zlib, pithy, etc.) based on the characteristics of the
input data [9]. The framework, named Ares, comprises three
parts: the input analyzer, the main engine, and the output
manager. The input analyzer employs static analysis and a
dynamic feedback loop to describe the input data to the
main engine, which then chooses the best compression library
for the given input description. Finally, the output manager
records how to decompress the data, checks correctness of
the compression, and writes the compressed data to disk.
Whereas Ares selects an algorithm from a small library of
fixed compressors, our work builds customized pipelines out
of a library of data transformations and can, therefore, select
among millions of algorithms. Moreover, we use a GA for
finding a good compression algorithm, whereas Ares employs
a decision tree that requires off-line training.

The following related works target program execution
traces, heterogeneous files, images, and databases instead of
floating-point data. Burtscher and Sam developed TCgen, a
tool that generates customized trace compressors based on a
user-provided configuration of one or more predictors [10].
TCgen then translates this description into C source code that
is optimized for the specified trace format and predictors.
Hsu and Zwarico present an automatic synthesis technique for
compressing heterogeneous files [11]. Each chunk of data is
compressed using a different algorithm, which is determined
using a statistical method. A compression history, required for
decompression, is automatically added in this phase.

Fang et al. investigate how to compress database infor-
mation using GPUs to overcome the transfer overhead [12].
They employ a compression planner along with a cost model
of the GPU to identify an optimal combination among nine
different compression schemes and use a rule-based method to
automatically prune the search space. Kattan and Poli propose
a system that employs genetic programming to find optimal
ways to combine standard compression algorithms [13]. They
group similar data chunks together and label each group with
the best compression algorithm for its chunks. We also utilize
a GA. However, they use fewer components than we do and,
as in Kattan and Poli’s as well as Devarajan et al.’s work,
each component is an entire compression algorithm, whereas
our components are finer grained and represent parts of a
compression algorithm.

Jia et al. demonstrate a light field (LF) image compression

framework that employs a generative adversarial learning
network (GAN) [14]. To encode a given light field, the sub-
aperture images (SAI), which make up the LF, are sparsely
sampled. The unsampled SAIs are then predicted from the
sampled SAIs using a GAN, providing better redundancies.
The predicted SAIs are then compressed.

Mitra et al. propose a methodology for compressing fractal
images using a GA [15]. Initially, fractal codes are computed
for each domain block. Then, these blocks are classified into
two types based on the variability of the pixels in each block.
A block belongs to the smooth type if its variance is below
a given threshold and is considered rough otherwise. The
purpose of this classification is to obtain higher compression
ratios and to reduce the encoding time. The final step uses a
GA to find a good match for the rough blocks. Wu and Lin
use a similar approach with three classes [16].

Several other papers have been published that employ a
GA for image compression, primarily to speed up the com-
pression. Vences and Rudomin use it to compress sequences
of images [17], Wu et al. [18] improve upon Vences and
Rudomin’s approach, and Boucetta and Melkemi describe how
to transform the RGB planes of a color image into more
suitable spaces using a genetic algorithm [19].

III. APPROACH

Many compression algorithms can be decomposed into
individual data transformations, which we call components.
We implemented many such components in the LC framework,
which can chain them in any combination, use the resulting
pipeline to perform compression, and measure the compression
ratio. This gives us the ability to search for effective pipelines
for any given input. However, for pipelines with more than
a few stages, searching all combinations is intractable. In
the following subsection, we describe how we use a GA to
perform the search for a good pipeline in a reasonable amount
of time.

A. AdaptiveFC Operation
GAs are inspired by evolution and natural selection and

work well for many optimization problems [20], [21]. A popu-
lation of solutions to the optimization problem is evolved over
generations by applying biologically-inspired operators such
as crossover and mutation. For AdaptiveFC, the optimization
problem is as follows: given an input file, find a pipeline in
the search space that results in a high compression ratio. This
means that the population consists of pipelines, where the
components act as the “genes” of the individual. Typically, the
first population is randomly generated and then evolved over
a number of generations. AdaptiveFC employs this approach
and starts with random pipelines.

a) Evaluation: Evaluation ranks each individual (i.e.,
each pipeline in the population) by assigning a numerical
value. This value is called “fitness” and is computed by a
fitness function. For AdaptiveFC, the fitness function takes a
file and a pipeline as arguments and returns the compression
ratio of that pipeline on that input. In other words, the fitness
of an individual is its compression ratio.



b) Elitism: Elitism is the process by which the fittest
members of the current population are copied into the next
population, preserving good pipelines from generation to gen-
eration. This group of fittest individuals, called the elite, is
calculated by cubing the fitness of each member (to increase
the distance between the fitness values) and keeping all
members with a cubed fitness within a factor of ϵ of the
fittest individual’s value, where ϵ is a parameter in the range
[0.0, 1.0]. The best pipeline of every generation is always
copied into the new population, no matter the value of ϵ, to
preserve the highest compression ratio. Figure 1 provides an
example of elitism.

9.1x 8.4x 8.3x 6.1x 5.9x 2.2x 1.3x

Elite Subpar

Fig. 1: Example of elitism with a cutoff value ϵ = 0.25. Each
circle represents a pipeline and lists the corresponding fitness
(i.e., compression ratio). The elite pipelines all have a cubed

compression ratio within 25 percent of the fittest pipeline.

With the new population so far consisting of the elite from
the current population, the next steps, selection and crossover,
generate additional pipelines until the new population matches
the size of the current population. If the current and the new
population are already the same size after elitism, selection
and crossover are skipped.

c) Selection: Selection is the process of picking individu-
als in the population to act as “parents” for the crossover oper-
ation. Selecting fitter individuals is preferred for improving the
solution quality. However, less fit individuals should still have
a chance to be picked for genetic diversity. Since the following
crossover operations require two parents, the desired selection
method is run twice, with replacement. AdaptiveFC supports
two selection methods: tournament and roulette wheel.

In tournament selection, t pipelines are randomly sampled
from the population. Of those t pipelines, the one with the
highest fitness is selected to be a parent. In roulette wheel
selection, each pipeline of the population has a probability of
being selected that is proportional to its fitness. In other words,
the better a pipeline compresses the input file, the more likely
it will be selected. Similar to elitism, we cube the fitness before
selection to increase the distance between the values.

d) Crossover: The crossover operation takes two parents
and shuffles their genetic information to create offspring.
AdaptiveFC provides two crossover methods: single-point
crossover and masked crossover. Figure 2 shows examples of
both methods.

Single-point crossover works by selecting a random compo-
nent as the crossover point. The components to the right of the
crossover point are swapped with the other parent, resulting
in two offspring. Masked crossover works by randomly gen-
erating a bit for each stage in the pipeline. Both parents keep

their components in the ‘0’ stages and swaps their components
with the other parent in the ‘1’ stages.

DIFF RLE CLOG

Child 2

Child 1

BIT ZERETUPL

Parent 2

DIFF BIT ZERE

Parent 1

RLE CLOGTUPL

(a)

Child 1

BITTUPL CLOG

DIFF RLE ZERE

Child 2Parent 2

DIFF BIT ZERE

Parent 1

RLE CLOGTUPL

(b)

Fig. 2: Examples of crossover. The parents are on the left,
and the children are on the right. (a) Example of single-point

crossover. The crossover point is after the first component.
(b) Example of masked crossover. The mask is ‘010’.

Once the offspring are created, they are included in the
new population. Selection and crossover repeat until the new
population has the same size as the old population.

e) Mutation: Mutation provides diversity by introduc-
ing randomness to the population. Each component of ev-
ery pipeline in the new population changes into a random
component with probability µ. For each pipeline in the new
population, we iterate over the components and generate a
random number in the interval [0, 1). If this number is less
than µ, we randomize the corresponding component. At the
end, we add a non-mutated copy of the fittest individual from
the current population to the new population. This ensures that
the best compression ratio from generation to generation never
decreases.

The overall process, starting with evaluation and ending
with mutation, is repeated with the next generation. Once
a fixed number of generations has been computed, the final
generation is evaluated, and the best pipeline is outputted.

B. AdaptiveFC Parameters

AdaptiveFC allows the user to set the parameters of the GA,
including the number of stages in each pipeline, the number of
generations to compute, the size of the population, the elitism
cutoff value, the mutation rate, the preferred selection method,
the preferred crossover method, and the seed for the random-
number generator used in the mutation and selection steps.

IV. EXPERIMENTAL METHODOLOGY

We evaluated all compressors on a system containing an
AMD Ryzen Threadripper 2950X CPU with 16 cores and an
NVIDIA GeForce RTX 4090 GPU with 24 GB of memory.
The main memory has a capacity of 48 GB. The operating
system is Fedora 37.



AdaptiveFC is implemented in Python 3 on top of LC.
We ran AdaptiveFC for 140 generations with a population
size of 20 and 5-stage pipelines using masked crossover and
tournament selection. The mutation rate is 0.8, and the elitism
cutoff is 0.1. Since AdaptiveFC’s compression ratio depends
on the choice of the random number seed, we ran it 9 times
on each input using a fixed set of 9 distinct seeds. We report
the median compression ratio from the 9 runs for each input.

We use the 6 datasets listed in Table I from SDRBench [8]
as inputs. Each of the 77 files contains a binary sequence
of single-precision floating-point numbers. We left out the
double-precision and non-floating-point datasets from SDR-
Bench. The CESM dataset includes both 2D and 3D inputs.
We excluded the 2D data, as it is a subset of the 3D data.

TABLE I: Information about the SDRBench Inputs

Dataset Number of files Domain
CESM 33 Climate simulation
EXAALT 18 Molecular dynamics simulation
HACC 6 Cosmology particle simulation
NYX 6 Cosmology adaptive mesh hydrodynamics
QMC 2 Many-body ab initio Quantum Monte Carlo
SCALE 12 Climate simulation

Table II lists pertinent information about the GPU compres-
sors we evaluated. Bitcomp includes four implementations (for
byte and integer granularity and for sparse and dense inputs).
Furthermore, LZ4 and Cascaded include two implementations
each (for byte and integer granularity). We include all of
these versions in our results, totaling 15 compressors that we
compare against AdaptiveFC.

TABLE II: Information about the Evaluated Compressors

Name Version Download Link Category
ANS 3.0.2 github.com/NVIDIA/nvcomp General-purpose
Bitcomp 3.0.2 github.com/NVIDIA/nvcomp Floating-point
Cascaded 3.0.2 github.com/NVIDIA/nvcomp General-purpose
Deflate 2.3 datatracker.ietf.org/doc/html/rfc1951 General-purpose
Gdeflate 3.0.2 github.com/NVIDIA/nvcomp General-purpose
LZ4 1.9.0 github.com/lz4 General-purpose
MPC 1.0 cs.txstate.edu/∼burtscher/research/MPC/ Floating-point
Ndzip 1.0 github.com/celerity/ndzip Floating-point
SNAPPY 1.1.10 github.com/google/snappy General-purpose
ZSTD 1.5.1 github.com/facebook/zstd General-purpose

We use the compression ratio (CR), that is, the uncom-
pressed file size divided by the compressed file size, as
our main performance metric. We also use the compression
and decompression throughput as performance metrics. For
each dataset, we calculate the geometric-mean (gmean) CR,
gmean compression throughput, and gmean decompression
throughput across the files in the dataset. The timing measure-
ments are performed by code we added before and after the
compression and decompression sections of each compressor.
For AdaptiveFC, we present two compression throughput
measurements; one with the genetic algorithm search time
included, and one without.

We also performed a parameter-space evaluation for the
number of generations, the population size, and the mutation
rate of the GA and analyze their impact on the compression
ratio. For these experiments, the parameters that are not being
tested have the same values as the previously mentioned
defaults. We use a single file from the CESM dataset for
these parameter-space evaluations, which we selected because
it is representative of the median of all tested files in file
size and in compression ratio. The range of values for the
three studied hyperparameters is as follows: [1, 200] for the
number of generations, [1, 50] for the size of the population,
and [0.00, 1.00] in 0.05 increments for the mutation rate.
This evaluation informed us of ideal hyperparameter values
to use for AdaptiveFC, discussed previously. However, note
that choosing these exact values is not critical. For example,
a mutation rate of 0.7 yields a similar compression ratio as
a mutation rate of 0.8. Section V-D shows the results of this
evaluation and provides more insight.

V. RESULTS

A. Compression Ratio

In this subsection, we present the CR performance of the
16 GPU compressors overall and for each dataset. Figure 3
presents the gmean CRs over all datasets for all evaluated
compressors. In these figures, the compressors are listed along
the y-axis sorted by compression ratio, and the compression
ratio achieved runs along the x-axis. Longer bars indicate
higher compression.

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Compression Ratio

Cascaded b

Bitcomp b1

Bitcomp b0

SNAPPY

LZ4 b

LZ4 i

Bitcomp i1

ANS

Deflate

Gdeflate

Cascaded i

ZSTD

Bitcomp i0

Ndzip

MPC

AdaptiveFC

Fig. 3: Geometric-mean compression ratio for each
compressor over all datasets.

AdaptiveFC performs the best, providing a gmean CR of
1.54. It is followed by MPC with a gmean CR of 1.46 and



Ndzip with a gmean CR of 1.41. The lowest CR on these
datasets is 1.04.

AdaptiveFC yields the highest compression ratio, outper-
forming popular general-purpose compressors as well as spe-
cialized floating-point compressors. This highlights the benefit
of using customized, per-input algorithms.

B. Individual Dataset Results

In this subsection, we present and discuss CR results
separately for each dataset. Each figure shows the gmean CRs
over all files in a dataset for the 5 best and 2 worst performing
compressors, separated by a horizontal dotted line.

Note that, in these figures, the compressors with no bar do
not manage to compress the files. The following paragraph lists
the best-performing compression algorithms and the gmean
CRs they achieve.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Compression Ratio

Cascaded b
Bitcomp b1

Ndzip
Cascaded i
Bitcomp i0

MPC
AdaptiveFC

Fig. 4: Geometric-mean compression ratios on CESM dataset

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Compression Ratio

Cascaded b
Bitcomp b1

Cascaded i
Bitcomp i0

MPC
Ndzip

AdaptiveFC

Fig. 5: Geometric-mean compression ratios on SCALE
dataset

On the CESM dataset (Figure 4), AdaptiveFC yields the
highest CR of 1.99. On the SCALE dataset (Figure 5), Adap-
tiveFC yields the highest CR of 1.91. On the HACC dataset
(Figure 6), MPC performs the best with a CR of 1.72, followed
by Bitcomp i0 with a CR of 1.49, and then AdaptiveFC with
a CR of 1.48. On the EXAALT dataset (Figure 7), the top
compressor is Ndzip with a CR of 1.42 and then AdaptiveFC
with a CR of 1.38. On the NYX dataset (Figure 8), AdaptiveFC
performs the best with a CR of 1.41. On the QMC dataset
(Figure 9), AdaptiveFC provides the highest CR of 1.21.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Compression Ratio

Bitcomp b0
Bitcomp b1

Cascaded i
Ndzip

AdaptiveFC
Bitcomp i0

MPC

Fig. 6: Geometric-mean compression ratios on HACC dataset

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Compression Ratio

Bitcomp b1
Cascaded b

Gdeflate
Deflate
ZSTD

AdaptiveFC
Ndzip

Fig. 7: Geometric-mean compression ratios on EXAALT
dataset

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Compression Ratio

Bitcomp b0
Bitcomp b1

Cascaded i
MPC

Bitcomp i0
Ndzip

AdaptiveFC

Fig. 8: Geometric-mean compression ratios on NYX dataset

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Compression Ratio

Bitcomp b0
Bitcomp b1

ZSTD
Ndzip
MPC

Bitcomp i0
AdaptiveFC

Fig. 9: Geometric-mean compression ratios on QMC dataset



0 50 100 150 200 250 300 350 400 450 500 550
Decompression Throughput (GB/s)

Deflate

MPC

ZSTD

Gdeflate

Cascaded b

SNAPPY

LZ4 i

LZ4 b
AdaptiveFC

Cascaded i

ANS

Ndzip

Bitcomp i0

Bitcomp b1

Bitcomp b0

Bitcomp i1

Fig. 10: Geometric-mean decompression throughput for each
compressor over all datasets.

Our approach compresses the files of 4 datasets the most,
and is among the top 3 compressors for the other 2 datasets,
illustrating the benefit of per-dataset customization of the
compression algorithm. AdaptiveFC is the best or is among the
best compressors for each dataset, which is not the case for the
other compressors. There are several algorithms that perform
well on some datasets and poorly on others. For example,
Deflate and Gdeflate are among the top 5 compressors on the
EXAALT dataset, but drop off in the other datasets. Similarly,
ZSTD is among the top 5 compressors on the EXAALT and
QMC datasets, but is not among the top 5 on the other datasets.

MPC outperforms AdaptiveFC on the HACC dataset. This
is interesting because LC is capable of synthesizing an algo-
rithm that is very similar to MPC. However, with the given
hyperparameters and random seeds, AdaptiveFC does not find
the compression pipeline that mimics MPC.

Ndzip outperforms AdaptiveFC on the EXAALT dataset.
The main reason is that Ndzip employs a novel Integer
Lorenzo Transform that is not available in LC. This trans-
formation works particularly well on the EXAALT dataset.

C. Compression and Decompression Throughput

In this subsection, we study the compression and decom-
pression throughput of the compressors over all datasets. In
these figures, the compressors are again listed along the y-
axis, and the throughput is listed along the x-axis. Longer
bars indicate higher throughput.

Figure 10 presents the gmean decompression throughput for
all evaluated compressors across all datasets. Bitcomp i0 per-
forms the best, with a throughput of 428.2 GB/s. AdaptiveFC

0 50 100 150 200 250 300 350 400 450 500 550
Compression Throughput (GB/s)

ZSTD

Deflate

Gdeflate

LZ4 b

LZ4 i

Cascaded b

MPC

SNAPPY

Cascaded i

ANS

Ndzip
AdaptiveFC

Bitcomp b1

Bitcomp b0

Bitcomp i1

Bitcomp i0

Fig. 11: Geometric-mean compression throughput for each
compressor over all datasets. AdaptiveFC’s search time is

excluded from this graph.

0 50 100 150 200 250 300 350 400 450 500 550
Compression Throughput (GB/s)

AdaptiveFC

ZSTD

Deflate

Gdeflate

LZ4 b

LZ4 i

Cascaded b

MPC

SNAPPY

Cascaded i

ANS

Ndzip

Bitcomp b1

Bitcomp b0

Bitcomp i1

Bitcomp i0

Fig. 12: Geometric-mean compression throughput for each
compressor over all datasets. AdaptiveFC’s search time is

included in this graph.



yields a throughput of 246.1 GB/s. The slowest compressor is
Deflate with a throughput of 16.52 GB/s.

Figure 11 presents the gmean compression throughput for
all evaluated compressors across all datasets. In this figure,
AdaptiveFC does not include the search time in the throughput.
Bitcomp i0 yields the highest throughput of 488.0 GB/s. Adap-
tiveFC achieves a throughput of 266.4 GB/s, and ZSTD yields
the lowest compression throughput of 3.49 GB/s. Figure 12
presents the same compression throughput results but with
AdaptiveFC including the search time in the measurement,
yielding a throughput of 1.1 MB/s.

Note that, except for MPC, Ndzip and our AdaptiveFC al-
gorithm, all other compressors belong to the NVcomp library.
These compressors produce multiple compressed chunks that
are not concatenated and, therefore, do not require an index to
find the compressed chunks. Skipping these important steps,
which are necessary in real-world applications, gives them a
significant speed and a compression ratio advantage over MPC,
Ndzip and AdaptiveFC.

The Bitcomp family of compressors outperforms the others
in compression and decompression throughput. We do not
know what algorithm Bitcomp employs as it is proprietary
software. Although our approach ranks lower in throughput
than Bitcomp and Ndzip, AdaptiveFC provides the highest
compression ratios overall. Meanwhile, Bitcomp i0 and Ndzip
fluctuate in CR performance per dataset, and rank lower over-
all. In some environments, compression and decompression
speed is favored over compression ratio, while in others, such
as in archival environments, compression ratio is typically
favored over compression and decompression speed. These
results highlight the tradeoff between compression ratio and
compression and decompression speed.

D. Genetic Algorithm Parameter Search

This subsection presents the compression ratio performance
of the genetic algorithm over a range of parameter values
for the number of generations, the population size, and the
mutation rate. Each figure shows the gmean CRs over the
tested range of values for each hyperparameter. The parameter
values run along the x-axis and the CR along the y-axis. As
mentioned, these measurements are performed by running the
genetic algorithm on just one file from the CESM dataset.
Figures 13, 14, and 15 present the compression ratio over a
range of values for the number of generations, the population
size, and the mutation rate, respectively.

In Figure 13, the population of generation 0 contains all
random algorithms as selection, crossover, and mutation have
not yet occurred. In Figure 15, a mutation rate of 0.0 indicates
no mutation takes place, leaving only selection and crossover.
A mutation rate of 1.0 indicates that every component for
every member of the population is randomized, essentially
generating new random algorithms in each generation.

Unsurprisingly, higher numbers of generations result in
higher compression ratios, eventually reaching a plateau as
the CR gets closer to the optimal. At generation 0 the CR
is 1.41, and the highest CR is 1.53 at generation 164. The

0 50 100 150 200
Generations

1.0

1.1

1.2

1.3

1.4

1.5

1.6

C
om

pr
es

si
on

 R
at

io

Fig. 13: Geometric-mean compression ratios over a range of
values for the number of generations.

20 40
Population Size

1.0

1.1

1.2

1.3

1.4

1.5

1.6

C
om

pr
es

si
on

 R
at

io

Fig. 14: Geometric-mean compression ratios over a range of
values for the population size.

population size follows the same trend, where larger values
result in higher CRs until plateauing. The lowest CR achieved
is 1.12 with a population size of 1, and the highest CR
achieved is 1.54 with a population size of 27. The mutation
rate yields the highest CRs in the range 0.4–0.6, resulting in
the highest CR of 1.53 with a mutation rate of 0.4, and the
lowest CR of 1.48 with a mutation rate of 0.9, highlighting
that too high or too low a mutation rate results in a less
effective exploration of the search space. Selecting values
for the hyperparameters is, in some cases, an investigation
on which values give desirable results and, in other cases, a
tradeoff between time and compression ratio.

VI. CONCLUSION

In this paper, we present AdaptiveFC, which generates a
customized compression algorithm for any input. It uses a



0.00 0.25 0.50 0.75 1.00
Mutation Rate

1.0

1.1

1.2

1.3

1.4

1.5

1.6

C
om

pr
es

si
on

 R
at

io

Fig. 15: Geometric-mean compression ratios over a range of
values for the mutation rate.

genetic algorithm to efficiently search through a search space
of millions of compression pipelines generated from a library
of data transformations to quickly identify an algorithm that
compresses a given input well.

Comparing AdaptiveFC to 15 other GPU-based compres-
sion algorithms on 6 scientific datasets containing 77 files, we
found that AdaptiveFC provides the highest compression ratio
on 4 of the 6 datasets and yields the highest geometric-mean
compression ratio overall, besting popular general-purpose as
well as special-purpose compressors, highlighting the benefit
of per-file adaptive compression.

For future work, other optimization-problem heuristics can
be explored besides genetic algorithms. Moreover, AdaptiveFC
can be enhanced with the addition of new components, poten-
tially extracted from other well-performing compressors such
as Ndzip, to further improve the compression ratios.

ACKNOWLEDGEMENTS

This work has been supported in part by the Department
of Energy, Office of Science under Award Number DE-
SC0022223.

REFERENCES

[1] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian
Pope, and Katrin Heitmann, “Hacc: Extreme scaling and performance
across diverse architectures,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2013, pp. 1–10.

[2] Ian Bird, “Computing for the large hadron collider,” Annual Review of
Nuclear and Particle Science, vol. 61, pp. 99–118, 2011.

[3] Burtscher et al., “LC-framework,” https://github.com/burtscher/
LC-framework/, 2024, Accessed: 2024-2-8.

[4] Annie Yang, Hari Mukka, Farbod Hesaaraki, and Martin Burtscher,
“Mpc: a massively parallel compression algorithm for scientific data,”
in 2015 IEEE International Conference on Cluster Computing. IEEE,
2015, pp. 381–389.

[5] J. Coplin, A. Yang, A. Poppe, and M. Burtscher, “Increasing telemetry
throughput using customized and adaptive data compression,” in AIAA
SPACE and Astronautics Forum and Exposition, 2016.

[6] Martin Burtscher, Hari Mukka, Annie Yang, and Farbod Hesaaraki,
“Real-time synthesis of compression algorithms for scientific data,” in
SC’16: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2016, pp.
264–275.

[7] Steven Claggett, Sahar Azimi, and Martin Burtscher, “Spdp: An
automatically synthesized lossless compression algorithm for floating-
point data,” in 2018 data compression conference. IEEE, 2018, pp.
335–344.

[8] Kai Zhao, Sheng Di, Xin Lian, Sihuan Li, Dingwen Tao, Julie Bessac,
Zizhong Chen, and Franck Cappello, “Sdrbench: Scientific data reduc-
tion benchmark for lossy compressors,” in 2020 IEEE international
conference on big data (Big Data). IEEE, 2020, pp. 2716–2724.

[9] Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun, “An intel-
ligent, adaptive, and flexible data compression framework,” in 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE, 2019, pp. 82–91.

[10] Martin Burtscher and Nana B Sam, “Automatic generation of high-
performance trace compressors,” in International Symposium on Code
Generation and Optimization. IEEE, 2005, pp. 229–240.

[11] William H Hsu and Amy E Zwarico, “Automatic synthesis of com-
pression techniques for heterogeneous files,” Software: Practice and
Experience, vol. 25, no. 10, pp. 1097–1116, 1995.

[12] Wenbin Fang, Bingsheng He, and Qiong Luo, “Database compression
on graphics processors,” Proceedings of the VLDB Endowment, vol. 3,
no. 1-2, pp. 670–680, 2010.

[13] Ahmed Kattan and Riccardo Poli, “Evolutionary synthesis of lossless
compression algorithms with gp-zip3,” in IEEE Congress on Evolution-
ary Computation. IEEE, 2010, pp. 1–8.

[14] Chuanmin Jia, Xinfeng Zhang, Shanshe Wang, Shiqi Wang, and Siwei
Ma, “Light field image compression using generative adversarial
network-based view synthesis,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 9, no. 1, pp. 177–189, 2018.

[15] Suman K Mitra, CA Murthy, and Malay Kumar Kundu, “Technique for
fractal image compression using genetic algorithm,” IEEE transactions
on image processing, vol. 7, no. 4, pp. 586–593, 1998.

[16] Ming-Sheng Wu and Yih-Lon Lin, “Genetic algorithm with a hybrid
select mechanism for fractal image compression,” Digital Signal
Processing, vol. 20, no. 4, pp. 1150–1161, 2010.

[17] Lucia Vences and Isaac Rudomin, “Genetic algorithms for fractal image
and image sequence compression,” Proceedings Computacion Visual,
pp. 35–44, 1997.

[18] Ming-Sheng Wu, Jyh-Horng Jeng, and Jer-Guang Hsieh, “Schema
genetic algorithm for fractal image compression,” Engineering Applica-
tions of Artificial Intelligence, vol. 20, no. 4, pp. 531–538, 2007.

[19] Aldjia Boucetta and Kamal Eddine Melkemi, “Dwt based-approach for
color image compression using genetic algorithm,” in Image and Signal
Processing: 5th International Conference, ICISP 2012, Agadir, Morocco,
June 28-30, 2012. Proceedings 5. Springer, 2012, pp. 476–484.

[20] Goldberg DE, “Genetic algorithms in search,” Optimization, and
Machine Learning, Addison Wesley, 1989.

[21] John H Holland, Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence, MIT press, 1992.


