
 

 

 

ABSTRACT 
This paper studies the effects of source-code optimizations on the 

performance, power draw, and energy consumption of a modern 
compute GPU. We evaluate 128 versions of two n-body codes: a 
compute-bound regular implementation and a memory-bound ir-
regular implementation. Both programs include six optimizations 
that can be individually enabled or disabled. We measured the ac-
tive runtime and the power consumption of each code version on 
three inputs, various GPU clock frequencies, two arithmetic preci-
sions, and with and without ECC. This paper investigates which 

optimizations primarily improve energy efficiency, which ones 
mainly boost performance, and which ones help both aspects. Some 
optimizations also have the added benefit of reducing the power 
draw. Our analysis shows that individual and combinations of op-
timizations can alter the performance and energy consumption of a 
GPU kernel by up to a factor of five. 

Categories and Subject Descriptors 

D.1.3 [Programming Techniques]: Concurrent Programming-
Parallel Programming 

General Terms 

Algorithms, Management, Measurement, Performance, Design, 
Economics, Experimentation. 

Keywords 

GPU architectures, source-code optimization, power and energy 
efficiency, performance evaluation. 

1.  INTRODUCTION 
GPU-based accelerators are widely used in supercomputers and are 

quickly spreading in PCs and even handheld devices as they not 

only provide high peak performance but also excellent energy effi-

ciency. In HPC environments, large power consumption and the 

required cooling due to the resulting heat dissipation are major cost 

factors. Moreover, to reach exascale computing, a 50-fold im-

provement in performance per watt is needed by some estimates 

[2]. In all types of handhelds, battery life is a key concern. 
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These are just a few reasons why energy-efficient computing has 

become an important research area. While many hardware optimi-

zations for reducing power have been proposed or are already in 

use, software techniques are lagging behind, particularly techniques 

that target accelerators like GPUs. Most of the published work 

focuses on changing the clock frequency (and supply voltage) using 

the DVFS support built into the latest GPUs. In this paper, we go a 

step further and study the effect of source-code optimizations on 

the active runtime, energy consumption, and power draw of a GPU. 

It is well known that code optimizations can improve GPU perfor-

mance a great deal. But what about energy or power? Some studies 

report a one-to-one correspondence between active runtime and 

energy [7, 9, 11]. But these studies only vary the program inputs, 

not the code itself. So it is unclear whether there are code optimiza-

tions that help energy more than active runtime or vice versa. And 

how much of a difference can code transformations make anyway? 

The goal of this paper is to answer these questions and to evaluate 

whether source-code optimizations have the potential to play an 

important role in making future GPUs more energy efficient. 

To perform this study, we took a compute-bound regular and a 

memory-bound irregular n-body application written in CUDA. We 

then heavily modified the source code such that, through condition-

al compilation, 64 versions of each program could be generated by 

individually enabling or disabling six code optimizations. We 

measured the active runtime and power consumption of each ver-

sion on three different inputs and five different configurations, 

including three clock speed settings, enabling ECC in main 

memory, and using double-precision instead of single-precision 

floating-point arithmetic. 

This paper makes the following contributions. 1) It presents an 

extensive set of experiments to gain insight into the energy and 

performance impact of GPU source-code optimizations. 2) It stud-

ies source-code optimizations rather than the effect of compiler 

transformations. 3) It confirms several commonly held concepts 

that had yet to be validated through experimentation and points out 

cases where results are counter-intuitive. 4) It demonstrates that 

different source-code optimizations can have a very different effect 

on performance, energy, and power. 5) It shows that optimizations 

can drastically improve the energy efficiency. 6) It provides a de-

tailed analysis of what types of optimizations tend to help which 

aspect and why. 7) It shows that optimizations cannot be assessed 

individually but must be assessed within the context of other pre-

sent optimizations. 8) It exposes a heretofore unreported asym-

metry in performance and energy impact, i.e., optimizing for per-

formance is not the same as optimizing for energy and vice versa. 
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The rest of this paper is organized as follows. Section 2 discusses 

related work. Section 3 provides an overview of the GPU we study. 

Section 4 describes the evaluation methodology. Section 5 presents 

and analyzes the measurements. Section 6 summarizes our findings 

and draws conclusions. 

2. RELATED WORK 
We are not aware of any other study on the effects of source-code 

optimizations on GPU energy, power, and active runtime. Even in 

the better explored CPU domain, there appears to be no study that 

evaluates the energy implications of all possible combinations of a 

set of code optimizations. 

There are many papers that investigate Dynamic Voltage and Fre-

quency Scaling (DVFS) on CPUs to reduce power and energy. For 

example, Kandalla et al. demonstrate the need to design software in 

a power-aware manner, to minimize performance overheads, and to 

balance performance and power savings on a power-aware DVFS-

capable cluster system [10]. Pan et al. also use DVFS-based solu-

tions and show that sometimes expending more energy does not 

result in a large performance benefit [17]. In addition to varying the 

frequency, Korthikanti and Agha explore how changing the number 

of active cores affects the energy consumption and provide guide-

lines for the optimal core count and frequency for a given algorithm 

and input [11]. Freeh et al. perform a related study on a cluster 

where they evaluate how using different frequencies and numbers 

of compute nodes affect the power and performance of MPI pro-

grams [7]. There are also papers that highlight the lack of a stand-

ardized power measurement methodology in the HPC community 

for energy-efficient supercomputing [20] or talk about how ignor-

ing power consumption as a design constraint in supercomputing 

will result in higher operational costs and diminished reliability [6]. 

Several publications propose and use analytical models to investi-

gate power and energy aspects. Li and Martinez establish an analyt-

ical model for looking at parallel efficiency, granularity of parallel-

ism, and voltage/frequency scaling [12]. Lorenz et al. explore com-

piler-generated SIMD operations and how they affect energy effi-

ciency [15]. They acknowledge the need to optimize both hardware 

and software to get an energy-efficient system. Some analytical 

models target GPUs. For example, Chen et al. institute an efficient 

mechanism for evaluating and understanding the power consump-

tion when running GPU applications [4]. Ma et al. use a statistical 

model to estimate the best GPU configuration to save power [16]. 

Lim et al. propose a new power model for GPUs that is based on 

empirical data from a GTX 580 [13]. One simulation-based paper 

on thermal management for GPUs discusses methods for managing 

power through architecture manipulation (clock gating, fetch gat-

ing, dynamic voltage scaling, multiple clock domains, and floor-

planning) [18], which is orthogonal to our study. 

There are several papers that measure the power consumption on 

actual GPU hardware. For instance, Gosh et al. explore some com-

mon HPC kernels running on a multi-GPU platform and compare 

their results against multi-core CPUs [9]. Ge et al.’s study investi-

gates the effect of DVFS on the same type of GPU that we are us-

ing [8]. A paper by Zecena et al. presents the probably most closely 

related study to ours. It measures n-body codes running on different 

GPUs and CPUs [20]. However, their study focuses on the effects 

of varying the CPU thread count and the differences between GPU 

generations. Like all the other papers mentioned in this section, it 

does not investigate the effect of source-code optimizations on the 

energy or power consumption. 

3. GPU ARCHITECTURE 
This section provides an overview of the architectural characteris-

tics of the Kepler-based Tesla K20c compute GPU we study. It 

consists of 13 streaming multiprocessors (SMs). Each SM contains 

192 processing elements (PEs). Whereas each PE can run a thread 

of instructions, sets of 32 PEs are tightly coupled and must either 

execute the same instruction (operating on different data) in the 

same cycle or wait. This is tantamount to a SIMD instruction that 

conditionally operates on 32-element vectors. The corresponding 

sets of 32 coupled threads are called warps. Warps in which not all 

threads can execute the same instruction are subdivided by the 

hardware into sets of threads such that all threads in a set execute 

the same instruction. The individual sets are serially executed, 

which is called branch divergence, until they re-converge. 

The memory subsystem is also built for warp-based processing. If 

the threads in a warp simultaneously access words in main memory 

that lie in the same aligned 128-byte segment, the hardware merges 

the 32 reads/writes into one coalesced memory transaction, which 

is as fast as accessing a single word. Warps accessing multiple 128-

byte segments result in correspondingly many individual memory 

transactions. Part of the main memory, called constant memory, is 

reserved and can only be written by the CPU. GPU accesses to 

constant memory benefit from a special hardware cache. 

The PEs within an SM share a pool of threads called thread block, 

synchronization hardware, and a software-controlled data cache 

called shared memory. A warp can simultaneously access 32 words 

in shared memory as long as all words reside in different banks or 

all accesses within a bank request the same word. Barrier synchro-

nization between the threads in an SM can take as little as a couple 

of cycles per warp. The SMs operate largely independently. They 

can only communicate through global memory (main memory in 

DRAM). The SMs support special instructions such as voting, 

where all threads in a warp compute a combined predicate (i.e., a 

reduction and broadcast operation), and rsqrtf, which quickly com-

putes an approximation of one over square root. 

4. METHODOLOGY 

4.1 Programs 

We evaluate 128 different versions of two n-body codes (64 each). 

The first code, called NB, is regular and has O(n2) complexity. The 

second code, called BH, is irregular and has O(n log n) complexity. 

Both programs simulate the time evolution of a star cluster under 

gravitational forces for a given number of time steps. However, the 

underlying algorithm (see below) and the code base of the two 

implementations are completely different. n denotes the number of 

stars (aka bodies). Both of these codes have been written in such a 

way as there is essentially no execution taking place on the CPU. 

The direct NB algorithm performs precise force calculations based 

on the O(n2) pairs of bodies. Since identical computations have to 

be performed for all bodies, the implementation is very regular and 

maps well to GPUs. The force calculations are independent and can 

be performed in parallel. In each time step, the O(n2) force calcula-



 

 

 

tion is followed by an O(n) integration where each body’s position 

and velocity are updated based on the computed force. For the val-

ues of n we consider, the integration represents less than 1% of the 

overall execution time and is therefore insignificant. With all opti-

mizations enabled (see below), our implementation outperforms the 

NB code that is included in the CUDA SDK [5]. 

The Barnes-Hut (BH) algorithm approximates the forces acting on 

each body [1]. It recursively partitions the volume around the n 

bodies into successively smaller cells and records the resulting 

spatial hierarchy in an octree (the 3D equivalent of a binary tree). 

Each cell summarizes information about the bodies it contains. For 

cells that are sufficiently far away from a given body, the BH algo-

rithm only performs one force calculation with the cell instead of 

one force calculation with each body inside the cell, which lowers 

the time complexity to O(n log n). However, different parts of the 

octree have to be traversed to compute the force acting on different 

bodies, making the control flow and memory-access patterns quite 

irregular. The force calculation is by far the most time consuming 

operation in BH, which is why we only consider source-code opti-

mizations that affect this kernel. We use the BH implementation 

from the LonestarGPU suite [14]. 

In summary, the NB code is relatively straightforward, has a high 

arithmetic intensity, regular control flow, and accesses memory in a 

strided fashion. In contrast, the BH code is quite complex (it re-

peatedly builds an unbalanced octree and performs various travers-

als on it), has a low arithmetic intensity, performs mostly pointer-

chasing memory accesses, and has data-dependent control flow. 

Due to its lower time complexity, it is about 33 times faster on a 

K20c GPU than the NB code when simulating one million stars. 

4.2 Source-Code Optimizations 

We modified the two programs in a way that makes it possible to 

individually enable or disable specific optimizations. For NB, we 

chose the following six code optimizations. 1) ftz ‘f’ is a compiler 

flag that allows the GPU to flush denormal numbers to zero when 

executing floating-point operations, which results in faster compu-

tations. While strictly speaking not a code optimization, the same 

effect can be achieved by using appropriate intrinsic functions in 

the source code. 2) rsqrt ‘r’ uses the CUDA intrinsic “rsqrtf()” to 

quickly compute one over square root instead of using the slower 

but slightly more precise “1.0f / sqrtf()” expression. 3) const ‘c’ 

copies immutable kernel parameters once into the GPU’s constant 

memory rather than passing them every time a kernel is called, i.e., 

it lowers the calling overhead. 4) peel ‘p’ separates the innermost 

loop of the force calculation into two consecutive loops, one of 

which has a known iteration count and can therefore presumably be 

better optimized by the compiler. The second loop performs the 

few remaining iterations. 5) shmem ‘s’ employs blocking, i.e., it 

preloads chunks of data into the shared memory, operates exclu-

sively on this data, then moves on to the next chunk. This drastical-

ly reduces the number of global memory accesses. 6) unroll ‘u’ 

uses a pragma to request unrolling of the innermost loop(s). Un-

rolling often allows the compiler to schedule instructions better and 

to eliminate redundancies, thus improving performance. 

For BH, we selected the following six code optimizations. 1) vote 

‘V’ employs thread voting instead of a shared-memory-based code 

sequence to perform 32-element reductions. 2) warp ‘w’ switches 

from a thread-based to a warp-based implementation that is much 

more efficient because it does not suffer from branch divergence 

and uses less memory as it records certain information on a per 

warp instead of a per thread basis. 3) sort ‘s’ approximately sorts 

the bodies by spatial distance to minimize the tree prefix that needs 

to be traversed during the force calculation. 4) rsqrt ‘r’ is identical 

to its NB counterpart. 5) ftz ‘f’ is also identical to the corresponding 

NB optimization. 6) vola ‘v’ strategically copies some volatile 

variables into non-volatile variables and uses those in code regions 

where it is known (due to lockstep execution of threads in a warp) 

that no other thread can have updated the value. This optimization 

serves to reduce memory accesses. 

4.3 Evaluation Test Bed 

We measured the GPU’s active runtime and power consumption 

with the K20Power tool [3]. Our Tesla K20c GPU has 5 GB of 

global memory and 13 streaming multiprocessors with a total of 

2,496 processing elements. It supports six clock frequency settings, 

of which we evaluate three: 1) the “default” configuration, which 

uses a 705 MHz core speed and a 2.6 GHz memory speed, 2) the 

“614” configuration, which uses a 614 MHz core speed and a 2.6 

GHz memory speed, i.e., the slowest available compute speed at 

the default memory speed, and 3) the “324” configuration, which 

uses a 324 MHz core and memory speed, i.e., the slowest available 

frequency. It should be noted that the K20c only supports two 

memory frequencies, 2.6 GHz and 324 MHz. We use the NVIDIA 

Management Library (NVML) to change the GPU settings. Our 

GPU further supports enabling and disabling ECC protection of the 

main memory. The “ECC” configuration combines ECC protection 

with the default clock frequency. On the K20c, enabling ECC has 

the effect of increasing the number of memory accesses a particular 

program makes without significantly increasing the amount of 

computation. All other tested configurations have ECC disabled. 

We compiled the CUDA codes with nvcc 5.5 using the -O3 and 

-arch=sm_35 flags as baseline. We ran the programs with three 

inputs. The first input is “N10k_10k” for NB, which has 10,000 

stars and 10,000 time steps, and “B100k_100” for BH, which has 

100,000 stars and 100 time steps. The second input is 

“N100k_100” for NB, which has 100,000 stars and 100 time steps, 

and “B1M_10” for BH, which has 1 million stars and 10 time steps. 

The third input is “N1M_1” for NB, which has 1 million stars and 1 

time step, and “B10M_1” for BH, which has 10 million stars and 1 

time step. Since the inputs with fewer bodies include more time 

steps, the running times of the three inputs are fairly similar. We 

chose these inputs because they yield multi-second active runtimes 

even in the most optimized cases. The stars’ positions and veloci-

ties are initialized according to the empirical Plummer model [17], 

which mimics the density distribution of globular clusters. 

We repeated our measurements on a second K20c GPU to make 

sure that we obtain the same results, which we did. The evaluated 

programs use single-precision floating-point arithmetic, but we also 

wrote double-precision versions for comparison. Since CUDA-

enabled GPUs require two registers to hold a double value and can 

only store half as many doubles as floats in shared memory, the 

“double” configuration has to run with fewer threads than the sin-

gle-precision codes. Because of this, the single and double preci-

sion configurations used in this study are not directly comparable. 



 

 

 

We performed each experiment three times and report the median 

active runtime and average power, from which we compute the 

energy. The maximal difference we observed between the highest 

and the lowest of any set of three measurements is 1.0% in energy 

and 1.8% in active runtime. The average difference is around 0.2% 

for both energy and active runtime. In other words, the measure-

ment variability is quite low. Hence, we believe any measured 

change in active runtime or energy that exceeds 2% to be a true 

change in program behavior rather than measurement noise. 

Figure 1: Sample power profile 

4.4 Active Runtime 

Throughout this study, we refer to the “active runtime”, which is 

not the total application runtime but rather the time during which 

the GPU is actively executing kernel code. The K20Power tool 

defines this as the amount of time the GPU is drawing power above 

the idle level. Figure 1 illustrates this. 

Because of how the GPU draws power and how the built-in power 

sensor samples, only readings above a certain threshold (the dashed 

line at 55 W in this example) reflect when the GPU is actually exe-

cuting code [3]. Measurements below the threshold are either the 

idle power (less than about 26 W) or the “tail power” due to the 

driver keeping the GPU active for a few seconds (in case another 

kernel call is made) before powering it down. Using the active 

runtime ignores any execution time that may take place on the host 

CPU (which is negligible in all tested codes), as we are solely in-

terested in the energy consumption and power draw of the GPU 

while it executes the programs. The power threshold is dynamically 

adjusted for each execution of a particular program to maximize 

accuracy for different GPU configurations, particularly the low-

frequency settings that do not result in a high power draw. 

5. EXPERIMENTAL RESULTS 
The following subsections discuss different aspects of our 

measurements. In each case, we present and analyze the 

general trends and highlight notable outliers. The most im-

portant findings and insights are summarized in Section 6. 

For reference, Table 7 in the appendix lists the raw data (the 

median of three experiments) for all studied optimization 

combinations on the default configuration. 

5.1 Input Variability 

Table 1 shows the active runtime in seconds, the energy in joules, 

and the average power in watts for the three inputs and the five 

configurations when all six optimizations are enabled. 

The active runtime is over 10s in all cases. The average power in-

creases for inputs with more bodies since they combine longer-

running kernels with fewer kernel calls. For all configurations, the 

NB power is substantially higher than the BH power. This is be-

cause NB is a regular code that utilizes the GPU hardware more 

effectively than BH, where the hardware often has to wait because 

of the irregular nature of the code. 

The 614 MHz clock frequency is 14.8% lower than the default. 

This is why the 614 configuration increases the active runtime by 

about 12% to 15%. At the same time, it decreases the energy by 4% 

to 5%, but only on the compute-bound NB. Since the memory fre-

quency is not lowered, the energy of BH drops only insignificantly. 

Nevertheless, because the energy drops (slightly) in both cases 

while the active runtime increases, the 614 configuration lowers the 

average power by 15% to 17% on NB and by 12% on BH. Hence, 

this configuration represents a good power saving strategy but is 

only useful as an energy saving strategy on compute-bound codes. 

The 324 configuration’s core speed is 2.18 times lower than that of 

the default configuration. NB’s active runtime is about 2.23 times 

slower with the 324 configuration, demonstrating that it is highly 

compute bound and not affected by the ten-fold lower memory 

frequency. In contrast, BH’s active runtime is about 2.52 longer 

due to its larger dependence on memory speed, even when all code 

optimizations are enabled to minimize memory accesses. Surpris-

ingly, BH’s energy consumption increases by 9% with 324 whereas 

NB’s energy drops by 14%. On both programs, the power drops to 

well under half of that of the default configuration, again showing 

that a reduction in GPU frequency is very useful for power savings 

(and somewhat useful for saving energy on compute-bound codes). 
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Table 1: Active runtime [s], energy [J], and power [W] when all source-code optimizations are enabled 

 

runtime energy power runtime energy power runtime energy power runtime energy power runtime energy power

N10k_10k 16.27 2046 125.7 18.24 1959 107.4 34.98 1808 51.7 15.92 2036 127.9 68.29 8174 119.7

N100k_100 12.10 1828 151.1 13.88 1745 125.7 26.97 1580 58.6 12.16 1840 151.4 47.33 7137 150.8

N1m_1 11.56 1801 155.8 13.18 1709 129.7 26.92 1580 58.7 11.56 1822 157.6 49.00 7210 147.1

B100k_100 12.33 1347 109.3 13.96 1346 96.4 30.85 1429 46.3 13.43 1519 113.1 22.52 2409 107.0

B1m_10 16.15 1966 121.7 18.19 1952 107.3 40.72 2142 52.6 18.33 2277 124.2 26.18 3328 127.1

B10m_1 19.61 2412 123.0 22.04 2406 109.2 50.06 2641 52.8 22.19 2775 125.1 41.58 4498 108.2

N
B

B
H

doubleECCdefault 614 324



 

 

 

The impact of ECC is minimal on NB because it does not access 

main memory much, but it is high on BH, which accesses memory 

more often. On BH, the active runtime with ECC is 9% to 13% 

higher and the energy is 13% to 16% higher, indicating that ECC 

requires extra energy on top of the additional energy due to the 

longer active runtime. Hence, there is a small increase in power of 

up to 4% when ECC is turned on. In summary, ECC negatively 

impacts active runtime but affects energy more, resulting in a high-

er power draw. 

The double configuration increases the active runtime and energy 

by almost a factor of four on NB. The computations and memory 

accesses are half as fast when processing double-precision values, 

but the higher resource pressure on registers and shared memory 

necessitates a lower thread count and thus less parallelism, which 

further decreases performance. In contrast, double “only” increases 

the active runtime and energy 1.65-fold on BH, which executes a 

substantial amount of integer code to traverse the octree. This code 

is not affected by the single- vs. double-precision choice. Despite 

the large differences in energy and active runtime, the power draw 

of both NB and BH are hardly affected by the double configuration. 

5.2 None vs. All Optimizations 

Table 2 shows the measured active runtime and energy consump-

tion as well as the computed average power draw of the five evalu-

ated configurations for the medium inputs when none and all of the 

optimizations are enabled. 

Our first observation is that code optimizations can have a large 

impact not only on active runtime but also on energy and power. 

On NB, the energy consumption improves 2.5 to 4 fold due to the 

optimizations, and the performance improves 3.3 to 5.3 fold. At the 

same time, the power increases by up to 30% because the hardware 

is being used more effectively. On BH, the energy improves 11 to 

16 fold and the performance 11.5 to 18 fold while the power in-

creases by 10%. Clearly, code optimizations can drastically lower 

the active runtime and the energy but tend to increase power. 

The improvements are substantially lower on NB than on BH. We 

believe there are two main reasons for this difference. First, NB is a 

much simpler and shorter code, making it easier to implement effi-

ciently without having to resort to highly complex optimizations. 

Second, NB is a regular code with few data dependencies, enabling 

the compiler to generate quite efficient code even in the base case. 

(Note that we always compile with -O3.) As a consequence, the 

additional code optimizations we study provide less benefit. 

Focusing on the default configuration, we find that the optimiza-

tions help the active runtime of NB much more than the energy 

consumption, which is why the power increases greatly. On BH, 

the situation is different. Here, the optimizations reduce the energy 

consumption a little more than the active runtime, resulting in a 

slight decrease in power draw. 

Comparing the default and the 614 configurations, we find that the 

15% drop in core speed yields a 15% active runtime increase on 

NB, as discussed above. The active runtime of BH only increases 

by 13% because the memory accesses are not slowed down. Hence, 

the drop in power draw is lower for BH than for NB. The 614 con-

figuration consumes a little less energy than the default configura-

tion. The reduction is within the margin of error for BH but the 5% 

drop with all optimizations enabled on NB is significant. Overall, 

the 614 configuration primarily serves to lower the power draw. 

Due to a concomitant increase in active runtime, it does not affect 

the energy much. The benefit of all the various optimizations is 

fairly similar for the default and 614 configurations. 

The 324 configuration behaves quite differently because it not only 

reduces the core frequency by a factor of two but also lowers the 

memory frequency by a factor of eight relative to the 614 configu-

ration. NB’s increase in active runtime is in line with the two-fold 

drop in core frequency because it is compute bound whereas BH’s 

increase in active runtime is much larger due to its greater depend-

ence on memory speed. As a consequence, there is a decrease in 

energy consumption on NB but a substantial increase on BH when 

comparing the 324 to the 614 configuration. Since the 324 configu-

ration affects the active runtime much more than the energy, it 

results in a large decrease in power draw. Reducing power is the 

primary strength of the 324 configuration, which is otherwise not 

very useful and can greatly increase the energy consumption of 

memory-bound codes. Nevertheless, the code optimizations are just 

as effective on it as they are on the other configurations. In fact, on 

BH, they are more effective when using the 324 configuration be-

cause the optimizations eliminate some of the now extremely costly 

memory accesses. 

Looking at the ECC configuration, we find that the energy, active 

runtime, and power numbers are almost identical to the default for 

NB. Since NB has excellent locality, which translates into many 

cache/shared-memory hits and good coalescing, even the version 

without our optimizations performs relatively few main memory 

accesses, which is why it is hardly affected by ECC. BH has less 

locality and accesses memory more frequently, which explains why 

it is affected more. Its active runtime and energy become 13% and 

16% worse, respectively, when ECC is turned on and all optimiza-

tions are used. However, the active runtime and energy are only 1% 

and 4% worse with ECC when none of the optimizations are ena-

bled. The reason for this difference is that the optimizations im-

prove the computation more than the memory accesses, thus mak-

ing the optimized code, relatively speaking, more memory bound. 

Table 2: Active runtime [s], energy [J], and power [W] with the second input when none and all of the optimizations are enabled 

 

runtime energy power runtime energy power runtime energy power runtime energy power runtime energy power

none 63.88 7002 109.6 73.44 6902 94.0 135.85 6250 46.0 64.08 7078 110.5 154.64 17857 115.5

all 12.10 1828 151.1 13.88 1745 125.7 26.97 1580 58.6 12.16 1840 151.4 47.33 7137 150.8

none 209.09 26266 125.6 237.18 26255 110.7 739.92 34868 47.1 211.81 27301 128.9 304.25 37897 124.6

all 16.15 1966 121.7 18.19 1952 107.3 40.72 2142 52.6 18.33 2277 124.2 26.18 3328 127.1

N
B

B
H

doubleECCdefault 614 324



 

 

 

Comparing the double configuration to the default, we observe that 

the active runtime and energy are 1.5 to 3.9 times worse, but the 

power is almost unchanged. Clearly, the double-precision code is 

substantially slower. While still highly effective (a factor of 2.5 to 

11.6 improvement), the benefit of the code optimizations is lower 

for the double configuration. This is because the double-precision 

code is more memory bound than the single-precision code and, as 

mentioned above, the optimizations improve the computation more 

than the memory accesses. 

5.3 Effectiveness of Optimizations 

Figures 2a and 2b show the range of the effect of each optimiza-

tion on the active runtime and the energy when using the second 

input (N100k_100 or B1M_1). The 64 versions of each program 

contain 32 instances that do not and 32 that do include any given 

optimization. The presented data shows the maximum (top whisk-

er), minimum (bottom whisker), and the median (line between the 

two boxes) change when adding a specific optimization to the 32 

versions that do not already include it. The boxes represent the first 

and third quartiles, respectively. Points below 1.0 indicate a slow-

down or increase in energy consumption. It is clear from these 

figures that the effect of an optimization can depend greatly on 

what other optimizations are present. 

The most effective optimization on NB is rsqrt. Using this special 

intrinsic improves the energy and particularly the active runtime 

because it targets the slowest and most complex operation in the 

innermost loop. Since rsqrt helps the active runtime more than the 

energy, it increases the power substantially. The other very effec-

tive optimization is shmem, i.e., to use tiling in shared memory. It, 

too, improves the active runtime more than the energy, leading to 

an increase in power. 

The impact of the remaining four optimizations is much smaller. ftz 

helps both energy and active runtime as it speeds up the processing 

of the many floating-point instructions. It is largely power neutral 

since it improves energy and active runtime about equally. Except 

with the double configuration, unroll helps active runtime a little 

and energy a lot, thus lowering the power quite a bit. We are not 

sure why unrolling helps energy more. const hurts the energy con-

sumption and the active runtime, but it is close to the margin of 

error. After all, this optimization only affects the infrequent kernel 

launches. peel hurts performance and energy, except in the double-

precision code, but does not change the power much. Clearly, there 

are optimizations that help active runtime more (e.g., rsqrt) while 

others help energy more (e.g., unroll). Some optimizations help 

both active runtime and energy equally (e.g., ftz). 

Most of the optimization benefits are quite similar across the dif-

ferent configurations. Notable 324 exceptions are peel, which hurts 

significantly more than in the other configurations, and ftz and 

rsqrt, which are more effective on 324. shmem and unroll are also 

more effective. Interestingly, the double configuration exhibits 

almost exactly the opposite behavior. peel is more effective on it 

than on the other configurations whereas ftz, rsqrt, shmem, and 

unroll are substantially less effective. 

The findings for BH are similar. There are also two optimizations 

that help a great deal. warp, the most effective optimization, im-

proves energy a little less than active runtime, thus increasing the 

 
Figure 2a: Improvement range of the active runtime (Rt) and energy (En) on the second input for NB 

 

 
Figure 2b: Improvement range of the active runtime (Rt) and energy (En) on the second input for BH (log2 scale) 

 

 



 

 

 

power draw. sort, the second most effective optimization, helps 

energy a little more than active runtime. vola and rsqrt also help 

both aspects but are much less effective and power neutral. We are 

surprised by the effectiveness of vola. Apparently, it manages to 

reduce memory accesses significantly and therefore makes BH less 

memory bound. vote helps energy substantially more than active 

runtime. Hence, this optimization is particularly useful for reducing 

power. Interestingly, on some configurations, it hurts both energy 

and active runtime, on others only active runtime, and on yet others 

it helps both aspects. ftz is within the margin of error but seems to 

help a little. The reason why both rsqrt and ftz are much less effec-

tive on BH than on NB is because BH executes many integer in-

structions, which do not benefit from these optimizations. 

Investigating the individual configurations, we again find that there 

is no significant difference in optimization effectiveness between 

default and 614 as well as between default and ECC on NB. For 

324 on NB, const is unchanged, peel is less effective, and the other 

optimizations are more effective than with the default configura-

tion. On BH, warp is much more effective with the 324 configura-

tion and vola quite a bit more. This is because both optimizations 

reduce the number of memory accesses. vote is slightly less effec-

tive and the remaining optimizations’ benefits are unchanged. For 

ECC on BH, vote is less effective, but the other optimizations are 

just as effective as they are with the default configuration. Once 

again, the double configuration behaves quite differently. Most 

notably, warp is much less effective and vola somewhat less. How-

ever, rsqrt and especially vote are more effective. Note that in the 

double-precision code, the rsqrtf() intrinsic is followed by two 

Newton-Raphson steps to obtain double precision, which is appar-

ently more efficient, both in terms of active runtime and energy, 

than performing a double-precision square root and division. 

Thread voting helps because it frees up shared memory that can 

then be used for other purposes. For NB, the double configuration 

results in peel being much more effective and all other optimiza-

tions except const being much less effective than using the default 

configuration. In particular, rsqrt and shmem are substantially less 

effective; the former because of the Newton-Raphson overhead, 

which is substantial in the tight inner loop of NB and the latter 

because only half as many double values fit into the shared 

memory. Overall, the power is not much different for the double 

configuration with the exception of unroll, which does not lower 

the power draw in the double-precision code. 

These results illustrate that the effect of a particular optimization is 

not always constant but can change depending on the regular or 

irregular nature of the code, the core and memory frequencies, the 

chosen floating-point precision, and the presence or absence of 

other optimizations. 

5.4 Lowest and Highest Settings 

Figure 3 displays the sets of optimizations that result in the highest 

and lowest active runtime and energy on the second input. In each 

case, a six-character string shows which optimizations are present 

(see Subsection 4.2 for which letter represents which optimization). 

The characters are always listed in the same order. An underscore 

indicates the absence of the corresponding optimization. 

 
Figure 3: Sets of NB (left) and BH (right) optimizations that yield the highest and lowest runtime and energy on the second input 

 

 

Table 3: Base setting and added optimization that yields the most significant positive/negative impact on the second input. A ‘+’ 
indicates an increase and a ‘-’ a decrease; “rt” stands for active runtime and “en” for energy 

 
 

setting & opt time ener. setting & opt time ener. setting & opt time ener. setting & opt time ener. setting & opt time ener.

rt+ en+ ______ & peel 0.63 0.47 ______ & peel 0.63 0.47 ______ & peel 0.34 0.32 ______ & peel 0.63 0.46 __pcr_ & unrol 0.86 0.91

rt+ en- __pc_f & unrol 0.86 1.25 __pc_f & unrol 0.86 1.24 __pc_f & unrol 0.97 1.26 __pc_f & unrol 0.86 1.28 us__rf & const 1.00 1.00

rt- en+ _sp_rf & const 1.01 1.00 _sp_rf & const 1.01 1.00 _sp_rf & const 1.00 0.99 _sp_rf & const 1.01 1.00 us_cr_ & peel 1.00 0.97

rt- en- __p___ & rsqrt 2.97 3.65 __p___ & rsqrt 2.97 3.69 __pc__ & rsqrt 5.33 5.29 __p___ & rsqrt 2.98 3.74 __p___ & rsqrt 2.27 1.90

rt+ en+ _frs__ & vote 0.16 0.18 _frs__ & vote 0.16 0.18 _frs__ & vote 0.15 0.16 _frs__ & vote 0.15 0.17 _frs__ & vote 0.22 0.24

rt+ en- ____wV & vola 0.99 1.04 ____wV & vola 1.00 1.05 v_rs__ & ftz 1.00 1.01 ____wV & vola 0.99 1.04 ______ & vote 0.96 1.07

rt- en+ n/a n/a n/a v__swV & ftz 1.00 1.00 ____w_ & ftz 1.00 1.00 ___s__ & ftz 1.00 1.00 _____V & ftz 1.00 1.00

rt- en- _frs_V & warp 19.06 17.04 _frs_V & warp 19.28 17.48 _frs_V & warp 27.47 23.99 _frs_V & warp 18.31 16.64 _frs_V & warp 13.03 11.40

ECC double

N
B

BH

default 614 324

Impr. factor Impr. factor Impr. factor Impr. factorImpr. factor



 

 

 

Interestingly, the worst performance and highest energy are ob-

tained when some optimizations are enabled, showing that it is 

possible for “optimizations” to hurt rather than help. In the worst 

case, which is NB 324, the energy consumption increases more 

than 3 fold when going from none of the optimizations to enabling 

peel. For all tested configurations, the best performance and the 

lowest energy consumption on BH are always obtained when all 

optimizations are enabled. This is also mostly the case for NB. 

Comparing the highest to the lowest values, we find that the worst 

and best configurations differ by over a factor of 12 (energy) and 

14 (active runtime) on NB and by over a factor of 29 (energy) and 

34 (active runtime) on BH. This highlights how large an effect code 

transformations can have on performance and energy consumption. 

The effect on the power is modest in comparison. It changes by up 

to 23% on BH and up to 60% on NB. 

Looking at individual optimizations, we find that, except for the 

worst case with the double configuration, peel is always included in 

the best and the worst settings in NB. Clearly, peel is bad when 

used by itself (as noted in Subsection 5.3) or in combination with 

the const optimization. However, peel becomes beneficial when 

grouped with some other optimizations, demonstrating that the 

effect of an optimization cannot always be assessed in isolation but 

may depend on the context. To reach the lowest power on NB, 

unroll, peel, and const need to be enabled together. 

In case of BH, we find sort and vote to dominate the worst active 

runtime and energy settings. sort in the absence of warp does not 

help anything. vote generally hurts energy and often active runtime 

(cf. Subsection 5.3). Surprisingly, ftz is often included in the worst 

performance setting for BH. We expected ftz to never increase the 

active runtime. However, ftz also appears in all the best settings, 

showing that it does help in the presence of other optimizations. 

Additionally, the best and worst settings are similar across the dif-

ferent configurations, illustrating that optimizations tend to behave 

consistently with respect to each other. 

5.5 Energy Efficiency vs. Performance 

Table 3 shows, for the second input, the largest impact that adding 

a single optimization makes. We consider four scenarios, maximal-

ly hurting both active runtime and energy, hurting active runtime 

but improving energy, improving active runtime but hurting ener-

gy, and improving both active runtime and energy. 

With one exception, every configuration has examples of all four 

scenarios. The examples of decreasing the active runtime while 

increasing the energy consumption are within the margin of error 

and therefore probably not meaningful. However, the other three 

scenarios have significant examples. Excluding the double configu-

ration for the moment, enabling just the peel optimization on NB 

increases the energy consumption by more than a factor of two and 

the active runtime nearly as much (as noted in the previous subsec-

tion). Clearly, this “optimization” is a very bad choice by itself. 

However, adding rsqrt to the peel optimization improves the active 

runtime and energy by a factor of three to five, making it the most 

effective addition of an optimization we have observed. Perhaps the 

most interesting case is adding unroll to peel, const, and ftz. It low-

ers the energy consumption by about 25% even though it increases 

the active runtime substantially. This example shows that perfor-

mance and energy optimization are not always the same thing. 

BH has similar examples. Adding vote to ftz, rsqrt, and sort greatly 

increases the active runtime and the energy consumption, making it 

the worst example of adding an optimization. In contrast, adding 

warp to ftz, rsqrt, and sort greatly reduces both active runtime and 

energy, making it the most effective addition of a single optimiza-

tion we have observed. Again, decreasing the active runtime while 

increasing the energy is within the margin of error (or no such case 

exists). Finally, there are several examples of lowering the energy 

by a few percent while increasing the active runtime marginally. 

While not as pronounced as with NB, these examples again show 

that there are cases that only help energy but not active runtime. 

The base settings and the optimizations added that result in signifi-

cant changes in energy and active runtime are consistent across the 

five configurations. Only the double configuration on NB differs 

substantially. However, even in this case, the effects of the optimi-

zations are large. In fact, this configuration exhibits the most pro-

nounced example of adding an optimization that lowers the active 

runtime (albeit within the margin of error) while increasing the 

energy consumption (by three percent). 

Table 4 shows similar results but varies the input (on the default 

configuration) instead of keeping the input fixed and varying the 

configuration. Again, the results are consistent for all cases that are 

not close to the margin of error. In particular, the settings yielding 

the largest effect are mostly the same. The resulting improvement 

factors vary a little, though, especially for the first input. Interest-

ingly, the first input benefit more from these optimizations. 

  

Table 4: Base setting and added optimization that yields the greatest 

positive/negative impact on the default configuration 

 

5.6 Most Biased Optimizations 

Whereas the previous subsection investigates cases where an opti-

mization helps one aspect and/or hurts another, this subsection 

studies optimizations where the difference between how much they 

improve energy versus active runtime is maximal. Table 5 provides 

the results for the different configurations and Table 6 for the dif-

ferent inputs. The notation is the same as before. 

On NB, we find that adding unroll to peel and const improves en-

ergy by 18% to 56% more than active runtime except for double, 

where there is no strong example. In contrast, adding rsqrt to un-

roll, shmem, peel and const improves active runtime by 31% to 

46% more than energy, again with the exception of the double con-

figuration, where the same optimization but on a different base 

setting yields 20% more benefit in active runtime than in energy. 

setting & opt time ener. setting & opt time ener. setting & opt time ener.

rt+ en+ ______ & peel 0.81 0.64 ______ & peel 0.63 0.47 ______ & peel 0.63 0.47

rt+ en- ___cr_ & peel 0.99 1.01 __pc_f & unrol 0.86 1.25 __pc_f & unrol 0.84 1.16

rt- en+ ______ & const 1.00 0.99 _sp_rf & const 1.01 1.00 u_____ & const 1.00 1.00

rt- en- uspc_f & rsqrt 4.46 3.13 __p___ & rsqrt 2.97 3.65 __p___ & rsqrt 2.95 3.65

rt+ en+ _frs__ & vote 0.21 0.22 _frs__ & vote 0.16 0.18 _frs__ & vote 0.15 0.17

rt+ en- v_rsw_ & ftz 1.00 1.01 ____wV & vola 0.99 1.04 _f____ & vote 0.92 1.09

rt- en+ v____V & ftz 1.00 1.00 n/a n/a n/a n/a n/a n/a

rt- en- _frs_V & warp 14.42 14.52 _frs_V & warp 19.06 17.04 _frs_V & warp 20.32 17.70

first second third

N
B

B
H

Impr. factor Impr. factor Impr. factor



 

 

 

On BH, there is no consistent setting or optimization that yields the 

highest benefit in energy over active runtime. Nevertheless, some 

code optimizations help energy between 5% and 18% more than 

active runtime. The best optimization for helping active runtime 

more than energy is warp, but the base setting differs for the differ-

ent configurations. It improves active runtime between 6% and 

21% more than energy. Again, these results highlight that optimiza-

tions do not necessarily affect active runtime and energy in the 

same way. Rather, some source-code optimizations tend to improve 

one aspect substantially more than another.  

Table 6: Base setting and added optimization that yields the 

most biased energy over active runtime and vice versa 

 

6. SUMMARY AND CONCLUSIONS 
This paper studies 128 versions of two different n-body simulations 

running on five GPU configurations using three inputs. For each 

program, version, configuration, and input combination, we meas-

ure the active runtime and power on a compute GPU and calculate 

the energy consumption. We would have liked to study more pro-

grams in this study, but writing conditionally compliable GPU code 

for so many optimizations is very difficult, error prone, and time 

intensive. We consider this work an initial study and more pro-

grams should be considered in future work. 

While we cannot draw generalizations from two programs, this 

study already provides several interesting results. Some of the key 

takeaway points are that source-code optimizations tend to increase 

the power draw, that lowering the clock frequency is a good power 

saving strategy but not useful as an energy saving strategy, that 

enabling ECC negatively impacts active runtime and especially 

energy, that double-precision GPU code behaves quite differently 

from single-precision code, that optimizations can have a large 

impact on energy and power, that the effect of an optimization 

cannot always be assessed in isolation but may depend on the pres-

ence of other optimizations, and that source-code optimizations do 

not necessarily affect active runtime and energy in the same way. 

Regarding the average power, we found that our regular, compute 

bound code draws substantially more power than the irregular, 

somewhat memory bound code for all configurations. As code 

optimizations generally increase power, the lowest power tends to 

be achieved when optimizations are disabled. Overall, our source-

code optimizations change the power draw by up to 60%. 

Switching from single- to double-precision arithmetic has little 

effect on the power but drastically increases both the active runtime 

and the energy consumption of the GPU. The benefit of code opti-

mizations tends to be lower for the double-precision version of a 

program. However, some optimizations are more effective on dou-

ble-precision code. Emulating a double-precision division and 

square root using the rsqrtf intrinsic followed by two Newton-

Raphson steps to obtain double precision is more efficient, both in 

terms of active runtime and energy, than executing true double-

precision square root and division instructions. 

We have observed improvements by a factor of five in both active 

runtime and energy consumption due to source-code optimization. 

Often, the worst performance, energy, and power are obtained 

when some optimizations are enabled, showing that it is possible 

for “optimizations” to hurt rather than help. Comparing the highest 

to the lowest measurements, we find that the worst and best config-

urations differ by over a factor of 29 in energy and 34 in active 

runtime. Some optimizations hurt when used by themselves but can 

become beneficial when grouped with other optimizations. 

We have identified several examples where optimizations lower the 

energy while increasing the active runtime, showing that there are 

optimizations that only help energy but not active runtime. In one 

case, the improvement in energy is 56% higher than the improve-

ment in active runtime. In another case, the active runtime im-

provement is 46% higher than the energy improvement. 

Our results demonstrate that programmers can optimize their 

source code for energy (or power), that such optimizations may be 

different from optimizations for performance, and that optimiza-

tions can make a large difference. Clearly, source-code optimiza-

tions have the potential to play an important role in making accel-

erators more energy efficient. 
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Table 7: Raw data (the median of three experiments) for all studied optimization combinations on the default configuration 

 

NB BH

Setting Runtime Energy Power Runtime Energy Power Runtime Energy Power Setting Runtime Energy Power Runtime Energy Power Runtime Energy Power

______ 149.10 12136 81.4 63.88 7002 109.6 60.56 6782 112.0 ______ 79.11 9558 120.8 209.09 26266 125.6 587.20 74770 127.3

_____f 127.60 10969 86.0 59.91 6860 114.5 56.92 6687 117.5 _____V 118.62 13222 111.5 311.11 34002 109.3 634.88 68411 107.8

____r_ 67.94 6287 92.5 32.66 4139 126.7 31.05 4037 130.0 ____w_ 69.65 7882 113.2 183.35 22245 121.3 516.88 63586 123.0

____rf 65.69 6108 93.0 31.85 3982 125.0 30.29 3887 128.3 ____wV 25.69 2911 113.3 71.33 8932 125.2 199.13 25593 128.5

___c__ 148.80 12247 82.3 63.78 7022 110.1 60.47 6795 112.4 ___s__ 47.05 5419 115.2 62.51 7767 124.3 75.24 9406 125.0

___c_f 128.45 10994 85.6 59.93 6828 113.9 56.90 6651 116.9 ___s_V 218.75 24042 109.9 373.77 40620 108.7 478.23 51416 107.5

___cr_ 67.90 6292 92.7 32.67 4141 126.7 31.04 4036 130.0 ___sw_ 42.84 4682 109.3 56.32 6709 119.1 67.96 8163 120.1

___crf 65.63 6104 93.0 31.88 3982 124.9 30.31 3886 128.2 ___swV 18.16 1940 106.8 23.22 2774 119.5 27.76 3364 121.2

__p___ 184.75 18839 102.0 101.27 14877 146.9 96.16 14529 151.1 __r___ 78.13 9393 120.2 203.42 25479 125.3 568.69 72227 127.0

__p__f 135.71 12688 93.5 67.44 9632 142.8 64.35 9438 146.7 __r__V 118.40 13160 111.1 311.47 34003 109.2 637.61 68512 107.5

__p_r_ 68.78 6227 90.5 34.06 4080 119.8 32.58 3983 122.3 __r_w_ 68.83 7787 113.1 179.26 21714 121.1 503.51 61961 123.1

__p_rf 58.88 5479 93.1 33.08 3870 117.0 31.49 3783 120.2 __r_wV 25.19 2818 111.8 71.02 8674 122.1 199.39 24897 124.9

__pc__ 184.66 18837 102.0 100.95 14861 147.2 95.91 14510 151.3 __rs__ 45.07 5199 115.4 60.38 7490 124.0 72.67 9060 124.7

__pc_f 136.09 12716 93.4 68.25 9685 141.9 64.92 9476 146.0 __rs_V 218.64 23919 109.4 373.98 40506 108.3 477.48 51156 107.1

__pcr_ 68.77 6230 90.6 34.09 4080 119.7 32.59 3983 122.2 __rsw_ 40.79 4429 108.6 54.02 6375 118.0 65.51 7797 119.0

__pcrf 58.84 5478 93.1 33.09 3867 116.8 31.48 3784 120.2 __rswV 15.22 1670 109.7 19.75 2417 122.4 23.85 2955 123.9

_s____ 80.08 7153 89.3 49.87 5378 107.8 47.52 5243 110.3 _f____ 79.11 9577 121.1 209.16 26292 125.7 588.68 74895 127.2

_s___f 80.09 7155 89.3 47.49 5237 110.3 45.26 5111 112.9 _f___V 118.94 13255 111.4 311.40 34060 109.4 637.49 68600 107.6

_s__r_ 23.47 2692 114.7 16.14 2291 141.9 15.38 2251 146.3 _f__w_ 69.53 7871 113.2 182.86 22202 121.4 514.81 63581 123.5

_s__rf 20.88 2390 114.5 13.95 2007 143.9 13.31 1975 148.3 _f__wV 26.02 2931 112.6 72.22 8998 124.6 201.72 25791 127.9

_s_c__ 79.80 7112 89.1 42.72 4908 114.9 40.70 4797 117.8 _f_s__ 47.22 5437 115.1 62.76 7791 124.1 75.60 9448 125.0

_s_c_f 79.14 7003 88.5 46.28 5080 109.7 44.08 4953 112.4 _f_s_V 218.64 24034 109.9 374.13 40681 108.7 478.42 51455 107.6

_s_cr_ 22.32 2589 116.0 15.95 2230 139.9 15.24 2194 144.0 _f_sw_ 42.97 4693 109.2 56.48 6724 119.1 68.51 8198 119.7

_s_crf 20.06 2329 116.1 15.12 2063 136.4 14.46 2034 140.7 _f_swV 17.90 1917 107.1 22.89 2745 119.9 27.38 3332 121.7

_sp___ 75.45 6680 88.5 43.93 4812 109.5 41.79 4691 112.2 _fr___ 77.66 9309 119.9 202.55 25288 124.8 566.21 71658 126.6

_sp__f 74.90 6638 88.6 42.50 4713 110.9 40.44 4592 113.6 _fr__V 118.45 13146 111.0 311.14 33934 109.1 636.17 68389 107.5

_sp_r_ 19.24 2321 120.6 13.67 2011 147.1 13.04 1979 151.8 _fr_w_ 68.54 7730 112.8 178.79 21596 120.8 502.32 61600 122.6

_sp_rf 18.33 2169 118.3 13.42 1907 142.1 12.86 1881 146.2 _fr_wV 25.17 2788 110.7 71.09 8585 120.8 199.71 24647 123.4

_spc__ 75.26 6660 88.5 46.66 4978 106.7 44.36 4850 109.3 _frs__ 44.93 5154 114.7 60.17 7426 123.4 72.44 8986 124.1

_spc_f 76.40 6730 88.1 44.39 4830 108.8 42.19 4709 111.6 _frs_V 218.66 23897 109.3 373.86 40436 108.2 480.67 51374 106.9

_spcr_ 20.30 2397 118.1 14.20 2061 145.1 13.54 2031 150.0 _frsw_ 40.62 4398 108.3 53.84 6321 117.4 65.20 7736 118.6

_spcrf 18.11 2167 119.7 13.26 1909 144.0 12.64 1880 148.8 _frswV 15.16 1646 108.6 19.61 2373 121.0 23.66 2903 122.7

u_____ 149.07 12211 81.9 63.90 7002 109.6 60.51 6779 112.0 v_____ 68.96 8216 119.1 180.83 22488 124.4 506.83 63862 126.0

u____f 127.67 10977 86.0 59.93 6863 114.5 56.92 6688 117.5 v____V 85.84 9722 113.3 231.87 25626 110.5 489.96 52935 108.0

u___r_ 67.94 6293 92.6 32.65 4136 126.7 31.11 4039 129.8 v___w_ 66.39 7497 112.9 178.72 21509 120.3 504.85 61621 122.1

u___rf 65.63 6107 93.1 31.87 3981 124.9 30.30 3884 128.2 v___wV 24.37 2655 108.9 72.11 8584 119.0 203.56 24810 121.9

u__c__ 148.65 12238 82.3 63.74 7023 110.2 60.30 6784 112.5 v__s__ 41.27 4663 113.0 54.48 6671 122.5 65.78 8088 123.0

u__c_f 128.49 10998 85.6 59.96 6828 113.9 56.92 6647 116.8 v__s_V 158.98 17623 110.8 288.40 31538 109.4 370.96 40084 108.1

u__cr_ 67.92 6289 92.6 32.67 4138 126.7 30.98 4029 130.0 v__sw_ 40.81 4446 108.9 53.92 6397 118.6 65.44 7794 119.1

u__crf 65.70 6109 93.0 31.85 3981 125.0 30.29 3886 128.3 v__swV 15.29 1639 107.2 19.49 2343 120.2 23.21 2841 122.4

u_p___ 104.88 9150 87.2 75.73 7517 99.3 72.79 7915 108.7 v_r___ 66.40 7827 117.9 171.62 21193 123.5 478.86 59973 125.2

u_p__f 110.20 9488 86.1 78.46 7712 98.3 75.59 8130 107.5 v_r__V 85.25 9584 112.4 231.87 25505 110.0 490.00 52731 107.6

u_p_r_ 53.74 5169 96.2 40.23 4351 108.1 39.09 4707 120.4 v_r_w_ 62.97 7132 113.3 168.02 20287 120.7 470.80 57804 122.8

u_p_rf 49.03 4777 97.4 38.22 4124 107.9 36.67 4431 120.8 v_r_wV 19.03 2188 115.0 56.53 7070 125.1 163.89 20787 126.8

u_pc__ 112.20 9648 86.0 85.17 8182 96.1 81.52 8554 104.9 v_rs__ 38.49 4342 112.8 51.11 6234 122.0 61.64 7554 122.5

u_pc_f 108.86 9371 86.1 79.45 7736 97.4 77.17 8191 106.2 v_rs_V 158.79 17498 110.2 288.47 31354 108.7 370.62 39817 107.4

u_pcr_ 52.51 5089 96.9 40.44 4367 108.0 39.25 4721 120.3 v_rsw_ 37.79 4148 109.8 50.39 6011 119.3 60.63 7306 120.5

u_pcrf 48.80 4763 97.6 38.22 4121 107.8 36.88 4442 120.5 v_rswV 12.41 1369 110.3 16.18 1997 123.4 19.63 2451 124.8

us____ 79.99 7132 89.2 49.91 5376 107.7 47.54 5245 110.3 vf____ 68.98 8210 119.0 180.99 22513 124.4 507.39 63954 126.0

us___f 80.10 7142 89.2 47.50 5237 110.2 45.29 5113 112.9 vf___V 85.79 9725 113.4 232.01 25666 110.6 490.45 52986 108.0

us__r_ 23.45 2686 114.6 16.14 2291 141.9 15.37 2253 146.6 vf__w_ 66.19 7488 113.1 178.31 21496 120.6 503.81 61576 122.2

us__rf 20.88 2388 114.4 13.92 2004 144.0 13.29 1978 148.9 vf__wV 22.14 2484 112.2 64.48 7957 123.4 182.94 23080 126.2

us_c__ 79.78 7100 89.0 42.73 4912 114.9 40.65 4792 117.9 vf_s__ 41.43 4676 112.9 54.74 6694 122.3 66.11 8120 122.8

us_c_f 79.14 6997 88.4 46.28 5079 109.7 44.08 4952 112.3 vf_s_V 159.24 17656 110.9 288.45 31555 109.4 371.67 40151 108.0

us_cr_ 22.32 2586 115.9 15.95 2230 139.8 15.25 2195 144.0 vf_sw_ 40.68 4436 109.1 53.70 6392 119.0 65.26 7793 119.4

us_crf 20.07 2329 116.0 15.12 2062 136.4 14.46 2035 140.7 vf_swV 15.27 1638 107.2 19.46 2343 120.4 23.32 2848 122.2

usp___ 72.29 6401 88.5 37.16 4290 115.5 35.34 4188 118.5 vfr___ 66.14 7787 117.7 171.03 21067 123.2 477.22 59593 124.9

usp__f 71.24 6305 88.5 37.72 4306 114.1 35.91 4212 117.3 vfr__V 85.15 9561 112.3 232.18 25515 109.9 491.18 52771 107.4

usp_r_ 17.34 2164 124.8 12.50 1910 152.8 11.97 1887 157.7 vfr_w_ 62.80 7036 112.0 167.38 19985 119.4 468.63 56835 121.3

usp_rf 16.26 2046 125.8 12.11 1829 151.0 11.58 1802 155.7 vfr_wV 18.92 2158 114.1 56.23 6963 123.8 163.24 20483 125.5

uspc__ 75.19 6588 87.6 45.62 4827 105.8 43.33 4691 108.3 vfrs__ 38.36 4310 112.4 50.96 6188 121.4 61.33 7497 122.2

uspc_f 72.53 6407 88.3 40.90 4512 110.3 38.97 4410 113.2 vfrs_V 159.03 17488 110.0 288.32 31300 108.6 371.63 39827 107.2

uspcr_ 17.29 2162 125.0 12.51 1909 152.5 11.93 1886 158.1 vfrsw_ 37.87 4102 108.3 50.54 5938 117.5 60.79 7210 118.6

uspcrf 16.27 2046 125.7 12.10 1828 151.1 11.56 1801 155.8 vfrswV 12.33 1347 109.3 16.15 1966 121.7 19.61 2412 123.0
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