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Abstract 
Most well -performing load value predictors are hy-

brids that combine multiple predictors into one.  Such hy-
brids are often large.  To reduce their size and to improve 
their performance, this paper presents two storage reduc-
tion techniques as well as a detailed analysis of the inter-
action between a hybrid’s components.  We found that 
state sharing and simple value compression can shrink 
the size of a predictor by a factor of two without compro-
mising the performance.  Our component analysis re-
vealed that combining well -performing predictors does 
not always yield a good hybrid, whereas sometimes a 
poor predictor can make an excellent complement to an-
other predictor in a hybrid. 

Performance evaluations using a cycle-accurate simu-
lator running SPECint95 show that hybridizing can im-
prove non-hybrids by thirty to fifty percent over a wide 
range of sizes.  With fifteen kilobytes of state, our coa-
lesced-hybrid yields a harmonic mean speedup of twelve 
and fifteen percent with a re-fetch and a re-execute mis-
prediction recovery mechanism, respectively, which is 
higher than the speedup of other predictors we evaluate, 
some of which are six times larger. 

 

1. Introduction 

Load instructions read data from memory rather than 
from the processor’s fast register file.  Because the mem-
ory hierarchy occasionally incurs long latencies, loads can 
take many cycles to execute, which slows down program 
execution.  If the performance gap between CPUs and 
memory continues to widen, the load latency will become 
even longer.  Unfortunately, load instructions are not only 
among the slowest but also among the most frequently 
executed instructions in current high-performance micro-
processors.  Hence, improving their execution speed can 
significantly boost the overall CPU performance. 

Load instructions often fetch predictable sequences of 
values [12].  For instance, about half of all the load in-
structions in the SPECint95 benchmark suite retrieve the 
same value that they did the previous time they were exe-
cuted.  Such behavior, which has been demonstrated ex-
plicitly on a number of architectures, is referred to as 
value locality [8, 12]. 

To exploit as much of the existing load value locality 
as possible, hybrid predictors have been proposed that 
combine several different predictors into one.  A selector 
determines the best component for each prediction.  Un-
fortunately, such hybrid predictors can be large [18, 25]. 

We devised two storage reduction techniques that de-
crease the amount of state required by the well -
performing last n value [5] and stride predictors by a fac-
tor of two or more.  We achieve this saving by letting the 
stride component reuse information already stored in the 
last n value component, making the former completely 
storage-less.  In addition, it is possible to shrink the last n 
value component by sharing as many as 75% of the bits 
between the n values in each predictor line, i.e., by storing 
the values in a compressed format.  Both techniques result 
in a significant decrease in predictor size with only a neg-
ligible impact on the performance. 

The hybrid load value predictor we designed incorpo-
rates such a storage-less stride and a reduced-storage last 
three value predictor as well as a register value predictor 
[24], which is also storage-less.  This coalesced-hybrid, as 
we call it , is not only small but also highly effective.  
With only fifteen kilobytes of state, it yields a speedup 
that surpasses the speedup of other, up to six times larger, 
predictors we considered both with a re-fetch and a re-
execute misprediction recovery mechanism.  Among pre-
dictors of similar size, the coalesced-hybrid outperforms 
the other predictors by fifteen to fifty percent.  Section 5.1 
provides more results. 

A detailed study of our hybrid’s three main compo-
nents (Section 5.2) reveals that they exploit distinct kinds 



 

 

of load value locality and thus contribute independently to 
the overall performance.  This observation, which has also 
been made by Wang and Franklin [25] and others, indi-
cates that predictors can be combined effectively to ex-
ploit a larger fraction of the existing load value locality.  
Building hybrid predictors may therefore be worthwhile 
in spite of their greater complexity.  Our study further 
shows that not all predictors make good components for a 
hybrid and, more surprisingly, that some predictors with a 
poor individual performance make a more valuable addi-
tion to a hybrid than other predictors with a good individ-
ual performance.  Hence, detailed analyses are necessary 
to identify components that complement each other well . 

The remainder of this paper is organized as follows: 
Section 2 introduces related work.  Section 3 describes the 
storage reduction techniques and the architecture of our 
coalesced-hybrid load value predictor.  Section 4 explains 
the evaluation methods.  Section 5 presents the results.  
Section 6 concludes the paper with a summary. 

2. Related Work 

Background: To date, several categories of load value 
locality have been observed, including last value (se-
quences of identical values: e.g., 2, 2, 2, 2) [8, 12], stride 
(sequences of values with a constant offset between them: 
e.g., 1, 3, 5, 7, 9) [8, 19], last n value (repetitions within 
the last n values, e.g., 1, 2, 1, 2, 1, 2) [5, 11, 25], and fi-
nite context predictabilit y (reoccurring arbitrary se-
quences of values: e.g., 1, 7, 3, ..., 1, 7, 3) [19].  Last 
value predictabilit y is the simplest and most prominent 
kind of load value locality.  Pure stride predictabilit y 
(with a non-zero offset), on the other hand, occurs only 
infrequently.  Last n value and finite context predictabilit y 
have considerable potential but the latter is hard to exploit 
in small predictors.  At least twenty percent of the dy-
namically executed load instructions cannot be predicted 
using any of the above mentioned schemes. 

Like branch mispredictions, incorrect load value pre-
dictions necessitate a recovery process and thus incur a 
cycle penalty.  Consequently, a load value predictor can 
actually slow down a processor instead of speeding it up 
if the percentage of incorrect predictions is so large that 
more cycles are added than saved.  It is therefore impor-
tant not to attempt a prediction if the prediction is likely 
to be incorrect.  This is why almost all l oad value predic-
tors are equipped with a confidence estimator (CE).  A 
prediction is only made if the estimated confidence that 
the prediction will be correct is high.  There are two main 
approaches to confidence estimation in the current value 
prediction literature: saturating counters [12] and predic-
tion outcome histories [3, 4, 6].  Both approaches have 
close counterparts in the branch prediction literature be-
cause confidence estimators are similar in design to 

branch predictors. 
Saturating counters can count up and down between 

two boundaries, say zero and fifteen.  If the counter has 
reached fifteen, counting up will not change its value.  
Likewise, counting down from zero leaves the counter at 
zero.  The bimodal [13] confidence estimator uses such 
counters to record how many predictable values have 
been seen in the recent past.  The higher the count, the 
higher the confidence that the next load will be predict-
able since predictable load instructions do not frequently 
become unpredictable and vice-versa. 

The SAg [26] confidence estimator represents an alter-
native approach.  It works based on keeping a small his-
tory of the most recent prediction outcomes (success or 
failure) [22].  Such histories consist of a short bit-pattern 
in which every bit indicates whether the corresponding 
load value was predictable or not.  For instance, the left-
most bit may record whether the most recent load value 
was predictable, the next bit keeps the same information 
about the second most recent load value, etc.  Every pos-
sible history pattern has a saturating counter associated 
with it to record the number of correct predictions that 
followed the corresponding history pattern in the recent 
past, thus assigning a confidence to each pattern. 

Predicting a load value allows the CPU to start proc-
essing the dependent instructions without having to wait 
for the memory access to complete.  Speculative execu-
tion is required to continue executing with a predicted 
value before the prediction outcome is known [20].  Be-
cause branch prediction requires a similar mechanism, 
most modern microprocessors already contain the neces-
sary hardware to perform this kind of speculation. 

Unfortunately, branch misprediction recovery hard-
ware causes all the instructions that follow a misspecu-
lated instruction to be purged and re-fetched.  This is a 
very costly operation and makes a high prediction accu-
racy paramount.  Unlike branches, which invalidate the 
entire execution path when mispredicted, mispredicted 
loads only invalidate the instructions that depend on the 
loaded value.  In fact, even the dependent instructions per 
se are correct, they just need to be re-executed with the 
correct input value(s) [11].  A better recovery mechanism 
for load misspeculation therefore only re-executes the in-
structions that depend on the mispredicted load value.  
Such a recovery policy is less susceptible to mispredic-
tions but may be hard to implement. 

Techniques: Several research groups [5, 11, 25] have 
investigated last n value predictabilit y and noted its poten-
tial.  In this paper we show how the size of such a predic-
tor can be reduced twofold by sharing the most significant 
bits among the n values.  We found that up to 75% of the 
bits can be shared between the n values in each predictor 
line essentially without loss of performance. 

Tullsen and Seng [24] present a register value predic-
tor (Reg) that is storage-less except for its confidence es-



 

 

timator.  It predicts that a load will fetch a value that is al-
ready in the target register of the load instruction before 
the load is executed.  Since the predictor uses the CPU’s 
register file as a source for values, it does not require any 
value storage in the predictor.  This paper includes a per-
formance analysis of a register value predictor showing 
that it complements other predictors exceptionally well i n 
a hybrid load value predictor.  We further demonstrate 
how a stride predictor can also be made storage-less in 
combination with a last two value predictor. 

Other Predictors: Lipasti et al. [12] designed a last 
value (LV) predictor with a bimodal confidence estimator.  
In prior work [2, 3] we show that the SAg confidence es-
timator is able to improve the performance of most pre-
dictors.  We therefore also use SAg confidence estimators 
in our coalesced-hybrid predictor. 

Sazeides and Smith [19] introduce the stride 2-delta 
(St2d) and the finite context method (FCM) predictor.  
The former maintains two strides instead of one.  The 
stride used for making predictions is only updated if a 
new stride has been seen at least twice in a row, which re-
duces the number of mispredictions [8].  A stride 2-delta 
predictor is included in our performance comparison in 
Section 5.1.  Finite context method predictors retain short 
sequences of fetched load values.  During a prediction 
they try to find the current sequence in their “database” 
and, if found, use the next value from the stored sequence 
to make a prediction. 

Hybrids: Our performance comparison also includes a 
hybrid between a finite context method and a stride 2-
delta predictor (St2d+FCM), as proposed by Rychlik et al. 
[18].  Their hybrid does not include any state reduction 
techniques.  In a later technical report, Rychlik et al. 
augmented their predictor with a popular last value pre-
dictor and studied updating only one component at a time 
to increase the predictor’s capacity [17].  

Wang and Franklin designed a predictor that makes 
predictions based on the last four distinct values (LD4V) 
[25].  Their predictor uses a two-level access-pattern-
based bimodal confidence estimator (acBim).  In previous 
work, we show that it may not be necessary to store dis-
tinct values and propose a predictor that retains the last 
four values (L4V) independent of whether they are dis-
tinct or not [5].  In this paper we show that the size of 
such a predictor can be reduced significantly by storing 
compressed values. 

Wang and Franklin further propose a hybrid predictor 
that combines a last four distinct value predictor with a 
stride predictor (LD4V+St).  In Section 5.1, we compare 
our predictor with both of Wang and Franklin’s.  In their 
hybrid, the stride component shares its base value with the 
last four distinct value component [25]. 

Pinuel et al. present a hybrid between a last value, a 
stride, and a finite context method predictor [15] 
(LV+St+FCM) in which the stride component also ob-

tains its base value from the last value component.  In ad-
dition, the FCM component shares a value field with the 
last value component. 

We now show that not only the base value but also the 
offset (or stride) required by the stride predictor can be 
shared with a last n value predictor, thus making the stride 
predictor completely storage-less.  Furthermore, we are 
also able to reduce the size of the last n value predictor by 
sharing bits among the n values. 

3. Design of the Coalesced-Hybrid Predictor 

Our predictor started out as a simple last value predic-
tor with a SAg confidence estimator [3].  The first part of 
Figure 3.1 (denoted as Tag SAg LV) shows an excerpt of 
four lines from such a predictor with eight-bit partial tags 
and ten-bit prediction outcome histories (the associated 
saturating counters are not shown).  It predicts that a load 
instruction will fetch the same value that it did the previ-
ous time it was executed, but the predicted value is only 
used if the partial tag matches and the confidence associ-
ated with the history in the selected predictor line is above 
a preset threshold. 

 
Tag SAg LV  (last value predictor)

tag hist last value
8 10 64

Tag SAg L4V  (last four value predictor)

tag hist last value hist
8 10 64 10

Tag SAg L4pV  (last four partial value predictor)

tag hist last value hist 2nd pval hist 3rd pval hist
8 10 64 10 16 10 16 10

4th pval
16

64 …
second last value

 

Figure 3.1: Architecture excerpts of three stages in the 
evolution of the coalesced-hybrid load value predictor.  
Only the tag and the first two of the L4V predictor’s 
four components are shown. 

In a previous publication [5], we show that even for 
moderate predictor sizes it is beneficial to reduce the 
height of a last value predictor in order to make it wider 
(yielding, for example, a last four value predictor that is 
one forth as tall ).  Doing so increases the performance of 
the predictor without significantly changing the overall 
predictor size.  The size does increase a littl e due to the 
duplication of the second level of the SAg confidence es-
timator.  The middle part of Figure 3.1 shows one line of 
a partially tagged SAg last four value predictor (Tag SAg 
L4V).  The predictor basically consists of four independ-
ent “ last value” components that share the partial tags.  
Whichever of the four components reports the highest 



 

 

confidence is selected to make the next prediction.  In 
case of a tie the component with the youngest value is se-
lected [5].  Using the already present confidence informa-
tion to guide the selection process eliminates the need for 
additional storage of selector related information [16, 18]. 

We have already shown the last four value predictor to 
perform well [5].  Now we improve this predictor further.  
The enhancements described in the remainder of this sec-
tion are novel contributions of this paper. 

First, we realized that the most significant bits of the 
four values within each predictor line are almost always 
identical.  Hence, it suff ices to store them only once in-
stead of four times.  Surprisingly, as many as 48 bits (or 
three quarters of all the bits) can be shared virtually with-
out degrading the performance of the predictor.  The last 
four partial value predictor (Tag SAg L4pV in Figure 3.1) 
stores the full 64 bits of the most recently loaded (last) 
value but retains only the sixteen least significant bits of 
the three remaining values in each line.  This reduces the 
predictor’s size by about a factor of two.  As a conse-
quence, the predictor is able to store twice as many values 
as its predecessor of the same size, which improves the 
performance, in particular with small predictors. 

We then noticed that a last two value or wider predic-
tor includes a “ free” stride predictor.  Stride predictors re-
tain the last value and the difference (offset) between the 
last and the second to last value.  The predicted value is 
the last value plus the offset.  Our last four (partial) value 
predictor already retains the last value, and the stride can 
be computed on-the-fly out of the second to last value and 
the last value.  The predicted value evaluates to two times 
the last value minus the second last value.  The necessary 
subtraction can be performed in parallel with the access to 
the second level of the confidence estimator since the two 
operations are independent.  Except for the extra confi-
dence estimator, the stride predictor is storage-less in 
combination with a last n value predictor (for n ≥ 2). 

Because the fourth component of the L4pV predictor 
hardly contributes to the overall performance (Section 
5.5), we decided to leave it out and to add two additional 
confidence estimators, one of which is used for the stor-
age-less stride predictor.  We found Tullsen and Seng’s 
register value predictor [24] to be an ideal candidate for 
the second confidence estimator since their predictor is 
also storage-less and only requires a confidence estimator. 

We then added one more enhancement to the predictor.  
Bekerman et al. [1] and, independently, by Calder et al. 
[6] found that infrequently executed loads that alias with 
frequently executed loads evict useful predictor entries 
often enough to degrade the performance.  According to 
their suggestion, we added a bit to the partial tags (which 
we termed b-tags) to indicate whether the last access to a 
given predictor line resulted in a tag miss.  This bit makes 
it possible to prevent a predictor line from being updated 
after a first tag miss.  Only allowing updates after at least 

two consecutive misses effectively prevents infrequently 
executed loads from being able to pollute the predictor. 

Figure 3.2 shows the architecture of the resulting coa-
lesced-hybrid load value predictor with its storage-less 
stride, storage-less register, and reduced-storage last three 
partial value components (St+Reg+L3pV). 

Every line of the predictor includes a nine-bit partial 
b-tag.  A predictor line can only be updated after at least 
two consecutive tag misses, and predictions are only 
made if the partial tag matches.  The five identical SAg 
confidence estimators each consist of an array of ten-bit 
histories “hist” to record which of the last ten seen load 
values were predictable and an array of three or four-bit 
saturating counters to “measure” how frequently each 
possible history-pattern has recently been followed by a 
predictable load value [2, 3].  Predictions are only made if 
the current history has a high enough count associated 
with it.  The first confidence estimator forms the stride 
predictor (St) whose only other element is the adder since 
it shares values with the L3pV component.  The second 
confidence estimator belongs to the register value compo-
nent (Reg), which uses values from the CPU’s register file 
for making predictions.  The remaining three confidence 
estimators, the 64-bit field and the two twenty-bit partial 
value fields form the last three partial value (L3pV) com-
ponent.  We increased the size of the partial values from 
sixteen to twenty bits so that the predictor can accommo-
date programs that are larger than our benchmark suite.  
The predictor can be pipelined over two stages similar to 
the way we pipelined the last four value predictor [5]. 

 
PC …yyxxx..xx00

btag 2nd pval 3rd pval
9 64

· · · ·
· · · · 1024 lines
· · · ·

4 4 4 4 4
match adder

· · ·  1024 cntrs · ·
· · · · ·

register val

concatenate and select value

yes/no predict predicted valuematch & >=threshold
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·
·
·
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valid and maximum confidence
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·
·
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·
·
·

1010 10 10

··
·

·
·

2010 20

 

 Figure 3.2: The architecture of our B-Tag SAg 
St+Reg+L3pV ”coalesced-hybrid” load value predictor. 

The five sub-components operate independently and 
perform five confidence estimations and five value pre-
dictions in parallel.  The value of the component reporting 
the highest confidence is used for making a prediction, 
but only if the confidence is above the preset threshold.  
In other words, the component that is the most likely to be 
correct is selected to make the prediction.  To break ties, 
the sub-components are prioritized from left to right, that 
is, the stride component has the highest priority, the regis-
ter component has a medium priority, and the last three 



 

 

value component has the lowest priority.  Within the last 
three value component, the more recent values have a 
higher priority [5].  Changing the prioritization order 
among the three main components has virtually no effect 
on the speedup [2].  We use St+Reg+L3pV for no particu-
lar reason.  The only minute performance difference we 
could detect is that prioritizing the L3pV component over 
the Reg component seems to be slightly disadvantageous. 

When the predictor is updated, each component again 
makes a value prediction whose result is compared with 
the true load value.  The confidence estimators are then 
updated based on the outcome of this comparison, i.e., the 
counters are incremented or decremented and a new bit is 
shifted into the history field.  At the same time, the values 
within the L3pV component are passed on to the next 
“older” sub-component and the true load value is copied 
into the 64-bit last value field. 

4. Evaluation Methods 

4.1 Benchmarks 

We use the eight integer programs of the SPEC95 
benchmark suite [21] with the provided reference input 
sets for our measurements.  The executables were com-
piled using DEC GEM-CC with the highest optimization 
level “ -migrate -O5 -ifo” .  The performed optimizations 
include common sub-expression elimination, split li fetime 
analysis, code scheduling, nop insertion, code motion and 
replication, loop unrolli ng, software pipelining, local and 
global inlining, inter-file optimization, etc.  The binaries 
are statically linked to allow the linker to perform addi-
tional optimizations that reduce the number of runtime 
constants that are loaded during execution.  These optimi-
zations include most of the optimizations that OM [23] 
performs.  The few floating point load instructions con-
tained in the binaries are included in our measurements, 
loads to the zero-registers are ignored, and load immedi-
ate instructions are not taken into account since they do 
not access the memory and therefore do not need to be 
predicted.  Table 4.1 summarizes information about the 
eight benchmark programs. 

Due to the detail of our simulations, each program is 
only executed for 300 milli on committed instructions on 
the simulator after having skipped over the initialization 
code in “ fast-execution” mode.  This fast-forwarding is 
important when only a section of a program’s execution is 
simulated because the initialization part of programs is of-
ten not representative of the general program behavior 
[16].  The leftmost column of Table 4.1 shows the number 
of instructions that were skipped to reach representative 
code sections.  The numbers were found by trial and error.  
gcc is simulated for 334 milli on committed instructions 
without skipping any instructions since this amounts to 

the full compilation of the varasm input-file. 
 

percent base L1 load L2 load
program skipped simul. loads IPC miss-rate miss-rate
compress 5600 300 17.8% 1.34 11.7% 6.2% 
gcc 0 334 23.9% 1.51 2.4% 6.4% 
go 7000 300 24.0% 1.41 1.6% 15.7% 
ijpeg 2000 300 16.5% 1.50 2.3% 65.2% 
li 5000 300 28.8% 1.91 4.1% 0.7% 
m88ksim 2000 300 20.7% 1.26 0.1% 11.2% 
perl 1000 300 31.2% 1.57 0.0% 46.9% 
vortex 7000 300 23.7% 2.92 2.2% 12.0% 
average 23.3% 1.68 3.1% 20.5% 

million instrs
Information about the eight SPECint95 Benchmark Programs

 

Table 4.1: The first two columns show the number of 
skipped and the number of simulated instructions for 
the eight SPECint95 programs, respectively.  The third 
column lists the percentage of simulated instructions 
that are loads.  The base IPC denotes the instructions 
per cycle that our baseline processor achieves on the 
eight program sections.  The last two columns give the 
L1 data-cache and the L2 cache load miss-rates. 

In spite of the high optimization level and good regis-
ter allocation, almost every forth instruction executed by 
these programs is a load.  With an average IPC of 1.7, this 
amounts to one executed load instruction every 2.6 cycles.  
With the exception of compress, the benchmark programs 
do not have high L1 data-cache load miss-rates, making it 
diff icult for a load value predictor to be effective. 

The left half of Table 4.2 shows the number of load 
sites that contribute the given quantiles (percentages) of 
executed loads.  Clearly, only relatively few load sites 
contribute most of the executed loads, implying that even 
small value predictors should be able to capture the ma-
jority of the executed loads. 

The right half of Table 4.2 ill ustrates the load value 
predictabilit y found in the simulated sections of the eight 
benchmark programs.  Register predictabilit y “ reg” indi-
cates how often the target register of a load instruction al-
ready contains the value that the load is about to fetch.  
Last value predictabilit y “ lv” shows how often a load 
fetches a value that is identical to the previous value 
fetched by the same load instruction.  Stride predictabilit y 
“st2d” reflects how often a value is loaded that is identical 
to the last value plus the difference between the last and 
the second to last value fetched by the same load instruc-
tion.  Last four value predictabilit y “ l4v” indicates how 
often a value is loaded that is identical to any one of the 
last four values fetched by the same load.  Finally, finite 
context method predictability “ fcm” shows how often a 
value is loaded that is identical to the value that followed 
the last time the same sequence of last four values was 
encountered (modulo a hash function).  Note that, unlike 
reg, lv, st2d, and l4v, the fcm predictabilit y is implemen-
tation specific, i.e., it depends on the hash function. 



 

 

load sites that account for
program Q100 Q99 Q90 Q50 reg lv st2d l4v fcm
compress 62 35 28 9 13.0 40.7 64.0 41.5 34.6 
gcc 34345 14135 5380 870 19.9 48.5 49.8 65.6 51.9 
go 9619 3868 1719 263 9.4 46.3 48.1 64.5 44.8 
ijpeg 2757 379 184 53 9.8 47.5 48.1 55.1 42.8 
li 419 237 120 43 11.7 35.4 41.2 52.4 62.2 
m88ksim 747 537 199 25 49.3 82.3 85.0 88.2 84.3 
perl 1437 225 167 44 20.0 50.7 51.4 80.6 70.6 
vortex 1973 958 355 55 16.4 65.7 66.3 79.9 69.4 
average 6420 2547 1019 170 18.7 52.1 56.7 66.0 57.6 

load value predictability (%)
SPECint95 Quantile and Predictability Information

 

Table 4.2: The four quantile columns show the fraction 
of load sites that contribute the given percentage of 
executed loads.  For example, Q50 lists the number of 
most frequently executed load sites that account of 
50% of the executed loads.  Q100 shows the number 
of loads that are executed at least once.  The five 
rightmost columns show the load value predictability in 
percent of executed loads found in each of the eight 
simulated program sections. 

The predictabilit y of the load instructions in all eight 
programs is quite high.  On average, at least half of the 
executed load instructions are (theoretically) predictable 
using any method other than reg. 

4.2 Simulation Architecture 

All our measurements are performed on the DEC Al-
pha AXP architecture [7] using the AINT simulator [14] 
with a cycle-accurate out-of-order back-end, which is 
configured to emulate a high-performance microprocessor 
similar to the DEC Alpha 21264 [10].  In particular, the 
simulated four-way superscalar CPU has a 128-entry in-
struction window, a 32-entry load/store buffer, four inte-
ger and two floating point units, a 64kB two-way set as-
sociative L1 instruction-cache, a 64kB two-way set asso-
ciative L1 data-cache, a 4MB unified direct-mapped L2 
cache, a 4096-entry BTB, and a 2048-line hybrid gshare-
bimodal branch predictor.  The modeled latencies are 
given in Table 4.3.  The few operating system calls are 
executed but not simulated.  Loads can only issue when 
all prior store addresses are known.  The six functional 
units are fully pipelined and each unit can execute all op-
erations in its class.  Up to four load instructions are able 
to issue per cycle.  This CPU represents our baseline. 

To measure the speedup delivered by a load value pre-
dictor, the baseline CPU is augmented with the predictor 
in question and the performance is compared to the per-
formance of the baseline processor.  The pipelined load 
value predictions take place during the rename and issue-
stage in the instruction pipeline and have a two-cycle la-
tency.  Note that even predicted loads perform a normal 
memory access.  As soon as that access completes, the 
load value predictor is updated with the true load value.  
No speculative update is performed at the time of predic-
tion.  Out-of-order updates and updates from wrong-path 

loads are accurately modeled.  Incorrect predictions may 
cause a conditional branch to transfer control to the wrong 
path. 

Operation Latency
 integer multiply 8-14
 conditional move 2
 other int and logical 1
 floating point multiply 4
 floating point divide 16
 other floating point 4
 L1 load-to-use 1
 L2 load-to-use 12
 memory load-to-use 80  

Table 4.3: The functional unit and memory access la-
tencies (in cycles) used in our simulator. 

Support for up to four predictor accesses per cycle (to 
match the issue-width of up to four loads per cycle) is 
provided by dividing all the predictors into four inde-
pendent banks, as suggested by Gabbay and Mendelson 
[9].  Each bank can be thought of as an individual predic-
tor one fourth the size.  There is no communication be-
tween the banks, making it possible to operate them inde-
pendently and in parallel.  Our simulator mimics a proces-
sor that fetches naturally aligned instructions.  Hence, all 
the load instructions that can possibly be fetched during 
the same cycle always go to distinct banks.  To avoid con-
flicts between predictions and updates, updates are 
queued in a sixteen-entry FIFO queue (one per bank) and 
are dropped if the queue is full .  The queue issues predic-
tor updates at a rate of one per cycle as long as there are 
outstanding updates and the corresponding predictor bank 
is idle.  The sixteen-entry update queues are large enough 
so that on average only 0.026% of all the updates have to 
be dropped due to a full queue. 

5. Results 

The following subsections describe the results.  In Sec-
tion 5.1 predictors from the literature are compared per-
formance-wise with our coalesced-hybrid predictor.  Sec-
tion 5.2 analyzes the contributions of our predictor’s 
components to the overall performance.  In Section 5.3 
the coalesced-hybrid is compared to oracles.  Section 5.4 
investigates the size of the partial values and Section 5.5 
studies the width of the last n value component.  Due to 
space limitations, we are only able to show average 
speedup results over the eight benchmark programs. 

 

5.1 Comparison with Other Predictors 

This section compares the harmonic-mean speedups 
over SPECint95 of several well -performing predictors 
from the literature and our own.  The seven predictors we 
consider are: a partially tagged bimodal last value predic-



 

 

tor (LV) [12], a partially tagged bimodal stride 2-delta 
predictor (St2d) [19], a partially tagged last distinct four 
value predictor (LD4V) [25] with an access-pattern-based 
bimodal confidence estimator, a hybrid between a LD4V 
and a stride predictor (LD4V+St) [25], a partially tagged 
SAg last four value predictor (L4V) [5], our coalesced-
hybrid (St+Reg+L3pV), and a partially tagged bimodal 
hybrid of a stride 2-delta and a finite context method pre-
dictor (St2d+FCM) [18].  The performance of the individ-
ual components of our hybrid is discussed in the next sec-
tion. 

Since the predictors vary greatly in their architectures 
and complexities, they cannot be scaled to be of identical 
size.  Consequently, we can only compare predictors of 
similar sizes.  In their base configurations, the seven pre-
dictors require between 19 and 31.5 kilobytes of state, 
which we believe to be a realistic size for a first genera-
tion load value predictor.  From these base-configurations 
we created two additional configurations for each predic-
tor, a smaller one by quartering the number of predictor 
lines and a larger one by quadrupling the number of pre-
dictor lines.  The three size-ranges and the corresponding 
predictor sizes are shown in Table 5.1.  The table gives 
the amount of state for a re-fetch architecture.  For a re-
execute architecture, some of the predictors require a littl e 
less state because the saturating counters are smaller.  The 
FCM predictor and the access-pattern-based confidence 
estimator of the LD4V predictor require large second-
level tables that are not suitable for splitti ng into multiple 
predictor banks.  Hence we only show amounts for non-
banked FCM and LD4V sizes in the table. 

 

small base large
LV 4.8  19.0  76.0  
St2d 5.8  23.0  92.0  
LD4V 12.3  25.0  76.0  
LD4V+St 12.4  25.6  78.5  
L4V 12.8  27.0  84.0  
St+Reg+L3pV 15.1  30.4  91.5  
St2d+FCM 19.9  31.5  78.0  

Predictor-Size in Kilobytes of State

 

Table 5.1: The amount of state (in kilobytes) required 
by each of the seven predictors’ three configurations. 

All the predictors are parametrizable in several dimen-
sions and need to be configured to work well .  To deter-
mine the setting that yields the highest speedup with our 
simulated CPU, we performed a detailed parameter space 
evaluation for all the predictors.  St2d+FCM allows for 
many different ways of distributing the state over the two 
components.  We performed a limited study to find a dis-
tribution that works quite well: 1024 lines for the stride 2-
delta component and the first level of the FCM compo-
nent, and 2048 lines in the second level of the FCM [2].  
Table 5.2 shows the base-configurations of the seven pre-
dictors. 

conf. predictor tag hist
estim. lines bits bits top thr pen top thr pen

LV Bim 2048 8 - 8 5 1 16 10 15
St2d Bim 2048 8 - 8 5 1 16 12 12
LD4V acBim 512 8 - 8 3 2 16 14 9
LD4V+St acBim 512 8 - 8 7 2 16 13 10
L4V SAg 512 8 10 8 7 4 16 14 11
St+Reg+L3pV SAg 1024 1+8 10 8 7 2 16 14 9
St2d+FCM Bim 1024/2048 8 - 8 5 1 16 15 11

re-fetchre-execute
Base Predictor Configurations

 

Table 5.2:  The base-configurations of the seven 
predictors.  Except in the coalesced-hybrid, strides are 
stored as eight-bit signed values.  The coalesced-
hybrid only stores the full 64 bits of the last value and 
the least significant twenty bits of the other two values.  
The counter top (top) represents the highest value that 
the saturating counters can reach plus one.  The low-
est reachable value is zero.  Predictions are made if 
the selected counter’s value is at or above the given 
threshold (thr).  If a component’s prediction is correct, 
the corresponding counter is incremented by one and 
a one is shifted into the SAg history pattern, otherwise 
the counter is decremented by the given penalty (pen) 
and a zero is shifted into the history. 

All the predictors are configured to work as well as 
possible in their base-configuration (19 to 31.5 kilobytes 
of state).  Except for the number of predictor lines, the 
same parameters are used with the other two predictor 
sizes and no search for the optimal setting is performed.  
We use this approach to mimic what would happen if 
programs that are much larger or much smaller than the 
SPECint95 programs were run on these predictors.  The 
intuition is that a larger program performs similarly on a 
load value predictor to a smaller program on a propor-
tionately smaller version of the same predictor.  Note that 
the number of lines in the second level of the FCM is held 
constant when increasing and decreasing the size of the 
St2d+FCM predictor. 

Figure 5.1 and Figure 5.2 present the harmonic-mean 
speedups of the seven predictors with a re-execute and a 
re-fetch misprediction recovery mechanism, respectively.  
Three speedup results are shown for each predictor corre-
sponding to the three predictor sizes. 

Our coalesced-hybrid (St+Reg+L3pV) outperforms the 
other predictors both with a re-fetch and a re-execute 
misprediction recovery policy.  Its re-fetch speedup even 
exceeds the other predictors’ re-execute speedup in the 
smallest size-range and comes close in the two larger 
size-ranges.  With only one exception in case of re-
execute, the performance of the smallest coalesced-hybrid 
configuration (requiring fifteen kilobytes of state) sur-
passes the performance of the other predictors, including 
the ones from the largest size-range that require five to six 
times as much state.  This clearly shows that hybrid pre-
dictors do not necessarily have to be large to perform well 
and that coalescing the components in a hybrid predictor 
is a very effective technique to save state. 



 

 

The good re-fetch speedup of our predictor is encour-
aging, in particular because it allows microprocessor de-
signers to use the already existing branch misprediction 
hardware to recover from value mispredictions, which 
makes it less urgent to design and add a processor core 
that is capable of re-execution. 
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Figure 5.1: The re-execute speedup of several predic-
tors for three size-ranges. 
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Figure 5.2: The re-fetch speedup of several predictors 
for three sizes ranges. 

The performance of our predictor is certainly a result 
of a combination of factors, such as the b-tags, the inclu-
sion of the register predictor, the SAg confidence estima-
tors, and the incorporation of storage saving techniques.  
Nevertheless, the storage reduction is probably the key 
factor.  For comparison purposes, we built all possible 
hybrids between a last value, a stride 2-delta, a finite con-
text method, a last four value, and a register predictor 
with SAg confidence estimators.  However, none of these 
predictors are able to reach the performance of the simi-
larly sized coalesced-hybrid [2]. 

Note that the performance of some of the LD4V+St 
predictor actually decreases with re-fetch when increasing 

the predictor size.  Investigating this phenomenon re-
vealed a somewhat surprising result.  As it turns out, the 
smallest configuration of the affected predictor suffers 
significantly from aliasing.  The confidence estimator de-
tects this problem and prohibits the affected lines from 
making predictions.  Consequently, the predictor only at-
tempts relatively few predictions, which is reflected in its 
low performance compared to the other predictors.  The 
larger configurations suffer less from aliasing and the 
confidence estimator consequently allows more predic-
tions to take place.  Unfortunately, it also allows signifi-
cantly more incorrect predictions, which more than offset 
the benefit of the additional correct predictions.  Hence, 
the overall performance decreases as the predictor be-
comes larger. 

Among the predictors of a given size-range, the predic-
tors with more components have fewer lines (i.e., are 
shorter) than the single-component predictors and are 
consequently more likely to experience capacity prob-
lems, in particular in the smallest configuration.  The ef-
fect of the resulting aliasing can be seen in the two fig-
ures.  The performance difference between the small and 
the base configuration is significantly larger with the 
multi -component predictors (L4V, LD4V, and LD4V+St) 
than with the other predictors.  However, the coalesced-
hybrid has more components than the L4V and the LD4V 
predictors, yet it is not affected as much by detrimental 
aliasing since the high degree of coalescing allows it to 
have twice the number of predictor lines (Section 3), 
which alleviates the capacity problem. 

5.2 Component Contributions 

To evaluate how much the individual components of 
the coalesced-hybrid contribute to the overall perform-
ance, we measured the speedup delivered by the hybrid’s 
three main components in isolation, in pairs, and when all 
of them are used together.  Figure 5.3 shows the results. 

As expected, using all three components yields the 
highest speedup and using only one component results in 
the lowest speedup both for re-fetch and re-execute. 

Among the component pairs, Reg+L3pV performs 
best.  Its performance is close enough to the performance 
delivered when all three components are combined that 
leaving the stride predictor out of the coalesced-hybrid 
may result in a more cost-effective implementation, in 
particular if the subtraction that is required by the stride 
component compromises the cycle time. 

To better analyze the speedup contributions, we used 
the seven configurations shown in Figure 5.3 as a set of 
seven equations and solved them for the distinct speedup 
contributions and overlaps.  The result is depicted in the 
two Venn-diagrams in Figure 5.4.  The total of the dis-
played percentages (i.e., one hundred percent) corre-
sponds to the coalesced-hybrid’s harmonic mean speedup 



 

 

over the baseline processor (13.7% for re-fetch and 17.4% 
for re-execute). 
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Figure 5.3: The performance of the coalesced-hybrid 
when disabling any combination of zero, one, or two of 
its three main components.  A disabled component 
cannot be selected for making predictions and hence 
serves no purpose other than possibly providing 
shared state for some other component.  Only the en-
abled components’ names are given. 
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Figure 5.4: Venn-diagrams showing the overlap and 
the individual speedup contributions of the three main 
predictor components. 

The re-fetch Venn-diagram, for example, shows that 
the St component provides 2% of the total speedup that 
cannot be delivered by either one of the other two compo-
nents.  Similarly, Reg contributes 10% and L3pV 12% to 
the total speedup that none of the other components can 
provide.  These are the three speedup contributions that 
are unique to the three components.  The remaining four 
contributions are shared.  The St and the L3pV component 
provide 33% of shared speedup, meaning that either one 
of the two components needs to be present to provide this 
contribution, but the contribution does not increase if both 
components are used.  L3pV and Reg add 6% of shared 
speedup.  The shared speedup between St and Reg is 3%.  
Finally, the contribution that is shared among all three 
components is 34%. 

Approximately a third of the speedup can be delivered 

by any one of the three components and another third by 
either the stride or the last three partial value component.  
More importantly, 12% to 15% of the speedup can only 
be provided by the L3pV component and 10% to 12% 
only by the register component.  The stride component, 
on the other hand, delivers only 2% to 7% of speedup that 
cannot be attained by either one of the other two compo-
nents.  The intersection of the register predictor with the 
other two components is relatively small , indicating that 
the Reg component is able to predict a rather distinct set 
of loads.  This observation is consistent with the results 
from Figure 5.3, which show that the register component 
by itself does not perform very well but makes a strong 
combination with the L3pV component exactly because it 
can predict important loads that the L3pV predictor can-
not.  Note that we did not use profili ng to change the reg-
ister allocation, which can significantly improve the per-
formance of the Reg predictor [24], yet we already obtain 
a substantial benefit from including a register value pre-
dictor in our hybrid. 

It is surprising that the Reg predictor, which performs 
poorly when used by itself, complements the L3pV com-
ponent significantly better than the St predictor with its 
good individual performance.  This ill ustrates the impor-
tance of detailed component analyses to find cooperative 
components for building hybrids and that unconventional 
predictors with a poor individual performance can make a 
valuable addition to a hybrid predictor. 

5.3 Comparison with Oracles 

This section compares the coalesced-hybrid with ver-
sions of itself that contain oracles to demonstrate how 
much of the existing performance potential the predictor 
can reap. 

The first predictor (no-oracle) in Figure 5.5 represents 
the coalesced-hybrid in its conventional and implement-
able form as described in Section 3.  It does not include 
an oracle.  The first oracle (ce/sel-oracle) represents the 
same predictor except it incorporates a perfect confidence 
estimator and a perfect selector.  This means that, when-
ever possible, the component that will make a correct pre-
diction is selected and forced to make a prediction.  If no 
such component exists, no prediction is attempted.  There-
fore, this oracle never makes a misprediction.  The second 
oracle (all -oracle) simply predicts every executed load 
instruction with the correct value.  There are no mispre-
dictions and, as opposed to ce/sel-oracle, this oracle never 
decides not to make a prediction.  Figure 5.5 shows the 
speedups delivered by the oracle-less predictor and the 
two oracles. 

A perfect confidence estimator in combination with a 
perfect selector (ce/sel-oracle) results in a significant in-
crease in speedup over the conventional predictor (no-
oracle).  A more detailed analysis revealed that both the 



 

 

selection mechanism and the confidence estimator (CE) 
of the no-oracle predictor are far from perfect [2].  In par-
ticular, the coalesced-hybrid’s imperfect CE is rather con-
servative and inhibits a considerable number of predic-
tions that would be correct.  The CE setting that was used 
is the result of a global optimization and yields one of the 
highest possible speedups.  Hence, trading off missing po-
tentially correct predictions for reducing the number of 
incorrect predictions must be advantageous in the mod-
eled CPU.  Overall , the coalesced-hybrid’s confidence es-
timator and selector (no-oracle) are able to reap 49% to 
63% of the theoretically possible speedup (ce/sel-oracle) 
for this predictor. 
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Figure 5.5: Re-fetch and re-execute speedups of the 
coalesced-hybrid with different degrees of perfect 
knowledge. 

A comparison with the perfect load value predictor 
(all -oracle), however, shows that there is still significant 
potential for improvement left.  Our predictor only yields 
25% to 31% of the speedup that can theoretically be at-
tained with load value prediction.  Comparing the all -
oracle with the ce/sel-oracle shows that the coalesced-
hybrid only contains the necessary information to reach 
about half the possible speedup.  This large gap suggests 
significant opportunity for new and different prediction 
methods to improve the performance beyond that of exist-
ing methods.  It is, however, unclear how much of the re-
maining performance potential can be realized because 
the fraction of unpredictable loads is unknown. 

5.4 Partial Value Size 

To determine the number of bits that can be shared 
among the sub-components of the last three partial value 
predictor without overly impacting its performance, we 
present Figure 5.6.  It shows the speedup of the coalesced-
hybrid with varying number of bits in the partial value 
fields. 
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Figure 5.6: The speedup of the coalesced-hybrid when 
the number of bits in the partial values is varied. 

The predictor performs well even with very short par-
tial values.  Unfortunately, this is mostly because the per-
formance of the last value and the register component is 
independent of the size of the partial values. 

Nevertheless, a performance increase can be observed 
between eight and fourteen-bit partial values.  Fourteen-
bit values appear to capture a substantially larger fraction 
of the occurring values in the SPECint95 programs than 
eight-bit values.  At the same time fourteen bits are 
enough to handle the majority of (predictable) values 
since further increasing the number of bits in the partial 
values does not result in additional speedup.  We use 
twenty bits to be safely on the upper plateau and to be 
able to accommodate programs that are larger than the 
SPECint95 programs. 

The performance fluctuations above fourteen bits stem 
from changes in the dynamic behavior of the confidence 
estimators and the selector, whose operation is influenced 
by the varying predictabilit y of the longer partial values. 

We also tried adding valid bits to the two partial value 
fields to indicate whether the concatenation of the last 
value’s 44 most significant bits with the twenty-bit partial 
value yields the correct 64-bit value, thus allowing only 
“valid” components to make a prediction.  As it turns out, 
the confidence estimator already keeps track of this in-
formation and the valid bits are superfluous. 

We further tried using twenty-bit signed offsets that 
had to be added to the shared 44 most significant bits.  
However, this increased the complexity of the predictor 
and resulted in poorer performance than using twenty-bit 
unsigned values that only have to be concatenated with 
the shared bits. 

5.5 Predictor Width 

Figure 5.7 is presented to determine how wide the last 
n partial value component should be.  It shows the per-



 

 

formance of the coalesced-hybrid when the number of last 
value components is varied. 
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Figure 5.7: The speedup of the coalesced-hybrid for 
different last n partial value component widths. 

Clearly, retaining three last values per line is suff icient 
to reap almost all the potential.  This result is particularly 
surprising because the predictors used in the figure are not 
scaled to the same size but become larger as the width in-
creases.  Note that this result indicates that hybridization 
is more important than making the predictor’s compo-
nents wider to improve the performance [5]. 

The performance fluctuations (e.g., L5pV’s re-fetch 
performance is marginally lower than L4pV’s) are due to 
negative interference between the predictor’s components. 

6. Summary and Conclusions 

This paper includes a detailed performance evaluation 
of the components of a hybrid load value predictor and 
describes two powerful state reduction techniques that al-
lowed us to design a very effective hybrid that requires 
only a small amount of state. 

Our study of a three component hybrid (with a stride, a 
register value, and a last three partial value predictor) 
shows that different components can exploit different 
kinds of load value locality and that they contribute inde-
pendently to the overall performance. 

The study further shows that care must be taken when 
selecting components for a hybrid because some predic-
tors with a poor individual performance can make a more 
valuable addition to a hybrid than other predictors with a 
good individual performance.  To identify components 
that complement each other well , performance analyses 
are most likely unavoidable. 

To reduce the often large storage requirement of hy-
brid predictors, we devised two storage reduction tech-
niques that decrease the amount of state required by a last 
n value and a stride predictor by a factor of two or more.  

We achieve this saving by having the last n value compo-
nent provide all the information that the stride component 
needs, making the latter storage-less.  In addition, the size 
of the last n value predictor is reduced by sharing most of 
the bits among the n values in each predictor line, i.e., by 
storing compressed values.  Both techniques result in a 
substantial decrease in predictor size virtually without 
impacting the performance. 

The hybrid load value predictor we designed incorpo-
rates such a storage-less stride and a reduced-storage last 
three value predictor as well as a storage-less register 
value predictor.  Cycle-accurate pipeline-level simulations 
of a four-way superscalar out-of-order CPU with many 
different load value predictors show that our predictor 
outperforms other predictors by fifteen to fifty percent 
over a large range of sizes.  In the smallest configuration 
we investigated, which requires fifteen kilobytes of state, 
our coalesced-hybrid yields a speedup with a re-fetch and 
with a re-execute misprediction recovery mechanism that 
surpasses the speedup of other predictors from the litera-
ture, some of which are six times as large. 

We believe that a large fraction of the value locality 
found in short load value sequences has been captured.  
However, it remains an open research question whether 
longer sequences contain significant additional predict-
abilit y and how much of it can be extracted eff iciently us-
ing existing and new prediction techniques.  In future 
work we will i nvestigate how approaches like the finite 
context method can be incorporated into our predictor to 
exploit even more of the existing load value locality. 
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