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Abstract

Most well-performing load value predictors are hy-
brids that combine multiple predictors into ore. Such hy-
brids are often large. To reducetheir size andto improve
their performance, this paper presents two storage reduc-
tion techniques as well as a detailed andysis of the inter-
action between a hybrid’s comporents. We found that
state sharing and simple \alue cmpresson can shrink
the size of a predictor by a factor of two withou compro-
mising the performance Our comporent andysis re-
vealed that combining well-performing predictors does
not always yield a good kbrid, whereas metimes a
poa predictor can make an excdl ent complement to an-
other predictor in a hybrid.

Performance ewaluations using acyde-accurate simu-
lator running SPECint95 show that hybridizing can im-
prove non-hybrids by thirty to fifty percent over a wide
range of sizes. With fifteen kilobytes of state, our coa-
lesced-hybrid yields a harmonic mean speedup d twelve
and fifteen percent with a re-fetch and are-exeate mis-
prediction recovery mechanism, respectivey, which is
higher than the speedup d other predictors we ewaluate,
some of which are six timeslarger.

1. Introduction

Load instructions read data from memory rather than
from the processor’s fast register file. Because the mem-
ory hierarchy occasionally incurs long latencies, loads can
take many cycles to exeaute, which slows down program
exeadtion. If the performance gap between CPUs and
memory continues to widen, the load latency will become
even longer. Unfortunately, load instructions are not only
among the slowest but also among the most frequently
exeauted instructions in current high-performance micro-
processors. Hence, improving their exeaution speed can
significantly boast the overall CPU performance
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Load instructions often fetch predictable sequences of
values [12]. For instance about half of all the load in-
structions in the SPECint95 benchmark suite retrieve the
same value that they did the previous time they were exe-
cuted. Such behavior, which has been demonstrated ex-
plicitly on a number of architedures, is referred to as
value locality [8, 12].

To exploit as much of the eisting load value locdity
as posshle, hybrid predictors have been proposed that
combine several different predictors into one. A seledor
determines the best component for ead prediction. Un-
fortunately, such hybrid predictors can be large[18, 25].

We devised two storage reduction techniques that de-
cresee the amount of state required by the well-
performing last n value [5] and stride predictors by a fac-
tor of two or more. We adieve this saving by letting the
stride component reuse information already stored in the
last n value cmponent, making the former completely
storage-less In addition, it is possble to shrink the last n
value omponent by sharing as many as 75% of the bits
between the n values in ead predictor line, i.e., by storing
the values in a compressed format. Both techniques result
in a significant deaease in predictor size with only a neg-
ligible impaa on the performance

The hybrid load value predictor we designed incorpo-
rates such a storage-less $ride and a reduced-storage last
three value predictor as well as a register value predictor
[24], which is also storage-less  This coalesced-hybrid, as
we cdl it, is not only small but also highly effedive.
With only fifteen kilobytes of dtate, it yields a speedup
that surpasses the speedup of other, up to six times larger,
predictors we onsidered bah with a re-fetch and a re-
exeaute misprediction recovery mechanism. Among pre-
dictors of similar size the walesced-hybrid outperforms
the other predictors by fifteen to fifty percent. Sedion 5.1
provides more results.

A detailed study of our hybrid’'s three main compo-
nents (Sedion 5.2) reveds that they exploit distinct kinds



of load value locdity and thus contribute independently to
the overall performance. This observation, which has also
been made by Wang and Franklin [25] and athers, indi-
cates that predictors can be cmbined effedively to ex-
ploit a larger fradion of the existing load value locdity.
Building hybrid predictors may therefore be worthwhile
in spite of their greaer complexity. Our study further
shows that not all predictors make good components for a
hybrid and, more surprisingly, that some predictors with a
poar individual performance make amore valuable aldi-
tion to a hybrid than other predictors with a good individ-
ual performance. Hence detail ed analyses are necessary
to identify components that complement ead other well.

The remainder of this paper is organized as foll ows:
Sedion 2 introduces related work. Sedion 3 describes the
storage reduction techniques and the achitedure of our
coalesced-hybrid load value predictor. Sedion 4 explains
the evaluation methods. Sedion 5 presents the results.
Sedion 6 concludes the paper with a summary.

2. Related Work

Background: To date, several caegories of load value
locdity have been observed, including last value (se-
guences of identicd values: eq., 2, 2, 2, 2) [8, 12], stride
(seguences of values with a mnstant offset between them:
eg., 1, 3,5 7, 9) [8, 19, last n value (repetitions within
the last n values, eg., 1, 2, 1, 2, 1, 2) [5, 11, 25], and fi-
nite ontext predictability (reoccurring arbitrary se-
quences of values: eg., 1, 7, 3, ..., 1, 7, 3) [19]. Last
value predictability is the simplest and most prominent
kind of load value locdity. Pure stride predictability
(with a non-zero offset), on the other hand, occurs only
infrequently. Last n value and finite wntext predictability
have cmnsiderable patential but the latter is hard to exploit
in small predictors. At least twenty percent of the dy-
namicaly exeauted load instructions cannot be predicted
using any of the éove mentioned schemes.

Like branch mispredictions, incorred load value pre-
dictions necesdtate aremvery process and thus incur a
cycle penalty. Consequently, a load value predictor can
acdually slow down a procesor instead of speeding it up
if the percentage of incorred predictions is © large that
more gycles are alded than saved. It is therefore impor-
tant not to attempt a prediction if the prediction is likely
to beincorred. Thisiswhy aimost al | oad value predic-
tors are guipped with a confidence etimator (CE). A
prediction is only made if the estimated confidence that
the prediction will be @rred ishigh. There ae two main
approaches to confidence estimation in the aurrent value
prediction literature: saturating counters [12] and predic-
tion outcome histories [3, 4, 6]. Both approaches have
close munterparts in the branch prediction literature be-
cause nfidence etimators are similar in design to

branch predictors.

Saturating counters can count up and down between
two baundaries, say zero and fifteen. If the counter has
readed fifteen, counting yp will not change its value.
Likewise, counting down from zero leaves the counter at
zero. The bimodd [13] confidence estimator uses sich
counters to record how many predictable values have
bee see in the recant past. The higher the count, the
higher the mnfidence that the next load will be predict-
able since predictable load instructions do not frequently
beome unpredictable and vice-versa.

The SAg [26] confidence estimator represents an alter-
native gproad. It works based on keeping a small his-
tory of the most recent prediction outcomes (success or
failure) [22]. Such histories consist of a short bit-pattern
in which every bit indicates whether the crresponding
load value was predictable or not. For instance, the left-
most bit may record whether the most recant load value
was predictable, the next bit keegps the same information
about the second most recant load value, etc. Every pos-
sible history pattern has a saturating counter associated
with it to record the number of corred predictions that
followed the wrresponding history pattern in the recent
past, thus assgning a mnfidenceto ead pattern.

Predicting a load value dlows the CPU to start proc-
essng the dependent instructions without having to wait
for the memory accessto complete. Speaulative exeu-
tion is required to continue exeauting with a predicted
value before the prediction outcome is known [20]. Be-
cause branch prediction requires a similar mechanism,
most modern microprocessors already contain the neces
sary hardware to perform thiskind of speculation.

Unfortunately, branch misprediction recovery hard-
ware caises all the instructions that follow a misgpeau-
lated instruction to be purged and re-fetched. Thisis a
very costly operation and makes a high prediction aca-
ragy paramount. Unlike branches, which invalidate the
entire exeaution path when mispredicted, mispredicted
loads only invalidate the instructions that depend on the
loaded value. In fad, even the dependent instructions per
se ae @rred, they just need to be re-exeated with the
corred input value(s) [11]. A better recovery medchanism
for load misgpeaulation therefore only re-exeautes the in-
structions that depend on the mispredicted load value.
Such a remvery padlicy is less sisceptible to mispredic-
tions but may be hard to implement.

Techniques: Severa reseach groups [5, 11, 25] have
investigated last n value predictability and noted its poten-
tial. In this paper we show how the size of such a predic-
tor can be reduced twofold by sharing the most significant
bits among the n values. We found that up to 75% of the
bits can be shared between the n values in ead predictor
line esentially without lossof performance

Tullsen and Seng [24] present a register value predic-
tor (Reg) that is gorage-lessexcept for its confidence es-



timator. It predicts that aload will fetch avaluethat isal-
realy in the target register of the load instruction before
the load is exeauted. Since the predictor uses the CPU’s
register file & a source for values, it does not require any
value storage in the predictor. This paper includes a per-
formance analysis of a register value predictor showing
that it complements other predictors exceptionaly well in
a hybrid load value predictor. We further demonstrate
how a stride predictor can aso be made storage-lessin
combination with alast two value predictor.

Other Predictors: Lipasti et a. [12] designed a last
value (LV) predictor with a bimodal confidence estimator.
In prior work [2, 3] we show that the SAg confidence &
timator is able to improve the performance of most pre-
dictors. We therefore dso use SAg confidence estimators
in our coalesced-hybrid predictor.

Sazeades and Smith [19] introduce the stride 2-delta
(St2d) and the finite context method (FCM) predictor.
The former maintains two strides instead of one. The
stride used for making predictions is only updated if a
new stride has been seen at least twicein arow, which re-
duces the number of mispredictions [8]. A stride 2-delta
predictor is included in our performance @mparison in
Sedion 5.1. Finite context method predictors retain short
sequences of fetched load values. During a prediction
they try to find the arrent sequence in their “database”
and, if found, use the next value from the stored sequence
to make aprediction.

Hybrids: Our performance mmparison also includes a
hybrid between a finite mntext method and a stride 2-
delta predictor (St2d+FCM), as proposed by Rychlik et al.
[18]. Their hybrid daes not include ay state reduction
techniques. In a later technicd report, Rychlik et al.
augmented their predictor with a popular last value pre-
dictor and studied updating only one mmponent at a time
to increase the predictor’s capacity [17].

Wang and Franklin designed a predictor that makes
predictions based on the last four distinct values (LD4V)
[25]. Their predictor uses a two-level accesspattern-
based himodal confidence estimator (adBim). In previous
work, we show that it may not be necessary to store dis-
tinct values and propase apredictor that retains the last
four values (L4V) independent of whether they are dis-
tinct or not [5]. In this paper we show that the size of
such a predictor can be reduced significantly by storing
compressd values.

Wang and Franklin further propose ahybrid predictor
that combines a last four distinct value predictor with a
stride predictor (LD4V+St). In Sedion 5.1, we compare
our predictor with both of Wang and Franklin's. In their
hybrid, the stride component shares its base value with the
last four distinct value component [25].

Pinuel et al. present a hybrid between a last value, a
stride, and a finite ontext method predictor [15]
(LV+St+FCM) in which the stride cmponent also ob-

tains its base value from the last value mmponent. In ad-
dition, the FCM component shares a value field with the
last value component.

We now show that not only the base value but also the
offset (or stride) required by the stride predictor can be
shared with alast n value predictor, thus making the stride
predictor completely storage-less Furthermore, we ae
also able to reducethe size of the last n value predictor by
sharing bits among the n values.

3. Design of the Coalesced-Hybrid Predictor

Our predictor started out as a simple last value predic-
tor with a SAg confidence etimator [3]. The first part of
Figure 3.1 (denoted as Tag SAg LV) shows an excerpt of
four lines from such a predictor with eight-bit partial tags
and ten-bit prediction outcome histories (the aociated
saturating counters are not shown). It predicts that a load
instruction will fetch the same value that it did the previ-
ous time it was exeauted, but the predicted value is only
used if the partial tag matches and the confidence a&<oci-
ated with the history in the seleded predictor lineis above
apreset threshold.

Tag SAg LV (last value predictor)

tag hist last value
8] 10 64

Tag SAg L4V (last four value predictor)

tag hist last value hist second last value
8] 0] 64 [ 10] 64 |

Tag SAg L4pV (last four partial value predictor)

tag hist last value hist 2" pval hist 3“ pval hist 4" pval
[8T10] 64 [10] 16 J10] 16 J10] 16 |
I | || || 1 |

Figure 3.1: Architecture excerpts of three stages in the
evolution of the coalesced-hybrid load value predictor.
Only the tag and the first two of the L4V predictor's
four components are shown.

In a previous publicaion [5], we show that even for
moderate predictor sizes it is beneficial to reduce the
height of a last value predictor in order to make it wider
(vielding, for example, a last four value predictor that is
one forth as tall). Doing so increases the performance of
the predictor without significantly changing the overall
predictor size The size does increase alittl e due to the
duplicaion of the second level of the SAg confidence es-
timator. The middle part of Figure 3.1 shows one line of
a partially tagged SAg last four value predictor (Tag SAg
L4V). The predictor basicdly consists of four independ-
ent “last value” components that share the partial tags.
Whichever of the four components reports the highest



confidence is €leded to make the next prediction. In
case of atie the component with the youngest value is s
leded [5]. Usingthe drealy present confidence informa-
tion to guide the seledion processeliminates the need for
additi onal storage of seledor related information [16, 18].

We have dready shown the last four value predictor to
perform well [5]. Now we improve this predictor further.
The enhancements described in the remainder of this sec-
tion are novel contributions of this paper.

First, we redized that the most significant bits of the
four values within ead predictor line ae dmost always
identicd. Hence, it suffices to store them only once in-
stead of four times. Surprisingy, as many as 48 Lts (or
three quarters of all the bits) can be shared virtually with-
out degrading the performance of the predictor. The last
four partial value predictor (Tag SAg L4pV in Figure 3.1)
stores the full 64 Hts of the most recently loaded (last)
value but retains only the sixteen least significant bits of
the threeremaining values in ead line. This reduces the
predictor’'s sze by about a fador of two. As a mnse
guence, the predictor is able to store twice & many values
as its predecesor of the same size, which improves the
performance, in particular with small predictors.

We then noticed that a last two value or wider predic-
tor includes a“free” stride predictor. Stride predictors re-
tain the last value ad the difference (off set) between the
last and the second to last value. The predicted value is
the last value plus the offset. Our last four (partial) value
predictor alrealy retains the last value, and the stride can
be cmputed on-the-fly out of the second to last value and
the last value. The predicted value evaluates to two times
the last value minus the second last value. The necessary
subtradion can be performed in parall el with the accsesto
the second level of the confidence estimator since the two
operations are independent. Except for the extra nfi-
dence etimator, the stride predictor is gorage-less in
combination with alast n value predictor (for n = 2).

Because the fourth component of the L4pV predictor
hardly contributes to the overal performance (Sedion
5.5), we dedded to leave it out and to add two additional
confidence estimators, one of which is used for the stor-
age-less dride predictor. We found Tullsen and Seng's
register value predictor [24] to be a1 ided candidate for
the second confidence etimator since their predictor is
also storage-lessand only requires a confidence estimator.

We then added one more enhancement to the predictor.
Bekerman et al. [1] and, independently, by Calder et al.
[6] found that infrequently exeauted loads that alias with
frequently exeauted loads evict useful predictor entries
often enoughto degrade the performance. According to
their suggestion, we alded a bit to the partial tags (which
we termed b-tags) to indicaie whether the last accessto a
given predictor line resulted in atag miss This bit makes
it posshle to prevent a predictor line from being ydated
after afirst tag miss Only allowing yodates after at least

two conseautive misses effedively prevents infrequently
exeauted loads from being able to pdlute the predictor.

Figure 3.2 shows the achitedure of the resulting coa-
lesced-hybrid load value predictor with its dorage-less
stride, storage-lessregister, and reduced-storage last three
partial value mmponents (St+Reg+L3pV).

Every line of the predictor includes a nine-bit partial
b-tag. A predictor line can only be updated after at least
two conseautive tag misses, and predictions are only
made if the partial tag matches. The five identicd SAg
confidence etimators ead consist of an array of ten-bit
histories “hist” to record which of the last ten seen load
values were predictable and an array of three or four-bit
saturating counters to “measure” how frequently ead
posshle history-pattern has recently been followed by a
predictable load value [2, 3]. Predictions are only made if
the arrent history has a high enough count associated
with it. The first confidence estimator forms the stride
predictor (&) whose only other element is the adder since
it shares values with the L3pV component. The second
confidence etimator belongs to the register value compo-
nent (Reg), which uses values from the CPU’s register file
for making predictions. The remaining three onfidence
estimators, the 64-bit field and the two twenty-bit partial
value fields form the last three partial value (L3pV) com-
ponent. We increased the size of the partial values from
sixteen to twenty bits  that the predictor can accommo-
date programs that are larger than our benchmark suite.
The predictor can be pipelined over two stages smilar to
the way we pipelined the last four value predictor [5].

PC [yyxxx. xx00]

btag hist hist hist last value hist g"ﬂw hist 3‘°Eva|
20 10 20

9]10]10]10 64 10

1024 lines

]
3 [ [
. . -] 1024 cntrs

— Vaiid an | register val
concatenate and select value
match & >=threshold|———>]__yes/no predict | predicted value

Figure 3.2: The architecture of our B-Tag SAg
St+Reg+L3pV "coalesced-hybrid” load value predictor.

The five sub-components operate independently and
perform five cnfidence etimations and five value pre-
dictionsin parallel. The value of the component reporting
the highest confidence is used for making a prediction,
but only if the confidence is above the preset threshold.
In other words, the component that is the most likely to be
corred is sleded to make the prediction. To hre& ties,
the sub-components are prioritized from left to right, that
is, the stride amponent has the highest priority, the regis-
ter component has a medium priority, and the last three



value component has the lowest priority. Within the last
three value cmponent, the more recet values have a
higher priority [5]. Changing the prioritizaion order
among the three main components has virtually no effed
on the speedup [2]. We use S+ Reg+L3pV for no particu-
lar reason. The only minute performance difference we
could deted is that prioritizing the L3pV component over
the Reg component seems to be dlightly disadvantageous.

When the predictor is updated, ead component again
makes a value prediction whose result is compared with
the true load value. The mnfidence etimators are then
updated based on the outcome of this comparison, i.e., the
counters are incremented or deaemented and a new bit is
shifted into the history field. At the same time, the values
within the L3pV component are passed on to the next
“older” sub-component and the true load value is copied
into the 64-bit last value field.

4. Evaluation M ethods

4.1 Benchmarks

We use the dght integer programs of the SPEC95
benchmark suite [21] with the provided reference input
sets for our measurements. The exeautables were com-
piled using DEC GEM-CC with the highest optimization
level “-migrate -O5 -ifo”. The performed optimizetions
include @mmon sub-expresson elimination, split li fetime
analysis, code scheduling, nop insertion, code motion and
replicaion, loop unrolling, software pipelining, locd and
global inlining, inter-file optimization, etc. The binaries
are staticdly linked to allow the linker to perform addi-
tional optimizations that reduce the number of runtime
constants that are loaded during exeaution. These optimi-
zdions include most of the optimizations that OM [23]
performs. The few floating point load instructions con-
tained in the binaries are included in our measurements,
loads to the zeo-registers are ignored, and load immedi-
ate instructions are not taken into acount since they do
not access the memory and therefore do not need to be
predicted. Table 4.1 summarizes information about the
eight benchmark programs.

Due to the detail of our smulations, ead program is
only exeauted for 300 milli on committed instructions on
the simulator after having skipped over the initializaion
code in “fast-exeaution” mode. This fast-forwarding is
important when only a sedion of a program’s exeaution is
simulated because the initiali zation part of programsis of-
ten not representative of the general program behavior
[16]. Theleftmost column of Table 4.1 shows the number
of instructions that were skipped to read representative
code sedions. The numbers were found by trial and error.
gcc is smulated for 334 million committed instructions
without skipping any instructions snce this amounts to

the full compil ation of the varasminput-fil e.

Information about the eight SPECint95 Benchmark Programs
million instrs | percent | base | L1load | L2 load
program | skipped| simul.| loads | IPC | miss-rate| miss-rate
compress | 5600| 300| 17.8% | 1.34 11.7% 6.2%
gcc 0| 334| 23.9% | 151 2.4% 6.4%
go 7000| 300 24.0% | 141 1.6% 15.7%
ijpeg 2000| 300| 16.5% | 1.50 2.3% 65.2%
li 5000| 300 28.8% | 1.91 4.1% 0.7%
m88ksim 2000| 300| 20.7% | 1.26 0.1% 11.2%
perl 1000 | 300| 31.2% | 1.57 0.0% 46.9%
vortex 7000 300| 23.7% | 2.92 2.2% 12.0%
average 23.3% | 1.68 3.1% 20.5%

Table 4.1: The first two columns show the number of
skipped and the number of simulated instructions for
the eight SPECIint95 programs, respectively. The third
column lists the percentage of simulated instructions
that are loads. The base IPC denotes the instructions
per cycle that our baseline processor achieves on the
eight program sections. The last two columns give the
L1 data-cache and the L2 cache load miss-rates.

In spite of the high optimizaion level and good regis-
ter alocation, almost every forth instruction exeauted by
these programsis aload. With an average IPC of 1.7, this
amounts to one executed load instruction every 2.6 cycles.
With the exception of compress the benchmark programs
do not have high L1 data-cade load missrates, making it
difficult for aload value predictor to be dfective.

The left half of Table 4.2 shows the number of load
sites that contribute the given quantiles (percentages) of
executed loads. Clealy, only relatively few load sites
contribute most of the exeauted loads, implying that even
small value predictors sould be ale to capture the ma-
jority of the executed |oads.

The right half of Table 4.2 ill ustrates the load value
predictability found in the smulated sedions of the aght
benchmark programs. Register predictability “reg” indi-
cates how often the target register of aload instruction al-
ready contains the value that the load is about to fetch.
Last value predictability “lv” shows how often a load
fetches a value that is identicd to the previous value
fetched by the same load instruction. Stride predictability
“st2d’ refleds how often avalue is loaded that isidenticad
to the last value plus the diff erence between the last and
the seaond to last value fetched by the same load instruc-
tion. Last four value predictability “l4v” indicates how
often a value is loaded that is identicd to any one of the
last four values fetched by the same load. Finaly, finite
context method predictability “fcm” shows how often a
value is loaded that is identicd to the value that foll owed
the last time the same sequence of last four values was
encountered (modulo a hash function). Note that, unlike
reg, lv, st2d, and 14v, the fcm predictability is implemen-
tation spedfic, i.e., it depends on the hash function.



SPECIint95 Quantile and Predictability Information

load sites that account for load value predictability (%)
program Q100 Q99 Q90 Q50| reg Iv st2d  l4v  fcm
compress 62 35 28 9] 13.0 40.7 64.0 415 346

gce 34345 14135 5380 870| 19.9 485 49.8 656 519
go 9619 3868 1719 263| 9.4 46.3 48.1 645 4438
iipeg 2757 379 184 53| 9.8 475 481 551 428
li 419 237 120 43| 11.7 354 412 524 622
m88ksim 747 537 199 25| 493 823 850 882 843
perl 1437 225 167 44| 200 50.7 514 806 70.6
vortex 1973 958 355 55| 16.4 65.7 66.3 79.9 69.4

average 6420 2547 1019 170 18.7 52.1 56.7 66.0 57.6

Table 4.2: The four quantile columns show the fraction
of load sites that contribute the given percentage of
executed loads. For example, Q50 lists the number of
most frequently executed load sites that account of
50% of the executed loads. Q100 shows the number
of loads that are executed at least once. The five
rightmost columns show the load value predictability in
percent of executed loads found in each of the eight
simulated program sections.

The predictability of the load instructions in all eight
programs is quite high. On average, at least half of the
exeauted load instructions are (theoreticdly) predictable
using any method aher than reg.

4.2 Simulation Architecture

All our measurements are performed on the DEC Al-
pha AXP architedure [7] using the AINT simulator [14]
with a ¢/cle-acarate out-of-order badk-end, which is
configured to emulate ahigh-performance microprocessor
similar to the DEC Alpha 21264[10]. In particular, the
simulated four-way superscdar CPU has a 128entry in-
struction window, a 32-entry load/store buffer, four inte-
ger and two floating point units, a 64kB two-way set as-
sociative L1 instruction-cadhe, a 64kB two-way set aso-
ciative L1 data-cade, a 4MB unified dired-mapped L2
cade, a 4096entry BTB, and a 2048line hybrid gshare-
bimodal branch predictor. The modeled latencies are
given in Table 4.3. The few operating system cdls are
exeauted but not simulated. Loads can only issue when
al prior store addresses are known. The six functional
units are fully pipelined and ead urit can exeaute dl op-
erations in its class Up to four load instructions are ale
toiswue per cycle. This CPU represents our baseline.

To meaure the speedup delivered by aload value pre-
dictor, the baseline CPU is augmented with the predictor
in question and the performance is compared to the per-
formance of the baseline procesor. The pipelined load
value predictions take placeduring the rename and issle-
stage in the instruction pipeline and have atwo-cycle la-
tency. Note that even predicted loads perform a normal
memory access As 0n as that access completes, the
load value predictor is updated with the true load value.
No speaulative update is performed at the time of predic-
tion. Out-of-order updates and updates from wrong-path

loads are acarately modeled. Incorred predictions may
cause aconditional branch to transfer control to the wrong
path.

Operation Latency
integer multiply 8-14
conditional move 2
other int and logical 1
floating point multiply 4
floating point divide 16
other floating point 4
L1 load-to-use 1
L2 load-to-use 12
memory load-to-use 80

Table 4.3: The functional unit and memory access la-
tencies (in cycles) used in our simulator.

Suppart for up to four predictor accesses per cycle (to
match the issue-width of up to four loads per cycle) is
provided by dividing all the predictors into four inde-
pendent banks, as suggested by Gabbay and Mendelson
[9]. Eadch bank can be thought of as an individual predic-
tor one fourth the size There is no communicaion be-
tween the banks, making it possble to operate them inde-
pendently and in parallel. Our simulator mimics a proces-
sor that fetches naturally aligned instructions. Hence, all
the load instructions that can possibly be fetched during
the same g/cle dways go to distinct banks. To avoid con-
flicts between predictions and updates, updates are
gueued in a sixteen-entry FIFO queue (one per bank) and
are dropped if the queue is full. The queue issues predic-
tor updates at a rate of one per cycle & long as there ae
outstanding updates and the crresponding predictor bank
isidle. The sixteen-entry update queues are large enough
so that on average only 0.026% of all the updates have to
be dropped due to afull queue.

5. Results

The following subsedions describe the results. In Sec-
tion 5.1 predictors from the literature ae cmmpared per-
formance-wise with our coalesced-hybrid predictor. Sec-
tion 5.2 analyzes the wntributions of our predictor’'s
components to the overall performance In Sedion 5.3
the walesced-hybrid is compared to orades. Sedion 5.4
investigates the size of the partial values and Sedion 5.5
studies the width of the last n value component. Due to
space limitations, we ae only able to show average
speeadup results over the éght benchmark programs.

5.1 Comparison with Other Predictors

This sdion compares the harmonic-mean speeadups
over SPECiInt95 d several well-performing predictors
from the literature and our own. The seven predictors we
consider are; a partialy tagged bimodal last value predic-



tor (LV) [12], a partially tagged bimodal stride 2-delta
predictor (2d) [19], a partialy tagged last distinct four
value predictor (LD4V) [25] with an accesspattern-based
bimodal confidence estimator, a hybrid between a LD4V
and a stride predictor (LD4V+S) [25], a partially tagged
SAg last four value predictor (L4V) [5], our coalesced-
hybrid (S+Reg+L3pV), and a partially tagged bimodal
hybrid of a stride 2-delta and a finite context method pre-
dictor (S2d+FCM) [18]. The performance of the individ-
ual components of our hybrid is discussed in the next sec-
tion.

Since the predictors vary gredly in their architecures
and complexities, they cannot be scaed to be of identicad
size Consequently, we can only compare predictors of
similar sizes. In their base @nfigurations, the seven pre-
dictors require between 19 and 315 kilobytes of state,
which we believe to be aredistic size for a first genera-
tion load value predictor. From these base-configurations
we aeded two additional configurations for ead predic-
tor, a smaller one by quartering the number of predictor
lines and a larger one by quadrupling the number of pre-
dictor lines. The three size-ranges and the arresponding
predictor sizes are shown in Table 5.1. The table gives
the amount of state for a re-fetch architedure. For a re-
exeaute achitecture, some of the predictors require alittl e
less sate because the saturating counters are smaller. The
FCM predictor and the accesspattern-based confidence
estimator of the LD4V predictor require large second-
level tables that are not suitable for splitti ng into multiple
predictor banks. Hence we only show amournts for non-
banked FCM and LD4V sizesin the table.

Predictor-Size in Kilobytes of State

small | base | large
Lv 48 | 19.0 | 76.0
Stad 58 | 23.0 [ 92.0
LD4Vv 12.3 | 25.0 [ 76.0
LD4V+St 124 | 256 | 785
L4av 12.8 | 27.0 | 84.0
St+Reg+L3pV | 15.1 | 30.4 | 915
St2d+FCM 19.9 | 315 [ 78.0

Table 5.1: The amount of state (in kilobytes) required
by each of the seven predictors’ three configurations.

All the predictors are parametrizeble in severa dimen-
sions and need to be cnfigured to work well. To deter-
mine the setting that yields the highest speedup with our
simulated CPU, we performed a detailed parameter space
evaluation for all the predictors. S2d+FCM allows for
many different ways of distributing the state over the two
components. We performed a limited study to find a dis-
tribution that works quite well: 1024lines for the stride 2-
delta component and the first level of the FCM compo-
nent, and 2048lines in the second level of the FCM [2].
Table 5.2 shows the base-configurations of the seven pre-
dictors.

Base Predictor Configurations

conf. | predictor | tag | hist| re-execute re-fetch

estim. lines bits | bits[top thr _pen]| top thr pen
Lv Bim 2048 8] -18 5 1|16 10 15
St2d Bim 2048 8 8 5 1|16 12 12
LD4Vv acBim 512 8 8 3 216 14 9
LD4V+St acBim 512 8 -8 7 2|16 13 10
L4v SAg 512 811018 7 4|16 14 11
St+Reg+L3pV | SAg 1024 |1+8| 108 7 2|16 14 9
St2d+FCM Bim |1024/2048] 8 | - | 8 5 1 [16 15 11
Table 5.2: The base-configurations of the seven

predictors. Except in the coalesced-hybrid, strides are
stored as eight-bit signed values. The coalesced-
hybrid only stores the full 64 bits of the last value and
the least significant twenty bits of the other two values.
The counter top (top) represents the highest value that
the saturating counters can reach plus one. The low-
est reachable value is zero. Predictions are made if
the selected counter’s value is at or above the given
threshold (thr). If a component’s prediction is correct,
the corresponding counter is incremented by one and
a one is shifted into the SAg history pattern, otherwise
the counter is decremented by the given penalty (pen)
and a zero is shifted into the history.

All the predictors are @nfigured to work as well as
possble in their base-configuration (19 to 315 kil obytes
of state). Except for the number of predictor lines, the
same parameters are used with the other two predictor
sizes and no seach for the optimal setting is performed.
We use this approach to mimic what would happen if
programs that are much larger or much smaller than the
SPECint95 programs were run on these predictors. The
intuition is that a larger program performs smilarly on a
load value predictor to a smaller program on a propar-
tionately smaller version of the same predictor. Note that
the number of lines in the second level of the FCM is held
constant when increasing and deaeasing the size of the
S2c+FCM predictor.

Figure 5.1 and Figure 5.2 present the harmonic-mean
speeadups of the seven predictors with a re-exeaute and a
re-fetch misprediction remvery medhanism, respedively.
Three speadup results are shown for ead predictor corre-
sponding to the threepredictor sizes.

Our coalesced-hybrid (St+Reg+L3pV) outperforms the
other predictors both with a re-fetch and a re-exeaite
misprediction recovery palicy. Its re-fetch speedup even
excedls the other predictors re-exeaute speedup in the
smalest sizerange and comes close in the two larger
sizeranges. With only one exception in case of re-
exeaute, the performance of the smallest coa esced-hybrid
configuration (requiring fifteen kilobytes of state) sur-
passes the performance of the other predictors, including
the ones from the largest size-range that require five to six
times as much state. This clealy shows that hybrid pre-
dictors do not necessarily have to be large to perform well
and that coalescing the components in a hybrid predictor
isavery effedive technique to save state.



The good re-fetch speedup of our predictor is encour-
aging, in particular becaise it allows microprocessor de-
signers to use the drealy existing branch misprediction
hardware to rewmver from value mispredictions, which
makes it less urgent to design and add a procesor core
that is capable of re-exeaution.

Re-execute Performance of Several Predictors for Different Sizes
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Figure 5.1: The re-execute speedup of several predic-
tors for three size-ranges.
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Figure 5.2: The re-fetch speedup of several predictors
for three sizes ranges.

The performance of our predictor is certainly a result
of a combination of fadors, such as the b-tags, the inclu-
sion of the register predictor, the SAg confidence estima-
tors, and the incorporation of storage saving tedhniques.
Nevertheless the storage reduction is probably the key
fador. For comparison purposes, we built al possble
hybrids between a last value, a stride 2-delta, a finite mn-
text method, a last four value, and a register predictor
with SAg confidence estimators. However, none of these
predictors are ale to read the performance of the simi-
larly sized coalesced-hybrid [2].

Note that the performance of some of the LD4V+S
predictor adually deaeases with re-fetch when increasing

the predictor size Investigating this phenomenon re-
veded a somewhat surprising result. As it turns out, the
smallest configuration of the dfeded predictor suffers
significantly from aliasing. The confidence etimator de-
teds this problem and prohibits the dfeded lines from
making predictions. Conseguently, the predictor only at-
tempts relatively few predictions, which is refleaed in its
low performance mmpared to the other predictors. The
larger configurations auffer less from aliasing and the
confidence estimator consequently alows more predic-
tions to take place Unfortunately, it also alows sgnifi-
cantly more incorred predictions, which more than off set
the benefit of the alditional corred predictions. Hence,
the overal performance deaeases as the predictor be-
comes larger.

Among the predictors of a given size-range, the predic-
tors with more mmponents have fewer lines (i.e., are
shorter) than the single-component predictors and are
consequently more likely to experience cgadty prob-
lems, in particular in the smallest configuration. The d-
fed of the resulting aliasing can be seen in the two fig-
ures. The performance diff erence between the small and
the base onfiguration is sgnificantly larger with the
multi-component predictors (L4V, LD4V, and LD4V+S)
than with the other predictors. However, the malesced-
hybrid has more components than the L4V and the LD4V
predictors, yet it is not affeded as much by detrimental
aliasing since the high degree of coaescing alows it to
have twice the number of predictor lines (Section 3),
which all eviates the cgaaty problem.

5.2 Component Contributions

To evaluate how much the individual components of
the walesced-hybrid contribute to the overal perform-
ance, we measured the speedup delivered by the hybrid’s
threemain components in isolation, in pairs, and when all
of them are used together. Figure 5.3 shows the resullts.

As expeded, using al three @mponents yields the
highest speedup and using only one component results in
the lowest speedup bah for re-fetch and re-exeaute.

Among the mponent pairs, Reg+L3pV performs
best. Its performanceis close enoughto the performance
delivered when all three @mponents are combined that
leaving the stride predictor out of the walesced-hybrid
may result in a more st-effedive implementation, in
particular if the subtradion that is required by the stride
component compromises the gycle time.

To better analyze the speedup contributions, we used
the seven configurations siown in Figure 5.3 as a set of
seven equations and solved them for the distinct speedup
contributions and overlaps. The result is depicted in the
two Venn-diagrams in Figure 5.4. The total of the dis-
played percentages (i.e., one hurdred percent) corre-
sponds to the aalesced-hybrid’s harmonic mean speedup



over the baseline processor (13.7% for re-fetch and 17.4%
for re-exeaute).

Predictor Performance after Disabling some Components
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Figure 5.3: The performance of the coalesced-hybrid
when disabling any combination of zero, one, or two of
its three main components. A disabled component
cannot be selected for making predictions and hence
serves no purpose other than possibly providing
shared state for some other component. Only the en-
abled components’ names are given.
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Figure 5.4: Venn-diagrams showing the overlap and
the individual speedup contributions of the three main
predictor components.

The re-fetch Venn-diagram, for example, shows that
the S component provides 2% of the total speedup that
cannot be delivered by either one of the other two compo-
nents. Similarly, Reg contributes 10% and L3pV 12% to
the total speedup that none of the other components can
provide. These ae the three speedup contributions that
are unique to the three @mponents. The remaining four
contributions are shared. The & and the L3pV component
provide 33% of shared speedup, meaning that either one
of the two components needs to be present to provide this
contribution, but the cntribution does not increase if both
components are used. L3pV and Reg add 6% of shared
speadup. The shared speadup between S and Reg is 3%.
Finaly, the contribution that is dared among al three
components is 34%.

Approximately a third of the speedup can be delivered

by any one of the three @mponents and another third by
either the stride or the last three partial value component.
More importantly, 12% to 13% of the speedup can only
be provided by the L3pV component and 10% to 126
only by the register component. The stride cmponent,
on the other hand, delivers only 2% to 7% of speedup that
cannot be dtained by either one of the other two compo-
nents. The intersedion of the register predictor with the
other two components is relatively small, indicating that
the Reg component is able to predict a rather distinct set
of loads. This observation is consistent with the results
from Figure 5.3, which show that the register component
by itself does not perform very well but makes a strong
combination with the L3pV component exadly becaise it
can predict important loads that the L3pV predictor can-
not. Note that we did not use profili ng to change the reg-
ister alocdion, which can significantly improve the per-
formance of the Reg predictor [24], yet we drealy obtain
a substantial benefit from including a register value pre-
dictor in our hybrid.

It is surprising that the Reg predictor, which performs
poaly when used by itself, complements the L3pV com-
ponent significantly better than the & predictor with its
good individua performance This ill ustrates the impor-
tance of detailed component analyses to find cooperative
components for building hybrids and that unconventional
predictors with a poa individual performance can make a
valuable addition to a hybrid predictor.

5.3 Comparison with Oracles

This dion compares the malesced-hybrid with ver-
sions of itself that contain orades to demonstrate how
much of the eisting performance potentia the predictor
can reg.

The first predictor (no-oracle) in Figure 5.5 represents
the alesced-hybrid in its conventional and implement-
able form as described in Sedion 3. It does not include
an orade. The first orade (ce/sel-oracle) represents the
same predictor except it incorporates a perfed confidence
estimator and a perfed selecor. This means that, when-
ever possble, the cmmponent that will make a orred pre-
diction is sleaed and forced to make aprediction. If no
such component exists, no prediction is attempted. There-
fore, this orade never makes a misprediction. The second
orade (all-oracle) simply predicts every executed load
instruction with the crred value. There ae no mispre-
dictions and, as opposed to ce/sel-oracle, this orade never
deddes not to make aprediction. Figure 5.5 shows the
speadups delivered by the orade-less predictor and the
two oracles.

A perfed confidence estimator in combination with a
perfed seledor (ce/sal-oracle) results in a significant in-
crese in speadup over the cnventional predictor (no-
oracle). A more detailed analysis reveded that both the



seledion mechanism and the mnfidence estimator (CE)
of the no-orade predictor are far from perfed [2]. In par-
ticular, the malesced-hybrid’'s imperfed CE is rather con-
servative and inhibits a considerable number of predic-
tions that would be crred. The CE setting that was used
is the result of a global optimization and yields one of the
highest passble speedups. Hence, trading off missng po-
tentialy correa predictions for reducing the number of
incorred predictions must be alvantageous in the mod-
eled CPU. Overall, the malesced-hybrid’s confidence es-
timator and seledor (no-oracle) are ale to reg 4% to
63% of the theoreticdly posshble speedup (ce/sel-oracle)
for this predictor.

Coalesced-Hybrid Performance with Various Oracles
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Figure 5.5: Re-fetch and re-execute speedups of the
coalesced-hybrid with different degrees of perfect
knowledge.

A comparison with the perfea load value predictor
(all-oracle), however, shows that there is gill significant
potential for improvement left. Our predictor only yields
25% to 31% of the speedup that can theoreticdly be a-
tained with load value prediction. Comparing the all-
oracle with the ce/sel-oracle shows that the alesced-
hybrid only contains the necessary information to reath
about half the possble speedup. This large gap suggests
significant oppatunity for new and dfferent prediction
methods to improve the performance beyond that of exist-
ing methods. It is, however, unclea how much of the re-
maining performance potential can be redized becaise
the fradion of unpredictable loads is unknown.

5.4 Partial Value Size

To determine the number of bits that can be shared
among the sub-components of the last three partial value
predictor without overly impading its performance, we
present Figure 5.6. It shows the speedup of the malesced-
hybrid with varying number of bits in the partia value
fields.

Speedup for Different Partial-Value Lengths
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Figure 5.6: The speedup of the coalesced-hybrid when
the number of bits in the partial values is varied.

The predictor performs well even with very short par-
tial values. Unfortunately, this is mostly becaise the per-
formance of the last value and the register component is
independent of the size of the partial values.

Nevertheless a performance increase can be observed
between eight and fourteen-bit partial values. Fourteen-
bit values appea to capture asubstantially larger fradion
of the occurring values in the SPECint95 programs than
eight-bit values. At the same time fourteen bits are
enough to handle the majority of (predictable) values
since further increasing the number of bits in the partial
values does not result in additional speedup. We use
twenty bits to be safely on the upper plateau and to be
able to accommodate programs that are larger than the
SPECint95 programs.

The performance fluctuations above fourteen bits gem
from changes in the dynamic behavior of the anfidence
estimators and the seledor, whose operation is influenced
by the varying predictability of the longer partial values.

We dso tried adding valid hits to the two partial value
fields to indicate whether the ncaenation of the last
value's 44 most significant bits with the twenty-bit partial
value yields the corred 64-bit value, thus alowing only
“valid” components to make aprediction. Asit turns out,
the monfidence etimator already keeps tradk of this in-
formation and the valid hits are superfluous.

We further tried using twenty-bit signed offsets that
had to be alded to the shared 44 most significant bits.
However, this increased the complexity of the predictor
and resulted in poarer performance than using twenty-bit
unsigned values that only have to be @ncatenated with
the shared hits.

5.5 Predictor Width

Figure 5.7 is presented to determine how wide the last
n partial value component should be. It shows the per-



formance of the malesced-hybrid when the number of last
value componentsis varied.

Coalesced-Hybrid Performance with Different Last n Value Components
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Figure 5.7: The speedup of the coalesced-hybrid for
different last n partial value component widths.

Clealy, retaining threelast values per lineis sufficient
to regp almost al the potential. This result is particularly
surprising becaise the predictors used in the figure ae not
scded to the same size but become larger as the width in-
creases. Note that this result indicates that hybridizaion
is more important than making the predictor's compo-
nents wider to improve the performance|[5].

The performance fluctuations (e.g., L5pV’s re-fetch
performance is marginally lower than L4pV's) are due to
negative interference between the predictor’ s components.

6. Summary and Conclusions

This paper includes a detailed performance evaluation
of the components of a hybrid load value predictor and
describes two powerful state reduction techniques that al-
lowed us to design a very effedive hybrid that requires
only asmall amourt of state.

Our study of athree @mponent hybrid (with a stride, a
register value, and a last three partial value predictor)
shows that different components can exploit different
kinds of load value locdity and that they contribute inde-
pendently to the overall performance

The study further shows that care must be taken when
seleding components for a hybrid becaise some predic-
tors with a poar individual performance can make amore
valuable aldition to a hybrid than other predictors with a
good individual performance To identify components
that complement ead other well, performance analyses
are most likely unavoidable.

To reduce the often large storage requirement of hy-
brid predictors, we devised two storage reduction tedh-
niques that deaease the anount of state required by alast
n value and a stride predictor by a facor of two or more.

We adiieve this saving by having the last n value compo-
nent provide dl the information that the stride component
needs, making the latter storage-less In addition, the size
of the last n value predictor is reduced by sharing most of
the bits among the n values in ead predictor line, i.e., by
storing compressed values. Both techniques result in a
substantial deaease in predictor size virtually without
impading the performance

The hybrid load value predictor we designed incorpo-
rates such a storage-less $ride and a reduced-storage last
three value predictor as well as a storage-less register
value predictor. Cycle-acarate pipeline-level simulations
of a four-way superscdar out-of-order CPU with many
different load value predictors dow that our predictor
outperforms other predictors by fifteen to fifty percent
over alarge range of sizes. In the smallest configuration
we investigated, which requires fifteen kilobytes of state,
our coaesced-hybrid yields a speedup with a re-fetch and
with a re-exeaute misprediction recovery mechanism that
surpasses the speedup o other predictors from the litera-
ture, some of which are six times aslarge.

We believe that a large fradion of the value locdity
found in short load value sequences has been cagptured.
However, it remains an open research question whether
longer sequences contain significant additional predict-
ability and how much of it can be extraded efficiently us-
ing existing and new prediction techniques. In future
work we will i nvestigate how approaches like the finite
context method can be incorporated into our predictor to
exploit even more of the existingload value locdity.
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