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Abstract

Modern Python programs in high-performance computing call into compiled
libraries and kernels for performance-critical tasks. However, effectively paralleliz-
ing these finer-grained, and often dynamic, kernels across modern heterogeneous
platforms remains a challenge. This paper designs and optimizes a multi-threaded
runtime for Python tasks on single-node multi-GPU systems, including tasks
that use resources across multiple devices. We perform an experimental study
which examines the impact of Python’s Global Interpreter Lock (GIL) on run-
time performance and the potential gains under a GIL-less PEP703 future. This
work explores tasks with variants for different different device sets, introducing
new programming abstractions and runtime mechanisms to simplify their man-
agement and enhance portability. Our experimental analysis, using tasks graphs
from synthetic and real applications, shows at least a 3X (and up to 6X) perfor-
mance improvement over its predecessor in scenarios with high GIL contention.
Our implementation of multi-device tasks achieves 8 X less overhead per task
relative to a multi-process alternative using Ray.

Keywords: GPU tasking systems, HPC in Python, GPU programming in Python,
Global Interpreter Lock, Task parallel programming

1 Introduction

CPython’s rich ecosystem of C-extension modules has allowed developers to quickly
weave together powerful applications that leverage the efficiency of native code.
Composable libraries of optimized primitives [1-3] and kernel generators [4-6] allow
domain-specific modules to be developed effectively from within Python itself. How-
ever, parallelizing Python applications on modern heterogeneous platforms remains a
challenge. Such applications must seamlessly coordinate across various devices, often
operating with distinct memory spaces and programming models between them. A



popular way to manage these complexities is through a task-based programming model
where an application is expressed as a directed acyclic graph (DAG) of tasks. Each
task is a unit of work in the application, with data dependencies, resource constraints,
and potentially multiple implementations depending on which devices it supports. A
task-based approach reduces the developer’s burden. The tasking runtime selects a
device and task implementation, manages data movement between dependent tasks,
and schedules the work for execution. This hides the complexities involved in man-
ually partitioning work, communicating across devices, and coordinating execution
through lower-level primitives on threads, processes, and concurrent hardware queues
(e.g., CUDA/HIP streams) from the application programmer.

Many heterogeneous tasking systems have been developed for managing these com-
plexities [7-9]. When it comes to Python, finer-grained multithreaded parallelism has
faced a unique challenge: the Global Interpreter Lock (GIL) in the CPython interpreter
allows only one thread at a time to execute Python bytecode, effectively serializing
all work except C-extension library calls and 1/O. While alternative, GIL-free Python
implementations exist [10], they lack compatibility with popular CPython libraries
and have not gained widespread adoption. For this reason, managing GIL interference
remains a critical performance challenge for parallel Python applications. Recently, the
CPython Steering Committee has approved PEP 703 [11] to make the GIL optional,
with an build to be included in Python 3.13. But its wider adoption is questionable for
the foreseeable future due to thread safety and compatibility concerns in the Python
ecosystem. We study the feasibility and limitations of multithreaded parallelism in
modern Python and under the PEP703 proposal to demonstrate that practical per-
formance is both achievable now and will grow significantly in the future. We discuss
several Python-specific task-based runtime systems and evaluate their performance
using several DAGs and task granularity experiments.

Multi-device kernels and libraries that manage sets of devices internally—such as
cuBLASmg [12] and cuFFTmg [13], are becoming prevalent in many problems in HPC.
Examples include hierarchical algorithms like multigrid and the fast multipole method,
multi-physics applications, and training and inference of neural networks. To support
using these kernels inside of tasks, we propose a model for multi-device tasks: tasks that
require multiple compute devices. Scheduling these tasks comes with new challenges:
effectively managing variants of the same task over different device sets; managing
data movement and partitioning; and ensuring hardware portability. Some existing
runtimes, such as Ray [14] and PyCOMPSs [15], allow users to define tasks that require
a certain number of CPU cores and GPU devices. PyCOMPSs additionally supports
task variants with different resource constraints for each implementation. However,
to our knowledge, all existing multi-device task solutions are multi-process and none
of the available systems, in Python or otherwise, support the run-ahead execution
and synchronization of multi-device tasks directly on hardware queues through CUD-
A/HIP events or provide an integrated data model for prefetching task inputs onto
GPU devices. We provide this support, extend our programming model with task envi-
ronment contexts, specialized functions, and heterogenous distributed arrays to enable
the modular and portable development of tasks with internally distributed workloads,
and optimize our throughput with a multi-device queue launching mechanism.



We implement the proposed runtime for Parla [16], a single-process, heterogeneous-
device, task-based runtime. Parla provides a baseline extendable framework and API
for multithreaded execution of asynchronous dynamic task graphs on heterogeneous
nodes. In this paper we have replaced Parla’s entire backend and extended the interface
to support multi-device tasks. To distinguish the two systems, we refer to Parla’s
original runtime of Lee et al.[16] as PyRun and the new one as CyRun. In summary,
we make the following contributions:

e Using Dask and the two Parla runtimes, we study task parallelism for compute-
bound DAGs in CPython to understand the effects of GIL contention on runtime
design, sensitivity to task workload, and potential gains under a PEP703 future.
(52, §5)

® We propose a programming model and scheduling mechanisms for multi-device
tasks along with shared-view arrays for heterogeneous multi-device memory
management. We compare our runtime with Ray. (§4)

To our knowledge CyRun has certain unique features for DAGs that have fine-grain
multi-GPU tasks: it provides run-ahead scheduling; and it is a single process. Follow-
ing [17] we use several synthetic graphs in our experiments (§5), as well as real-world
applications. The new runtime will be made publicly available.

2 Challenges in Runtime Design

2.1 Background

Despite the limitations imposed by the GIL, parallelism can be still achieved in
CPython through several methods: @ calling external non-Python kernels that release
the interpreter lock during their execution; ® submitting asynchronous jobs, like 1/0
requests or GPU kernels, that can be processed externally while other workloads use
the interpreter; ® using multiple processes, each with their own interpreter and GIL; @
using multiple sub-interpreters, each with their own GIL, within a single process; and @
using embedded compiled Python-like domain-specific languages, like Torchscript [18].
From a developer’s perspective, gaining parallelism through @ and @ is preferable
because they retain a shared memory space, allowing data to be shared between tasks
without the need for serialization and inter-process copying. As tasks share the same
interpreter state, they do not need to reload libraries or reinitialize data structures.

However, many Python tasking systems adopt @, employing multiple processes
each with distinct interpreters. This introduces overheads, notably from inter-process
communication and the initialization cost of loading libraries into each process. Some
systems, like Ray and PyCOMPSs, mitigate these overheads by offering shared-
memory buffers and key-value stores for efficient data sharing between processes.
Although this strategy suits distributed systems, it may degrade single-node perfor-
mance. Lee et al [16] showed that the multiprocess approach can be prohibitive for
fine-grained GPU tasks that pass data between them. Recent innovations include
PyTorch’s TorchDeploy, which experiments with @. They introduced a per-thread
interpreter each with a dedicated GIL. Language-level support for such parallel sub-
interpreters was added in Python 3.12 [19]. Although sub-interpreters share a single
process, they are still separate Python environments. Objects must be serialized and
copied to communicate between them. StarPU’s [20] Python interface [21] is approach-
ing these challenges through cloudpickle serialization and a virtual shared-memory
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Fig. 1: A timeline of three threads running a mixed Python-C application. We illustrate how
a thread (T2) can be delayed. Threads T1-T3 execute from left to right. S1-S5 indicate GIL
release events. Blocks on each line represent when a thread is executing Python code (orange),
executing compiled code (pink), waiting for the GIL (blue), or blocked until another thread
acquires the GIL (purple). At S1, T2 and T3 are waiting for GIL access. After T2 has waited
5ms, (a) it sends a drop-request to T1l. T1 is interrupted and releases the GIL. (b) It signals
waiting threads. Because control was dropped through a request, (c) T1 is blocked until another
thread acquires the lock. Due to GIL ownership being passed under the waiting interval, T2
is unable to issue a drop-request for the remainder of this timeline.

manager between sub-interpreters. While the consequences of the GIL on the perfor-
mance of I/O and simple multi-threaded CPU applications have been explored [22],
we have found its effects on general task parallelism to be understudied. In this work,
we focus on @ and ® and show how far we can push performance for heterogeneous
systems under CPython’s constraints.

2.2 A Primer on GIL Behavior

Understanding GIL behavior is critical to multithreaded runtime design. The GIL
is a mutex around the loop that drives bytecode execution. Any additional threads
that attempt to access this region are suspended until it is available. In CPython’s
original policy, the controlling thread would only release the GIL after a constant
number of bytecode instructions, regardless of time spent. A thread that released the
GIL, either manually or after this threshold, would signal any waiting threads and
immediately attempt to reacquire the lock. For CPU bound workloads, this lead to a
bias where the previously owning thread would acquire the lock.

In Python 3.2, this was changed to a system in which waiting threads can issue
drop_requests. A waiting thread can only issue a drop_request after each time it
waits for a fixed time period (5ms by default), and only if ownership of the GIL has not
changed during its last period. This signals the owning thread to release the GIL after
it’s next bytecode instruction and prevents this thread from reacquiring the lock until
it has switched to a new owner. The Python interpreter does not provide a scheduler
and does not assign priorities between threads waiting for the GIL. All threads are
treated the same regardless of how many prior waiting intervals they have completed.
The operating system’s (OS) scheduling policy determines which threads are woken
each time the interpreter lock is released.

In Figure 1, we present a simple example to highlight how this behavior could
potentially delay threads from executing for long periods of time, especially when the
GIL is released frequently by calls into C kernels. We show a timeline of GIL exchanges



between three threads for a mixed Python-C application. At the first switch (S1), the
thread that issues the drop_request may not be the thread that acquires the GIL.
Thread 3 may execute before Thread 2. At the second switch (S2), Thread 2 could
not issue an earlier drop_request because a switch occurred during its last waiting
interval. At the third switch (S3), Thread 1 enters a C-extension kernel and releases
the GIL explicitly. Because this was a manual release, no drop_request occurs. The
figure highlights that it is possible for spurious wakeups on waiting threads to occur
and reset their waiting interval. Even if the spurious wakeup does not occur, Thread
2 would be unable to issue a drop_request until S4, as a switch occurred while it
was waiting. Finally, at the fourth switch (S4), Thread 3 enters a short C-extension
kernel that releases the GIL. Because no drop_request is active, it can potentially
complete and reacquire the lock before Thread 2 wakes. For three threads this is
an unlikely scenario, Thread 2 could have been chosen at any of the five switches.
However, there are no mechanisms that make Thread 2 more likely to acquire the
lock as it waits longer. Frequent calls into short C-extension kernels prevent threads
from issuing drop_requests and lead to long waiting periods. As the number of active
threads increases, such cases become more frequent.

2.3 Designing Multithreaded Runtimes for Python tasks

We seek to understand how fast tasks can be launched and optimize the mini-
mal granularity at which Python tasking is effective. To investigate this design space,
we perform a comparative study of minimal runtimes for multithreaded execution of
Python tasks. A runtime for dynamic task graph execution must, at minimum, be able
to spawn new work, satisfy task resource and precedence constraints, and assign tasks
to worker threads. Each presented minimal runtime in this section supports only these
three operations for CPU tasks. Runtimes can be written in Python itself or driven
from an external compiled language; We present the benefits, trade-offs, and design
choices available to each.

Python Runtimes. Pure Python runtimes are portable across Python implemen-
tations and can easily interface with Python objects. However, all worker threads that
execute Python code contend for the interpreter with the scheduler. This increases
scheduling latency, reduces parallelism, and leads to stalls when the scheduler is unable
to assign work to threads sufficiently often. Dask-threading is a widely used runtime
for Python tasking. It runs the scheduler in a loop from the main application thread.
At each iteration, the scheduler launches a batch of ready tasks, up to one per thread,
and pops a completed task from a global queue. The completed task is processed on
the main thread. Dependent tasks are notified by removing the dictionary key for the
completed dependency. Newly ready tasks, those without remaining dependencies, are
moved to the list of launchable tasks. Worker threads concurrently add tasks to the
completed queue when finishing a task. Tasks are launched by submission to Python’s
standard library ThreadPoolExecutor, which adds tasks to a global work queue. Each
worker thread continuously drains work from this queue until empty. There are no
runtime mechanisms that interrupt the GIL to switch between workers. As the run-
time is driven by a dedicated Python thread, newly ready tasks can only be launched
when the scheduler thread wins control of the interpreter. If the global work queue is
not filled fast enough to feed worker threads this introduces latency into the schedule.
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Fig. 2: Outline of PyMinimal-Callback run- Fig. 3: Outline of CyMinimal-Optimized Run-
time. time.

PyMinimal is our design and implementation. We provide a baseline implemen-
tation that runs the scheduler from a Dedicated thread. We do not use Python’s
ThreadPoolExecutor; Tasks are assigned directly to available threads and each thread
may only be assigned one task at a time. Worker threads without assigned tasks are
suspended until they are assigned new work. We notify dependent tasks of a task’s
completion on the worker thread immediately when a task finishes by decreasing their
counters of remaining dependencies. We developed a second implementation, Callback,
that attempts to alleviate GIL contention by running scheduler operations on threads
where the interpreter is already acquired. Instead of having a dedicated scheduler
thread, the scheduler is invoked from worker threads. Each time a task is spawned or
completed, the active thread checks resources and launches a batch of ready tasks onto
waiting worker threads. Threads are maintained on a stack and the active thread will
assign to itself first. This design is summarized in Figure 2 where white regions rep-
resent operations in Python and yellow regions are user operations in the task body
that may release the GIL.

External Runtimes. In contrast to pure Python implementations, runtimes
driven by an external compiled language may not need to vie for the interpreter to
notify and assign tasks. This allows them to be more responsive to state changes, like
freed resources, newly spawned, and newly ready tasks. They can also use more effi-
cient data structures and algorithms due to synchronization primitives that are not
available in Python. However, each callback from Python into the external runtime is
treated as a single byte-code operation. It must either release or hold the GIL for the
entire duration. If each call releases the GIL for too brief a period, it can lead to cases
like Figure 1 where drop requests are prevented from being issued. On the other-hand,
if callbacks hold the GIL for too long, workers will be unable to start their assigned
tasks. Any newly created drop_requests will be ignored until the callback completes.

CyMinimal is our external runtime, written in C++. We consider a few variants
of its design. In the Dedicated and Callback designs, workers and task objects are
still orchestrated at the Python layer. These designs are drop-in C++ implementa-
tions of the interfaces used in the PyMinimal variants. Each task creation, dependency



addition, dependent notification, resource release, and task-to-worker assignment is a
separate call into the C++ runtime from Python. Because the workerpool is managed
in Python, the C++ launcher must acquire the interpreter when assigning tasks to
Python worker threads. When driven from a dedicated C++ thread, these short GIL
acquisitions cause thrashing. In Callback, the GIL is already held by the thread that
runs the launcher, which leads to a large performance improvement on short tasks.
However, in these implementations, nearly all C++ function calls are too short to
gain a benefit from releasing the GIL. We consider two optimized designs, using Ded-
icated as the base. The first, Fused, moves the bulk of the task orchestration into the
C++ layer. This allows us to combine the interactions between Python and the run-
time into only 3 function calls per task: spawning, task completion, and task-to-worker
assignment. On tasks with many dependencies, which have longer spawn and comple-
tion times, this provides a performance improvement. On our 40x40 block Cholesky
graph with 1ms tasks, releasing the GIL for task completion provides an 8% improve-
ment relative to holding it for each task. The second design, Optimized, goes further
and additionally moves the worker pool into the C++ layer. This removes the need to
acquire the interpreter when assigning Python tasks to workers greatly reducing con-
tention. This provides the minimum possible 3 GIL-acquisitions per-task. Our final
design is summarized in Figure 3. A throughput comparison for all runtime designs is
shown in Table 1, where bold values are the best performing implementation.

Table 1: Throughput comparison of runtime designs. Speedup over serial
execution of 1024 GIL-releasing independent CPU tasks (each 1ms or
500us). Using a default switch interval and no GIL Interrupt methods.

Speedup (1ms Tasks) Speedup (500us Tasks)

Runtime Options 8 Threads 16 Threads 8 Threads 16 Threads

o Dedicated 6.5x 11.1x 5.4% 6.9
PyMinimal
Callback  6.5x 11.2x 5.4%x 7.4%x
Dedicated 6.8x 11.9%x 5.8% 6.3
CyMinimal
YRHIAL S ollback  6.9x 12.1x 5.9% 9.5%
Fused 6.9% 12.2x 6.1x 9.5%
Optimized 7.0x 12.6x 6.2x 10.2x
Dask Base 6.6x 11.0x 5.1x 6.5%

One of the unique challenges when scheduling dynamic task graphs in Python is
interleaving newly spawned tasks into the current execution. As spawning each new
task only requires a few microseconds, starting newly created tasks that might be
launchable without the latency of the 5ms GIL switching interval is critical to achieving
high performance. We can see this effect by tuning the GIL switching interval with
sys.setswitchinterval to a lower value (e.g., 5us). Unfortunately this performance
gain is lost if running larger tasks due to overabundant drop-requests. To address
this in a more portable manner, we manually interrupt the interpreter on each thread
whenever it has reached a spawning quota (by default equal to the number of cores).
In essence, if a task is creating a bunch of new work, we pause to give this work a



chance to start running. Throughput results for this strategy are shown in Table 2.
Guided by the performance profiling of these minimal runtimes, we reimplement and
extend the full Parla library using a CyMinimal-Optimized design. We call this full
runtime CyRun. Performance results using this full runtime on a suite of graphs and
kernels are presented for this updated runtime in Section 5.2.

3 Parla Overview

Our second main contribution is the definition and mechanisms to support multi-
device tasks. We introduce and test these features in the context of the Parla
programming model. Parla is a library for dynamic online DAG execution of heteroge-
neous tasks. Our proposed CyRun runtime implements the full Parla API and extends
it to the multi-device cases. In this section, we briefly summarize the relevant parts of
the original Parla library to the current work.

Tasks, in Parla, are created by decorating a Python function with a espawn decorator,
shown in Listing 1. This provides: (1) the task’s name within an indexable namespace;
(2) a set of dependencies; (3) a list of praces where the task may run; and (4) resource
constraints like memory & thread usage. Each element of piaces is a device that a variant
of the task could execute on. For example, a task that defines piaces=[cpu, gpu] can be
scheduled at runtime to launch on either a CPU or a GPU device. The piaces list may
contain specific devices or generic architecture types.

Parla supports data management for CuPy and NumPy arrays. These can be
moved with manual annotations, or specified in spawm, as read and read-write dataflow
dependencies, to allow scheduled prefetching of input data. Scheduled data movement
manages replication and coherency between devices. GPU tasks support run-ahead
scheduling when they only contain GPU kernels. Using CUDA/HIP events tasks
are dispatched to hardware queues before their dependencies complete. Cross-stream
events preserve a valid ordering of kernels and data movement. Devices can run more
than one task at a time (up to their resource constraints). Concurrent GPU tasks are
run on separate streams. Parla tasks may spawn tasks internally. These nested tasks
do not synchronize with their parent unless specified. A task’s lifecycle through the
runtime is shown in Figure 4: Each spawned task is mapped by picking one of its piaces
that satisfies its resource constraints; A task is reserved when memory on its target
device has been provisioned for itself and it’s data; Finally, a task is launched onto

Table 2: Throughput comparison of GIL interrupt methods. Speedup over
serial execution of 1024 GIL-releasing independent CPU tasks (each 1ms or

500us).
Speedup (1ms Tasks) Speedup (500us Tasks)
Runtime Options 8 Threads 16 Threads 8 Threads 16 Threads
5us Int 1 7.0x 11.7x 5.5% 6.6
PyMinimal ps Tnterva
Spawn Interrupt 6.4x 11.0x 5.3% 7.4%x
o 5us Interval 7.4% 13.0x 6.4 % 10.7x
CyMinimal
Spawn Interrupt 7.7x 14.8x 7.0x 12.1x
Dask 5us Interval 6.6x 11.1x 5.2X 6.5X




a worker thread. Once mapped, tasks are placed into a separate work-queue for the
device they have been assigned.

Mappable | > Reservable ||pLaunchable

Listing 1: Example of a Parla Task

@spawn(T[i], [T[i-111, places=[gpul)
def task():

[ Mapped [ Reserved [Launched ]

Fig. 4: Lifecycle of a Parla task. The runtime
processes events from queues (blue/top) into
their resolved states (red/bottom).

4 Multi-Device Tasks

Multi-device tasks are tasks that reserve resources across multiple devices. Sup-
porting such tasks enables application programmers to call optimized external libraries
that may use resources across multiple devices from within a task. By tracking resource
usage and data movement, effective parallelization of calls into such libraries becomes
possible. This enables greater composability and nested hierarchical parallelism. How-
ever, designing a runtime for multi-device tasks introduces additional challenges in:
(i) selecting device-sets from possible variants; (ii) scheduling device-sets of varying
size due to a greater fragmentation of node resources; (iii) data management when task
input is partitioned and distributed across devices; and (iv) programming portable
task variants. We introduce a model for programming multi-device tasks and propose
solutions to these runtime challenges.

4.1 Multi-Device Task Interface

We extend Parla’s programming model to support device-sets in a task’s list of
valid piaces. Each device-set is a tuple of devices and/or architectures; For example,
(gpu(0), gpw) is the set containing GPU 0 and any other GPU device. This set defines a
one-to-many mapping where a single task requests resources across multiple devices.
The shorthand, gpusn, can be used to define a sets containing n devices of the same type.
As in the single-device case, a single task may have multiple valid configurations. For
example, a task specified with places=[(cpu, gpu), gpu*4]l can be executed on either a set
containing both a CPU and a GPU, or four GPUs. The scheduler dynamically chooses
the best configuration for the current system state. Resource constraints, like memory
usage, can specified for each device in each set. We introduce task environments and
specialized functions as part of a proposed API to help users query and interact with
tasks on device-sets. Then we discuss a data abstraction for heterogeneous memory
global-address space arrays and conclude with details on the runtime mapping and
scheduling of multi-device tasks.

Task Environments. As task mapping is dynamic, tasks must be able to query their
current set of devices during execution. The task environment object provides their
properties, how to dispatch work to each of them, and potentially how to synchronize
their execution. This is shown at L7 in Listing 3. For each device assigned to the
task, this provides the streams and events that have been assigned by the runtime.
The size of an environment is the number of devices it contains. The environment is
a sliceable Python context manager [23]. Entering the task environment, via witn, sets
all associated objects active on the local thread. Workloads inside a multi-device task
may need to dispatch different kernels over different subsets of its devices. To support

NI



Listing 2: Function Variants

Listing 3: Multi-Device Tasks

1 @spawn(places=[cpu, gpu*4])
1 @specialize 2 def task1():
2 def fft(A): 3 C = fft(A)
3 fA = numpy.fft(clone_here(A)) 4
4 5 @spawn(placement=[gpux4])
5 @fft.variant(arch=gpu, max=4) 6 def task2():
6 def mgpu_fft(A): 7 env = get_current_env()
7 env = get_current_env() 8 #task reserves 4 GPUs
8 A = clone_here(A) 9 with env[:2] as half:
9 cufftmg(A, env.devices) 10 #restricts to 2 GPUs
10 11 fA = £ft(A)

Listing 4: Vector Addition using CrossPy

1 @spawn(places=[(cpu,gpu)])
2 def task():

3 e = get_current_env()
4 ax = xp.array(a)

5 bx = xp.array(b)

6 cx = ax + bx
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half.synchronize()

Listing 5: K-Means using CrossPy

@spawn(places=[gpu, gpu*2, gpu*4l)
def kmeans():
e = get_current_env()
# Redistribute inputs as CrossPy arrays
xpoints = clone_here(points)
xlabels = clone_here(labels)
xclusters = clone_here(clusters)
for i in range(iterations):
# Assign points to nearest clusters
label (xpoints, xclusters, xlabels)
# Determine new cluster means
reduce(xpoints, xclusters, xlabels)

Listing 6: CrossPy Communication Interface

1 # (A) Python Assignment

2 dst[dst_ids] = src[src_ids]

3 # (B) Reusable Al12411

4 exchange = xp.alltoall(dst_ids, src_ids)
5 exchange(dst, src)

6

exchange(dst, src) # Can be reused

this, task environments can be split, nested, joined, and looped over. An example of
this is seen in Listing 3. There a sub-environment context of the 4-GPU task (L7)
is created containing the first two GPUs (L9). The sub-environment sets the visible
devices for any specialized functions called within its scope.

Specialized Functions. A specialized function is a function that has been overloaded
with variants for specific device or architecture sets. When a specialized function is
called within a task environment, it dispatchs to the implementation defined for the
most specific matching device-set. If task environments are nested, the function only
sees the innermost one. In Listing 3, function variants are used to define a single ¢t
routine that can be invoked in either single-CPU or multi-GPU environments. The
variant implementations are provided by appropriate external libraries for each.
CrossPy Heterogeneous Arrays. We introduce CrossPy, an array abstraction that
provides a shared index space over heterogeneously partitioned arrays. A CrossPy
array is made of partitioned blocks, either NumPy or CuPy arrays, that provide a
unified view to the user. Listing 4 is an example that creates two CrossPy arrays
from input arrays a and b, which are either a NumPy or CuPy array (L4 and L5).
The vector addition on L6 is computed over both the CPU and GPU in the task.
By default, a CrossPy array will partition an input array evenly among the active
devices in a 1D row-partitioning. Non-uniform partitions can be defined by providing
coloring maps, as a function from array indexes to devices, to the array. CrossPy

10
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arrays can be manually moved between task environments with cione_here(). This will
copy the first partition to the first local device, the second partition to the second
device, and so on. If the current CrossPy array and the target task environment
have a different number of devices, the array will be repartitioned. While scheduled
data movement is not currently supported by CrossPy, multi-device tasks can use
the existing Parla array annotations in spawn to prefetch non-distributed arrays onto
each of their devices. When using these annotations the data locations are tracked
by the runtime. Listing 5 shows an example of CrossPy usage in a multi-GPU K-
Means implementation over a task with three possible variants: 1 GPU, 2 GPUs, and 4
GPUs. Points are wrapped by CrossPy and partitioned over the devices in a balanced
manner (L5/7). The user-written functions 1abe1() and reduced execute in parallel on
the partitioned data across the device-set. CrossPy supports scattering operations over
arbitrary index sets. These can be executed through Python assignment and slicing or
via a static MPI all-to-all-like interface. To optimize for repeated communication with
the same source to destination index mapping, CrossPy caches the procedure. It can
be reused as a callable operation. Performance evaluations are discussed in Section 5.3.
4.2 Multi-Device Task Mapping

During DAG execution, the runtime must pick both the variant of the task, from
places, and specific devices to fill the chosen device-set. This is done when the task is
mapped, as shown in Figure 4. A task may be mapped as soon as all of its dependencies
have been mapped. For each set in piaces, we find and calculate a suitability score for
a group of selected devices that can satisfy its constraints. We map the task to the
variant and device-set with the highest score. The process to chose and score devices
is as follows: Specific devices are chosen for each architecture slot in the task variant
one-by-one. The mapping function iterates potential devices of that architecture type
and scores them based on (i) the expected task workload already mapped but not
yet completed on that device, and (ii) the cost to move the task’s data from their
expected locations to this device. We use the same heuristic that Parla uses to map
single-device tasks [16]. This heuristic maintains a table of the expected locations of all
tracked data objects under the assumption that all prior mapped tasks will complete
before the current task. The process is repeated until all slots in the device-set have
been filled. The score for the set is the average of it’s device’s scores. This prefers task
variants that use fewer devices unless the data movement cost would be extreme.
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4.3 Multi-Device Task Launching

Tasks are inserted into per-device priority queues once they have been mapped.
This enables high-throughput for single-device tasks, as it avoids scanning a global
queue for ready tasks that can fit onto each device. We adapt these per-device queues
to support multi-device tasks. Our proposed Multi-device Queue (MDQ) algorithm
inserts replicas of the task into all device queues associated with its mapped device-
set. We guarantee that tasks are always be dequeued in a valid ordering, without
deadlock, across all devices, even if each queue has a different relative ordering of
tasks. This allows safe concurrent insertion of tasks into device queues from multiple-
threads, without locking all of them, and allows each device to sort their tasks by
a potentially different priority algorithm. Our algorithm is described in Listing 7. It
can be described simply: A task may only launch after all of its replicas have reached
the head of their respective queues. If a replica reaches the head of a queue before
its siblings, then it is removed from the head and added to a list of waiting (not
yet dequeue-able) multi-device tasks. If the head of this waiting queue has replicas
remaining in other device queues, it is non-blocking. Further dequeue requests from
this queue will proceed to pull from the head. When the head of the waiting queue
has no remaining replicas in other device queues, it becomes blocking and must be
the next task that this device launches. We show an example of task’s launching in
Figure 5 over three snapshots: (a), (b), and (c). In each snapshot, a task is dequeued
for Device 1 and then for Device 2. For simplicity, we assume launched tasks take all
resources on their devices and complete before the next snapshot. At time (a), Task
C is moved to Device 1’s waiting queue as its replica in Device 2’s queue remains. As
Task A has no replicas it may be launched onto Device 2. At (b), Task B is launched
on Device 1. As Device 1 is now busy, the multi-device Task C cannot launch. At the
final time (c), Task C is launched from the head of Device 1’s waiting queue.

Evaluation of multi-device tasks is presented in Section 5.3.

5 Evaluation

5.1 Experimental Setup
Our evaluation is organized into two sections. In §5.2, we present a detailed study
of overheads in multi-threaded task parallelism in Python. In §5.3, we evaluate the
proposed multi-device extension and it’s performance. Performance results were col-
lected on the Frontera system at the Texas Advanced Computing Center (TACC) [24].
For Table 1 & 2 we used a CLX node equipped with two 2.7GHz Intel Xeon Plat-
inum 8280s CPUs (14 cores/CPU). The remaining experiments were collected on a
single node with four NVIDIA Quadro RTX 5000 GPUs and two Intel Xeon E5-2620
v4 CPUs (8 cores/CPU). Timing results are collected as the median of 5 runs. Our
evaluations are summarized below.
¢ Study of Python Performance [Section 5.2]
— DAGs and Task workloads (Figures 8, 7)
— Evaluation under nogil CPython (Figure 9, 10)
e Multi-device Evaluation [Section 5.3]
— Multi-device tasking overheads (Table 4)
— Communication costs of CrossPy (Table 6)
— Multi-device tasks in applications (Table 7)
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5.2 Python Overheads

We evaluate our runtime, and the performance sensitivity of multithreaded Python
applications, with a collection of synthetic task graphs. Evaluations are performed with
full runtime systems. Relative to the minimal prototypes PyMinimal and CyMinimal,
PyRun and CyRun have higher overheads due to additional checks of task metadata
at the Python layer, environment configuration, and DAG processing in the runtime.
This is especially pronounced in the case of PyRun, as it has more Python-level locks
in its runtime than PyMinimal. If the GIL switches from the thread that holds a lock,
progress is delayed until the holding thread is able to reacquire the interpreter. Dask is
used as baseline reference for multithreaded performance. When used with its thread-
ing backend, Dask does not support heterogeneous devices or resource constraints.
Ray is not used as a comparison point in §5.2 as it is a multi-process runtime.
Task Workloads. A task’s workload is it’s size, the total execution time, and how
this time is used. Specifically, we consider tasks that perform a sequence of GIL-
releasing operations (which we call kernels) that may require the GIL between each
of them. This workload is specified by three parameters: the total execution time in
milliseconds, the number of kernels per task, and the fraction of the total task time
that requires the interpreter. We call this fraction the GIL Hold Ratio. The total
task time is evenly split the kernels within each task. We evaluate a GIL Hold Ratio
between 0-10% of the total time, a range of kernels per task (1-10), and a range of task
sizes (0.5-64ms). All tasks within a DAG are given the same workload. This range of
workloads was chosen to cover sizes where per-task overheads begin to dominate for
all considered runtimes. Figure 6 shows CyRun’s performance for kernels a GIL Hold
Ratio of 0%. Although the task workload itself does not require the interpreter, it must
be acquired on the worker thread to start and complete the task. Kernels in the range
of 1-10s of milliseconds appear commonly in many NumPy and CuPy applications.
Task Dependencies (DAG). We consider a collection of DAGs adapted from the
TaskBench benchmark [17]. Details are given in Table 3.

DAG Description Details

Independent Independent tasks 1,000 tasks

Stencil 1D 3-point stencil 32 tasks wide, 1,000 tasks deep
Sweep Sweep tasks 32 tasks wide, 1,000 tasks deep
FFT FFT Butterfly graph 257 wide, 9 steps
Scatter-Reduction Binary tree and its inverse 256 nodes at the widest point
Cholesky Dependencies of a block Cholesky factorization 40 x 40 blocks

Map-Reduce Fan-in/fan-out structure 500 + 500m tasks for m workers

Table 3: Test Suite of DAGs

We scale to 15 threads, reserving a core for the scheduler thread itself. Parallel
efficiency is measured relative to the ideal serial execution of the application. We
highlight our main observations from this parameter study below.

GIL Contention. Figure 8 shows the average time each task waits for the GIL after
it’s kernels complete. As one expects, increasing task size decreases GIL contention.
The runtime optimizations made in CyRun show a significant improvement relative
to PyRun in alleviating the baseline contention rate. With task sizes of 16ms, each
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Fig. 6: Scaling efficiency of CyRun for a range of task sizes (2-64ms). 1 Kernel/Task, GIL hold
ratio = 0.

task waits 4.2x less time in CyRun than in PyRun for the Map-Reduce DAG. This
improved contention comes from (1) faster implementations of environment and depen-
dency setup; and (2) removing runtime processing from the Python layer, decreasing
the amount of time the interpreter is needed. GIL contention is a proxy measurement
for all overheads at the Python layer. The Map-Reduce DAG is a worst-case scenario
for end-to-end overhead. In this DAG, a task must wait for all tasks in the prior level
to complete before launching. Delays to any task will be observed in the total graph
execution time. Across 15 workers and 16ms tasks, we observe an average end-to-end
overhead of 150us per task. This is close to the overhead expected from GIL wait time
alone (132p per task). As internal runtime overheads in CyRun do not contribute to
GIL wait time, the remaining dominant source of overhead is the necessary Python
code to spawn tasks and configure task contexts.

Sensitivity to Task Workload Parameters. Figure 7 shows the sensitivity of
Python mulithreading to the number of kernels per task, GIL Hold Ratio, and task
dependency structure. We highlight a case where task size is fixed to 8ms and efficiency
is measured across 8 worker threads. Even when the task does not explicitly hold the
GIL for any length of time, simply splitting a kernel into 5 separate calls can drop
performance by 11%. Frequent releases of the GIL leads to delays before a thread can
notify that a task has completed. DAGs with many global synchronization points,
like Map-Reduce, can be an exception. If tasks are launching in lock-step with each
other, interweaving small kernels can help hide this bottleneck by cycling through
them more quickly. When the kernels become too small to launch or process the next
task, e.g. 10 Kernels/Task, these benefits begin to disappear. In modern Python, this
suggests it is not sufficient to minimize pure Python code and chain together many
short GIL-releasing NumPy calls within a task. Effective tasks must call into larger
fused kernels that release the GIL for their entire duration. Likewise, it can be better
to avoid thrashing by holding the GIL through a sequence of short kernels. When
these conditions are met, greater than 90% efficiency can often be obtained.

A Potential Future [with PEP 703 nogil]. The proposal to make the GIL optional
in CPython presents an opportunity for robust multithreaded task-based parallelism
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Fig. 9: Scaling of 16ms tasks under CPython 3.9 with and without nogil (GIL Hold Ratio =
0%, Kernels/Task=1).

that is not sensitive to workload design. Figure 9 and fig. 10 compare the perfor-
mance of three runtimes: PyRun, CyRun, and Dask under PEP 703. Without the GIL,
performance of contention dominated DAGs like Map-Reduce, Sweep, and Stencil is
greatly improved. CyRun capitalizes on this and exhibits a substantial speedup of up
4x for the Map-Reduce workload. In contrast, Dask often shows less speedup. PEP
703 adds locks to many Python objects, like lists and dictionaries, in order to preserve
their thread-safe behavior. Runtimes that use these objects extensively, like Dask,
may actually experience degraded performance under this proposal. Similar effects
are observed in PyRun especially for DAGs with long dependency lists, like Cholesky.
Next, we shift our attention to multi-device tasking.
GPU Tasks. Parla GPU tasks require the GIL for a longer period of time to set up
their GPU environment through the CuPy library. This leads to a higher overhead per
task than their CPU counterparts. We study this with a Particle-in-Cell (PIC) [25]
simulation, implemented in Parla, that uses 4 GPUs in a Map-Reduce pattern. Each
task that evolves the particles runs on a separate GPU. These tasks internally launch
20 GPU kernels through Numba (totaling 48ms of work). At each fan-in barrier task,
the kernels are synchronized to collect and broadcast particle statistics.

Unlike CPU tasks, GPU kernels can be enqueued asynchronously to device streams.
The work launched in each task can be synchronized with the host machine at the end
of it’s own task body, which we call self-synchronization, or at a later point in time.
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Fig. 11: Asynchronous run-ahead execution between tasks helps hide overheads from GIL
contention during GPU kernel launching. 500 timesteps of a Particle-in-Cell application, a
map-reduce pattern with 20 asynchronous GPU Numba kernels per task. Total time per task
is approximately 48ms.

We refer to synchronizing the chain of tasks with the host as late as possible, e.g. when
the result is needed on the CPU, as run-ahead synchronization. Precedence constraints
between tasks are managed by cross-stream events. This allows task launching over-
head, and costs of performing Python (GIL-holding) work in each task, to be better
hidden by the workload. In Figure 11, we show how run-ahead synchronization can
greatly improve the performance of Python GPU tasks.
5.3 Multi-Device Tasking

We validate our proposed multi-device runtime system by performing benchmarks
against a runtime that supports similar tasks (Ray). As Ray is a multi-process library,
users don’t need to worry about the GIL, but tasks have higher overheads and must
communicate between processes. Unlike CyRun, Ray does not provide data movement
or variants for their multi-gpu tasks. We then evaluate the throughput of our proposed
Multi-Device Queue launching mechanisms and the efficiency of CrossPy communi-
cation through microbenchmarks. Tying together these performance evaluations, we
demonstrate orchestration of multi-GPU libraries with cuFFTmg, and benchmark a
mini-app written for multi-device tasks using CrossPy.
Overheads of Multi-Device Tasks. Table 4 measures average per-task overhead as
a function of the number of devices per task. These averages are collected from serial
chains of 128 multi-GPU tasks with uniform size and the same number of devices per
task. Measuring serial execution avoids measuring differences in scheduling policy and
packing efficiency. CyRun has at least an 8 x smaller overhead than Ray. However, in
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Table 4: Per-task Multi-GPU Overhead.
Time to initialize all GPU environments is
shown in brackets.

Table 5: Multi-Device Runtime Comparison.
Parallel efficiency in brackets.

2 GPUs
per Task

4 GPUs
per Task

GPUs per Task 1 2 4 System DAG

CyRun Time (s) 1.036 1.043 1.052

Ray Independent 8.58s [0.93] 17.14s [0.93]

Overhead (us) 91 [55] 148 [88] 219 [140]

CyRun Independent 8.23s [0.97] 16.42s [0.97]
Ray Time (s) 1.249 1.252  1.254

Ray Map-Reduce 3.63s [0.87] 7.22s [0.88]
Overhead (us) 1759 1778 1797

CyRun Map-Reduce 3.40s [0.94] 6.55s [0.98]

Task Size = 16ms

FCFS} | o —IF— o o
MDQ § =
0.76 0.81 0.86 0.01 0.96

Time (s)

Fig. 12: Execution times for CyRun’s multi-device queues (MDQ) vs. expected times of a strict
FCFS schedule given their spawn order, for 100 random sequences of 128 16ms multi-device
tasks, requiring different number of GPUs. The optimal wall-clock time for this load under
optimal packing is 768ms and shown by the dashed line.

practice, Ray’s overheads are often partially hidden by overlap in parallel execution.
In contrast, overheads in CyRun may be serialized across threads due to the GIL.
For CyRun, a large fraction of this overhead is the cost to serially set up the GPU
environments for each device in the task (=30us more per device). Comparisons with
Ray on DAGs execution are shown in Table 5. All tasks in the DAGs are the same
size (16ms) with a fixed number of devices. As the system has four GPUs, at 2-GPUs
per task, two tasks are able to run in parallel. Due to lower overheads when launching
each task, CyRun is able to exhibit better performance. Efficiency is calculated w.r.t
the ideal time to process the workload without overheads on a system with 4 GPUs.
Microbenchmark of Multi-Device Queues The proposed MDQ algorithm aims
for high-throughput even with sub-optimal priority in each device queue. We verify
our system’s performance by submitting 128 16ms tasks (64 1-GPU, 32 2-GPU, and
16 4-GPU tasks) in 100 random spawn orders on a four-GPU node. Each device queue
uses insertion order as priority. Figure 12 compares the distribution of the observed
execution times to the expected global FCFS time (without tasking overhead) for the
same task orders. CyRun demonstrates performant scheduling, we next evaluate the
proposed data communication interface and applications that use it.

Microbenchmark of CrossPy Communication. CrossPy provides a natural and
efficient interface for programming multi-device tasks, but sometimes Pythonic iter-
faces can hinder performance. Table 6 demonstrates the benefit of using the cached
alltoall to scatter data between arrays (Listing 6) over the traditional slicing assign-
ment. Python assignment operators must fully resolve the right side before the left.
For index assignment, this means it must first generate a temporary object for the
right-hand-side and then assign it to the left-hand-side. To avoid this intermediate

17



Table 6: Speedup of Reusable alltoall vs. Python Assign-
ment. Performance of first call with initialization shown
in brackets.

#GPUs of src (rows)/dst (cols) To 2 devices To 4 devices

From 2 devices 25x [0.93x] 19.7x [0.91x]

allocation when reusing communication patterns, CrossPy can store the permutation
between the source and target indices. This leads to a significant 20x speedup com-
pared to the direct indexing. The initial setup for this requires additional work and
allocation, resulting in a slight slow down on the first call (shown in brackets).
Multi-GPU Library Orchestration. The motivating use-case for multi-device
tasks is the orchestration of multi-device library calls. To demonstrate that CyRun
presents an effective solution, we submit seven independent multi-gpu FFT tasks of
different sizes, 4 1-GPU, 2 2-GPU, and 1 4-GPU tasks, using the NVIDIA multi-GPU
library cuFFTmg. Within each task, cione_nere is used to move and evenly partition a
new 20k-by-20k CrossPy array from the CPU onto the task’s device set. cuFFTmg is
used to process this partitioned data. Over all spawn orders, we observe an average
speedup of 1.93x and a best case of 2.36x over a serial execution of the same work-
load. Serially, this workload takes 16.5 seconds, with 5.7 seconds of computation and
10.6 seconds of data communication.
Multi-Device Tasks using CrossPy. Multi-device applications can also be devel-
oped without external multi-device libraries. Using CrossPy, we implemented k-means
inside of a multi-device task (Listing 5). Table 7 shows the weak scaling results of
this implementation. As the input size grows, the computation dominates the running
time relative to overheads from task scheduling and kernel dispatching. CrossPy does
not compromise scalability for programming convenience.

Table 7: Weak Scaling Efficiency for k-

means—+-

#Points per device (x10%) 40 80 160

2-GPU Efficiency 99 91 .99

4-GPU Efficiency .86 .88 .97

6 Related work

For an overview of Python-based runtimes for task parallelism, see Section 2. Multi-
device tasking is common in multi-resource job scheduling in workflow and cluster
management systems. In these systems, tasks are whole applications that may require
different collections of nodes and distributed hardware resources [26-29]. Marble [30]
and Teresis [31] provide multi-user job scheduling on systems with multi-GPU jobs.
Teresis provides data prefetching onto GPUs. We focus on the finer-grained problem of
orchestrating multi-device library calls within an application on a single node. Multi-
process workflow scheduling systems, like Dask [32] and Parsl [33], support the static
configuration of workers that map onto user-defined groups of specific devices. Ray [14]
and PyCOMPSs [15] support tasks that specify different numbers of CPU cores and
GPU devices. Unlike CyRun, all are process-based and NVIDIA GPU resources are
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defined to each task through cupa_visiere_pevices. They support persistent GPU mem-
ory between tasks and the preloading of Python modules to reduce the overhead of
initializing each worker’s interpreter. Similar to CyRun, PyCOMPSs allows differ-
ent implementations of a task to be defined for different hardware and environment
resource constraints. However, they do not support GPU data prefetching, streams,
or specialized function variants. Tensorflow [34] allows partitioning of work across
user-defined device sets through a domain-specific interface for deep learning. Beyond
Python, Chapel [35] provides scheduling for tasks with multiple GPUs per locale. HPX

CrossPy provides a shared indexing space across heterogeneous devices, which
is akin to Global Array [36] in heterogeneous settings. CrossPy wraps lower-level
NumPy, CuPy, etc. objects to provide a shared array abstraction on heterogeneous
architectures. Several other Python systems do offer similar solutions but with some
limitations. Ray’s [14] shared datasets and Kokkos Remote Views [37] can only be
distributed across homogeneous devices; Dask’s [32] tasks require input arrays to be
NumPy arrays thus limiting optimizations using manual placement. Legion [9] via
its Python binding Pygion [38] or its Legate [39] NumPy extension, supports het-
erogeneous logically-shared arrays but are not interoperable with other runtimes or
CuPy.

7 Conclusions

We discussed two challenges in developing task-parallel HPC apps in Python. First,
a major bottleneck in performant parallel Python applications is the GIL. We eval-
uated complex interactions between the GIL and proposed different optimizations
to mitigate these overheads. We provide a forward-looking solution that is able to
scale especially effectively under the modern proposal for a "nogil” Python. With
these optimizations, tasking in Python can be quite efficient. Second, we address the
orchestration of multi-device libraries. Our solution in CyRun via multi-device tasks
provides a set of unique features to program and effectively execute them. Our evalu-
ation shows that CyRun can achieve parallel speedup across several applications and
is competitive with more mature solutions in this space.

There are several opportunities for improvement. In the long run, we would like
to adapt more sophisticated mapping and scheduling policies into our runtime, poten-
tially ones that are aware of performance differences between function specializations
over different device sets. For these policies, memoizing and learning from repeated
DAGs may be critical to gather information and hide overheads.
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