
A Scalable Heterogeneous Parallelization Framework

for Iterative Local Searches

Martin Burtscher

Department of Computer Science

Texas State University-San Marcos

San Marcos, TX 78666, USA

Hassan Rabeti

Department of Mathematics

Texas State University-San Marcos

San Marcos, TX 78666, USA

Abstract—This paper describes and evaluates a highly-scalable

framework for running iterative local searches on heterogeneous

HPC platforms. The user only needs to provide serial CPU or

single-GPU code that implements a simple interface. The frame-

work then executes this code in parallel using MPI between com-

pute nodes and OpenMP and multi-GPU support within nodes. It

handles all parallelization aspects, seed distribution and program

termination, and it regularly records the currently best solution.

We evaluate our framework on three supercomputers using a

heuristic iterative hill-climbing TSP solver as well as a search for

good finite-state machines. The framework scales to 2048 nodes

(32,768 cores) on Ranger with less than a 5% drop in efficiency,

searches over 12.2 trillion TSP tours per second on Stampede

using 1024 nodes, and evaluates over 21.5 trillion FSM transitions

per second using 256 CPUs and 384 GPUs on Keeneland.

Keywords: parallelization framework, heterogeneous CPU/GPU

computing, iterative local champion search

I. INTRODUCTION

Most HPC systems are built of interconnected compute
nodes whose complexity is steadily increasing. Whereas older
systems may have used one or two single-core processors per
compute node, many recent systems employ several multi-core
NUMA CPUs that are paired with GPU accelerators [1]. As a
consequence, multiple levels of program parallelization are
needed to fully exploit today‟s high-performance computers.
However, parallel programming is more complex and error
prone than serial coding, and supporting heterogeneity makes it
even more difficult. Moreover, HPC application writers are
typically domain experts, i.e., not computer scientists, who tend
to have little formal training in parallel programming.

One application domain that can greatly benefit from paral-
lelization is iterative local searches (ILS). Many such search
techniques exist [2], including n-opt iterative hill climbing, ant
colony optimization, and other random-restart greedy algo-
rithms. ILS algorithms are frequently used in engineering and
real-time domains because they produce a (potentially better)
solution in every iteration and can therefore be terminated at
any time, for example, when a certain result quality or a run-
time limit has been reached. This is in contrast to exact solvers,
which generally only provide the final result but no directly
useful intermediate information. For problems where the run-

ning time grows exponentially or worse with the input size,
determining the optimal result is often intractable, rendering
exact solvers unusable for large inputs.

To simplify the implementation of ILS on parallel systems,
we have developed the iterative local champion search (ILCS)
framework. It handles all complexities related to paralleliza-
tion, including threading, communication, locking, resource
allocation, heterogeneity, load balance, termination decision,
and result recording. The user only has to write three serial C
functions and/or three single-GPU CUDA functions with sim-
ple interfaces (see below). The framework then executes these
functions in parallel to maximally exploit the underlying hard-
ware. It automatically detects how many CPU cores and GPUs
each compute node has. It utilizes multi-GPU and OpenMP
parallelization within a node and MPI across nodes. The user
has the option to only provide CPU or GPU code and can omit
the MPI component for single-node processing. The framework
terminates the search if the solution has not improved over a
user-defined period of time.

The primary design goals of our framework are ease of use
and scalability. From personal experience we know that many
sophisticated tools and frameworks are underutilized in prac-
tice because they are overly complicated. For instance, they
might require cryptic command line arguments and flags or
configuration files, which makes it challenging to start using
the tool and easy to forget how to use it. Thus, we decided to
opt for maximal simplicity, even at the expense of some flex-
ibility, to ensure that scientists and engineers can readily use
our framework and to encourage them to continue using it. The
ILCS framework takes no command-line arguments. Instead, it
passes the command line unaltered to the first user-provided
function, which returns the size of a user-defined data structure
for storing a search result. The second user-provided function
returns nothing and takes three parameters: a search seed, a
pointer to the current champion (the best solution found so far),
and a pointer to a location for saving the search result (see Sec-
tion III for more details). The third user-provided function
simply records or outputs the search result passed to it. We
believe this interface to be simple yet powerful enough that
HPC users from a wide range of domains can quickly and suc-
cessfully utilize the ILCS framework.

We test and evaluate our framework on two examples. The
first example is a CPU/GPU-based heuristic solver for the trav-

eling salesman problem (TSP), which is one of the most widely
explored combinatorial optimization problems. Its objective is
to find the shortest tour that visits all cities (i.e., predetermined
locations) in a given set of cities. It is used in producing and
optimizing vehicle routes, service schedules, radiation hybrid
maps in genome sequencing, robot arm movement, drilling in
semiconductor manufacturing, overhauling gas turbine engines,
and other codes where the travel distance is important [3][4][5].

Since finding an optimal TSP solution is NP-hard [6], ILS
algorithms such as iterative hill climbing (IHC) are often em-
ployed to find near-optimal tours. These algorithms produce an
initial solution and then improve it using heuristic techniques
until a local optimum is reached that cannot be further im-
proved. In each IHC step, a set of tour modifications, called
moves, is evaluated to determine the best move [7][8]. For in-
stance, a tour can be improved using the 2-opt heuristic, which
removes edges (vA, vB) and (vC, vD) and adds edges (vA, vC) and
(vB, vD) [9]. The IHC algorithm repeatedly chooses the best
move as the next step, thus reducing the length of the tour until
it finds a locally optimal solution. Then it restarts with a new
initial solution. This process of local improvements and restarts
continues until a sufficiently high-quality solution has been
found or a limit on computing resources is reached [10]. Gen-
erally, the larger the number of cities, the more restarts are
needed to find a good solution with high probability, making
this approach computationally expensive for large inputs.

The second example is taken from our research in computer
architecture. It is a CPU/GPU-based configuration-space eval-
uation of finite-state machines (FSMs) for predicting a long
sequence of binary digits as accurately as possible. Such FSMs
are widely used in dynamic branch predictors, memory disam-
biguation hardware, etc. We use them for confidence estima-
tion [11] and real-time compression of program traces [12].

Figure 1: State transition table of n-bit FSM with 1-bit input

We use the (arbitrarily chosen) least significant bit of the n-
bit FSM to predict the next bit in the input sequence. Then the
FSM transitions to the next state based on the current state and
the true value of the input bit. In other words, the FSM imple-
ments a transition table like the one shown in Figure 1. The n

bits of current state are concatenated with the input bit to form
an address (or index) to determine which n-bit state to transi-
tion to. As the boxed-in letters in the figure illustrate, the transi-
tion table holds n×2

n+1
 independent bits, yielding 2^(n×2

n+1
)

possible n-bit FSMs. Whereas not all bit combinations result in
meaningful FSMs (e.g., there are redundancies and not all
FSMs can reach all states), the number of possibilities grows
super-exponentially with n. The ILCS framework is ideal for
searching such a large configuration space to determine well-
performing FSMs.

The rest of this paper is organized as follows. Section II
summarizes related work. Section III presents the ILCS frame-
work, explains how to use it, and discusses its internal opera-
tion. Section IV introduces the supercomputers we used for
evaluation. Section V presents and analyzes the results. Section
VI concludes with a summary. The ILCS framework is availa-
ble at http://cs.txstate.edu/~burtscher/research/ILCS/.

II. RELATED WORK

Several frameworks targeting different domains exist that
execute serial user code in parallel. The two most closely re-
lated frameworks are MapReduce [13] and PADO [14].

MapReduce is a distributed computation framework devel-
oped at Google to process huge amounts of data while shiel-
ding the user from the many intricacies of parallel and distri-
buted computing. The Map function takes key/value input pairs
and produces a set of intermediate key/value pairs, which are
sorted by their keys, and the Reduce function „merges‟ all val-
ues that are associated with the same key.

MapReduce, and its open-source counterpart Hadoop [15],
can be used for running the 2-opt random restart TSP heuristic
or for finding good FSMs. For example, the Map function can
map a random seed to a tour length by generating an initial tour
based on the seed, performing the IHC steps, and returning the
length of the resulting tour. The Reduce function then deter-
mines the shortest tour. Or the Map function could map a ran-
dom seed to an FSM by generating a configuration based on
the seed, evaluating the FSM on a provided input bit sequence,
and returning the number of incorrectly predicted bits. The
Reduce function determines the best-performing FSM.

Solving ILS problems in this or a similar manner takes ad-
vantage of several features of MapReduce, including the scala-
bility, design simplicity, load balancing, and distributed auto-
mation. However, other features are superfluous for ILS algo-
rithms and give rise to substantial overhead. Since MapReduce
is designed for huge datasets requiring large numbers of reduc-
tions, the result pairs from the Map stage are transferred to the
Reduce stage via secondary storage, which is unnecessary for
iterative local searches. Moreover, ILS algorithms only need a
single reduction over all the map results rather than many re-
ductions for different keys, making the Reduce functionality
overly general and slow if it is not internally parallelized. For
non-random restart heuristics such as tabu search [16] and ge-
netic algorithms, the MapReduce framework would have to be
invoked repeatedly, resulting in startup overhead. The only
termination criterion in MapReduce is the completion of all
work, making it difficult to use in real-time environments. Al-

so, Hadoop currently does not support GPUs. However, there
are projects such as MARS [17] that provide MapReduce func-
tionality for GPU clusters.

PADO is a population-based (multiple islands) meta-
heuristic parallelization framework with partially ordered
knowledge sharing consisting of two components. The frontend
is based on the Java Opt4J framework [18], and the backend is
the Cyber-application framework [19], which supports both
shared-memory and distributed-memory parallelism. In PADO,
the user specifies the problem using the Opt4J interface by ex-
pressing an algorithm in terms of genotypes, phenotypes and
objectives and then implementing the solver using a creator,
decoder and evaluator. In this interface, a genetic TSP heuristic
can, for example, be expressed as follows. The phenotype
would be a permutation of the cities, the genotype is a particu-
lar encoding of a tour, and the fitness of an individual is the
tour length. PADO can tackle a large number of problems with
this model. It is scalable and robust due to its ordered know-
ledge sharing and loosely coupled island model. Also, PADO
supports flexible termination criteria, including runtime, gener-
ation, and convergence ratio. However, because PADO targets
population-based optimization, the fixed interface can be limit-
ing for single-state local searches, such as hill climbing or tabu
search, thus reducing its applicability to a subset of the iterative
local search methods. Additionally, PADO‟s cyber-application
framework also does not currently support GPUs.

In summary, both MapReduce and PADO can be used to
implement iterative local searches. However, due to their much
broader target domains, they include many features that are not
needed for ILS algorithms. These extra features incur overhead
and may complicate the implementation. Neither PADO nor
Hadoop support GPUs. PADO uses Java, which is not typically
available on HPC systems. However, there exist HPC versions
of MapReduce such as MapReduce-MPI [20].

HTCondor [21], a job submission batch system, also shares
some commonalities with our ILCS framework. HTCondor
focuses on workload management and distribution with the
goal of using resources on compute nodes that would otherwise
be idle. It employs a Classified Advertisements (ClassAd) me-
chanism for flexible and dynamic resource matching. This me-
chanism gives the compute nodes the ability to specify the type
of work they can accept, allowing the system to dynamically
distribute work to a large range of architectures and environ-
ments. Similar to our framework, HTCondor can take advan-
tage of accelerators and of compute nodes with different types
and numbers of CPUs and GPUs. While HTCondor offers
many other features that are beyond the scope of ILCS, such as
job scheduling and prioritization as well as multiuser support,
the primary distinction between it and our framework is that
HTCondor delivers a High Throughput Computing (HTC) en-
vironment whereas ILCS offers a High Performance Compu-
ting (HPC) environment. In particular, HTCondor does not
parallelize any code. Instead, it executes multiple serial and/or
already parallelized user jobs concurrently.

Though not designed as frameworks and therefore not di-
rectly related to our work, we also want to briefly mention
some parallel GPU implementations of TSP heuristics, many if
not all of which could be used in the ILCS framework. (To the

best of our knowledge, there are no public GPU implementa-
tions for FSM configuration-space evaluation.) One such TSP
implementation by Fujimoto and Tsutsui makes use of a genet-
ic algorithm with an order crossover operator and a 2-opt local
search [22]. The authors report a 24.2-fold speedup relative to
the corresponding CPU algorithm for problem instances with
up to 512 cities. Another GPU implementation resulted in
speedups of up to 6.02 using a decomposition of the 3-opt pro-
cedure and the associated data structure on problems ranging
from 100 to 3038 cities [23]. A paper by Van Luong et al. pro-
poses a guideline to design and implement general GPU-based
multi-start local search algorithms and reports up to a 12-fold
speedup. The authors characterize local search heuristics as
solution-level, iteration-level or algorithmic-level parallel mod-
els. They illustrate these models by re-designing hill climbing,
tabu search, and simulated annealing for GPUs [24].

III. THE ILCS FRAMEWORK

The ILCS framework requires the user to either supply seri-
al CPU C code or single-GPU CUDA code. Ideally, both are
provided on heterogeneous systems for best performance.

A. CPU Interface

The CPU code implements the following interface.

 size_t CPU_Init(int argc, char *argv[]);

 void CPU_Exec(long seed, void const

*champion, void *result);

 void CPU_Output(void const *champion);

The first function‟s purpose is to perform initialization. It
has the same signature as the main function in C programs. Its
arguments are passed verbatim from the command line used to
invoke the framework. It returns the size in bytes of a user-
defined data structure for recording a search result. The frame-
work‟s only restriction on this data structure is that it starts with
a field of type long that records the quality of the search result.

The CPU_Init function is called once on each compute node
before any calls to CPU_Exec are made.

The CPU_Exec function is repeatedly invoked with differ-
ent seeds. Based on the seed (and the current champion, de-
pending on the heuristic used), it generates a solution and then
improves it until a local optimum is reached. The function re-
turns the local optimum through the location pointed to by the
third argument. We use this approach rather than a return value
so that the system can handle the memory allocation (using
malloc‟s default alignment) and, more importantly, the reuse of
the return data structure. The framework keeps track of the
champion by inspecting the quality field of the returned solu-
tion and updating the champion if necessary. It automatically
spawns an OpenMP thread for each detected CPU core (includ-
ing SMT or hyperthreading cores). Each thread continually
calls CPU_Exec to evaluate seeds with the goal of keeping all
available CPU cores busy.

The CPU_Output function is periodically called by the
main thread to output (e.g., print or save) the current champion.

B. GPU Interface

The GPU interface is very similar to the CPU interface ex-
cept for one additional parameter and return value. The GPU
code implements the following host functions.

 size_t GPU_Init(int argc, char *argv[]);

 long GPU_Exec(long seed, long stride,

void const *champion, void *result);

 void GPU_Output(void const *champion);

The first function again performs initialization. It has the
same prototype as its CPU counterpart. GPU_Init is called once
for each detected GPU. A different GPU is selected as the de-
fault device before each call.

The GPU_Exec function is then repeatedly called with dif-
ferent seeds (and information on the current champion). How-
ever, rather than evaluating a single seed, which would be inef-
ficient on a massively parallel device like a GPU, it evaluates
multiple seeds. The seeds are computed as follows.

seedk = seed + k*stride, where k = 0, 1, 2, …, n-1

The implementer is free to choose the value n but has to in-
form the framework about how many seeds were evaluated by
returning n from the function call. The remaining parameters
are identical to their CPU counterparts. The framework spawns
additional OpenMP threads, one for each detected GPU, that
repeatedly invoke GPU_Exec for the associated device. The
goal is to keep all available GPUs busy.

The GPU_Output function is intermittently called by the
master thread to record the current champion. Hybrid
CPU/GPU code exclusively uses the CPU_Output function.

C. Sample User Code

We illustrate how to utilize this interface on a very simple
CPU code fragment. Its primary purpose is to demonstrate how
the user-defined data structure DS can be set up and used.

struct DS {

 long quality; // lower is better

 // other fields

};

long map(long seed) {

 long result = func(seed); // perform ILS

 return result;

}

size_t CPU_Init(int argc, char *argv[]) {

 return sizeof(struct DS);

}

void CPU_Exec(long seed, void const

*champion, void *result) {

 ((struct DS*)result)->quality = map(seed);

 // update other fields of result

}

void CPU_Output(void const *c) {

 if (c != NULL) {

 printf("%ld", ((struct DS*)c)->quality);

 // print or save other fields of c

 }

}

D. Code Restrictions

So as not to interfere with the framework‟s operation, cer-
tain restrictions are imposed on the user code. For instance, the
CPU code must be serial and cannot include OpenMP pragmas
or MPI calls. Global variables are allowed as long as they are
only read in the CPU_Exec function. Similarly, the GPU code
must be genuine single-GPU code that does not include calls to
cudaSetDevice. Global device variables are allowed but global
host variables are not. Instead, the GPU_Init function should
transfer any needed information to the GPU. Both the CPU and
the GPU code should be deterministic so that the same answer
is always computed for a given set of arguments.

If these restrictions are violated, the program may not ex-
ecute properly, may produce incorrect output (not necessarily
in every run), or may run at a reduced performance level. For
example, using OpenMP pragmas might yield an unbalanced
work distribution, writes to global variables might cause data
races, and switching to a non-default GPU might result in an
unavailable device and the termination of a handler thread.

E. Sample Applications

Our framework can be used to implement many common
iterative local search heuristics. Here we discuss a few such
heuristics and their interaction within the framework.

 N-opt random restart: The user code generates a start-
ing permutation based on the seed, computes a local
optimal solution, and returns the solution.

 Genetic with local search: The user code starts with a
random permutation based on the seed, climbs to a lo-
cal optimum, performs a crossover with the champion
to perturb the state, and again climbs to a new local op-
timal solution. The code returns this solution [22].

 Chained Lin-Kernighan: Based on the seed, the user
code applies a random or random-walk kick to the cur-
rent champion, computes a local optimal solution from
the result of the kick, and returns the solution.

These and similar heuristics are often used in combinatorial
optimization problems. Subset-selection in regression or fea-
ture selection [25], an NP-hard problem, is another example
domain that can benefit from our framework. Here, the user
code would generate a binary sequence from the seed
representing the presence/absence of a regressor/feature. Then
the code iteratively adds and removes a regressor/feature, based
on their respective qualities (e.g., R

2
), until it reaches a local

optimal solution, which it returns. This popular stepwise ap-
proach is similar to n-opt. Notably, genetic algorithms have
proven useful for subset selection in linear regression, which
could also be applied to dimensionality reduction for discrimi-
nant analysis, semi-parametric mixture model density estima-
tion, and reduced kernel estimators [26].

F. Internal Operation

The ILCS framework starts executing one MPI process per
compute node (the master thread). It queries the number of
CPU cores and GPUs present in each node. Then it calls
CPU_Init once and GPU_Init for each GPU. Next it forks a
worker thread for each detected CPU core as well as a handler

thread for each GPU. These threads repeatedly call the respec-
tive Exec function and record the result. We oversubscribe the
threads because the GPU handler threads are expected to sleep
most of the time while they wait for the GPU code to finish.

The master thread handles all MPI communication and also
sleeps most of the time. Once the worker threads are running,
its primary job is to scan the results of the workers to find the
best solution computed so far (i.e., the local champion). This
information is then globally reduced to determine the current
system-wide champion. Node 0 outputs this information. Then
the master threads sleep for a while before repeating their task.

Figure 2: Threads and thread activity in the ILCS framework: Fc = framework

CPU code, Fg = framework GPU code, Fm = Framework master code,

h = user host code for accessing the GPUs

Figure 2 illustrates the operation of the ILCS framework on
a node of a hypothetical system with four CPU cores (without
hyperthreading) and two GPUs. The following happens on each
node of the system. First, the master thread starts four worker
threads (one per CPU core) that repeatedly call the user‟s CPU
code with different seeds and record the results. In addition, the
master thread starts two GPU handler threads (one per GPU)
that repeatedly call the user-provided GPU host code with dif-
ferent seeds and gather the results. The host code in turn in-
vokes the user‟s GPU code and sleeps while waiting for the
GPU kernel to finish. Then the master thread goes to sleep. It
awakens periodically to communicate with the master threads
of the other nodes to determine the current global champion.

Based on the number of compute nodes, the framework as-
signs non-overlapping ranges of unique seeds to each node.
The CPU threads work their way up from the bottom of the
range while the GPUs work their way down from the top of the
range. This approach is similar to how the stack and heap grow
towards each other and was chosen to achieve a balanced
workload independent of the ratio of the CPU-to-GPU perfor-
mance. It also works if either the GPUs or CPUs are not used.

Figure 3 illustrates how the seeds are distributed on the ex-
ample of a four-node system with four CPU cores and two
GPUs per node. First, the seed range (0 through 2

64
-1) is evenly

distributed over the four nodes. Within each node, the four

CPU worker threads (labeled a, b, c, and d) get values from the
bottom of their node‟s seed range, assigned in round-robin fa-
shion. The two GPUs (labeled 1 and 2) are assigned values
from the top of their node‟s seed range. In this case, GPU1 gets
chunks of odd numbers and GPU2 chunks of even numbers.

Figure 3: Seed distribution

In ILS algorithms, it is often unknown which seeds are
good, so any distribution of seeds that avoids duplicates is a
priori equally good. Users can employ the seeds to generate
other values and distributions. As long as this mapping is injec-
tive, the independent searches will not explore overlapping
regions. Our TSP and FSM codes use the seeds provided by the
framework to initialize a random-number generator, so the ac-
tual values that the codes utilize are not piecewise sequential.
We found the most common elements among ILS algorithms to
be the use of random seeds and a champion solution, which is
why we provide both in our framework.

As it is unlikely that even the largest supercomputer will be
able to scan the entire 64-bit seed range in a reasonable amount
of time, the framework has to decide when to terminate the
search. Because ILS algorithms typically improve the result
quality rapidly in the beginning but then gradually plateau out
as the quality approaches the optimal solution, the framework
terminates the search when the quality has not improved over a
certain period of time. The default value for this timeout is 20
seconds. Note that this termination decision, which is based on
an MPI_Allreduce, and all other components of the framework
require no centralized entity that might impact scalability.

Users can easily update the timeout value in the frame-
work‟s header file. This is also where the user selects how fre-
quently the Output function is called, whether the framework
should run in single-node mode or use MPI, and whether only
CPU, only GPU, or both types of code should be used.

IV. EXPERIMENTAL METHODOLOGY

A. HPC Systems

We evaluated the ILCS framework on Keeneland at NICS
as well as on Ranger and Stampede at TACC. Table I provides
pertinent information about the three supercomputers.

Keeneland is an HP cluster with dual 8-core Intel Xeon E5-
2670 processors and three NVIDIA M2090 GPUs per node.
The Fermi-based GPUs each have 512 CUDA cores in 16
streaming multiprocessors. Ranger is a Sun cluster with four
quad-core AMD Opteron (Barcelona) processors per node.

CPUs GPUs CPUs GPUs CPUs GPUs CPUs GPUs

0, 1, 2, … …, 2
63

-1, 2
63

, … …, 2
64

-2, 2
64

-1

2
62

, ... …, 2
63

-1

a b c d a b c d a b 1 2 1 2 1 2 1 2 1 2 1

CPU threads (one seed per thread at a time) GPUs (strided range of seeds per GPU at a time)

Node 0 Node 1 Node 2 Node 3

Stampede is a Dell cluster with two 8-core Intel Xeon E5-2680
processors per node. A few of the nodes contain GPUs, but at
the time of this writing, not all GPUs were operational in this
brand new system. We also could not exploit the MIC accelera-
tors as symmetric processing was not yet enabled.

Table I: System Information

B. Software and Compilers

We compiled and linked the framework, the TSP code, and
the FSM code on the three systems with the following compi-
lers and flags. On the Keeneland system, we use nvcc 4.2 with
„-O3 -arch=sm_20 -use_fast_math‟ and icc 12.1.5 with „-O3
-xhost -openmp‟. On the Ranger system, we use icc 10.1 with
„-O3 -xW -openmp‟. On the Stampede system, we use icc
13.0.1 with „-O3 -xhost -openmp‟.

To obtain the results presented in this paper, we instru-
mented the framework and user code to time itself and to count
the number of moves or transitions evaluated, respectively. The
timer is started by the master thread after an MPI barrier at the
point where the OpenMP threads are forked. It is stopped just
before the master thread prints the final statistics and termi-
nates. Note that we only evaluated the instrumented code to
avoid having to rerun every experiment without instrumenta-
tion. We expect the uninstrumented code to be slightly faster.

We use O‟Neil et al.‟s CUDA TSP solver [27], from which
we extracted a serial C version for the CPUs. We use their TSP
implementation for the GPU but with Rocki and Suda‟s opti-
mization to support problem sizes above 110 cities [28] as well
as some modifications to fit the code into our framework. We
run these codes on four successively larger datasets from
TSPLIB [29] that are relatively difficult for their size [30].
They are kroE100, ts225, rat575, and d1291. The values in the
names represent the number of cities.

We wrote the FSM code from scratch and use it to evaluate
the configuration space of 3-, 4-, 5-, and 6-bit FSMs as illu-
strated in Figure 1. We use a 720,320-bit long confidence-
estimation trace from a load-value predictor as input [11].

V. RESULTS

A. Performance

Table II lists the largest configuration we tested on the four
systems along with the resulting framework performance on
the TSP code in trillion (10

12
) moves evaluated per second.

Figure 4 shows the same results in graphical format.

On Stampede, the framework exceeds 12.2 trillion tour
evaluations per second on the ts225 input, highlighting the tre-
mendous potential of using parallelism for local search prob-

lems. On the three larger inputs, Stampede outperforms the old
Ranger system even though the latter uses twice as many CPU
cores. On the GPU-accelerated Keeneland cluster, the perfor-
mance tends to increase with larger problem sizes whereas on
the CPU-only systems the performance tends to drop off for
larger inputs. This is why Ranger, which has the most CPUs,
yields the best performance on the smallest input and Keenel-
and, using nearly 200,000 GPU cores, provides the highest
performance on the largest input.

Table II: Best performing system configuration we tested and number of TSP
moves evaluated per second (in trillions)

Figure 4: Number of TSP moves evaluated per second with the largest

evaluated system configuration

This performance increase and decrease is a consequence of
a key implementation difference between the CPU and the
GPU code. The CPU code is based on a matrix that stores the
distance between every city pair. Since the matrix size grows
with the square of the number of cities, distance lookups tend
to miss in the CPU caches for large inputs, thus lowering per-
formance. In contrast, the GPU code is based on an array of
city coordinates, which requires the (repeated) calculation of
the distance between city pairs but only grows linearly with the
problem size. In fact, the coordinates fit into the GPU‟s shared
memory (a software-controlled data cache) for all four problem
sizes. Due to the high frequency of short-running GPU kernels
for small inputs, calling, initialization, and handler-thread
overheads significantly lower the performance of the frame-
work for the smallest input. To improve performance, a matrix-
based GPU implementation [27] combined with larger seed-
range chunks should be used for small inputs, and an array-
based CPU implementation should be used for large inputs.

Table III lists the largest configuration we tested along with
the resulting framework performance on the FSM code in tril-
lion transitions evaluated per second. Figure 5 shows the same
results in graphical format.

compute CPU CPU clock GPU GPU clock

nodes cores frequency cores frequency

Keeneland 264 528 4,224 2.6 GHz 792 405,504 1.3 GHz

Ranger 3,936 15,744 62,976 2.3 GHz - - -

Stampede 6,400 12,800 102,400 2.7 GHz 128* n/a n/a

system CPUs GPUs

compute total total total total kroE100 ts225 rat575 d1291

nodes CPUs GPUs CPU cores GPU cores Tmoves/s Tmoves/s Tmoves/s Tmoves/s

Keeneland 128 256 384 2048 196,608 3.392 4.577 5.176 4.610

Ranger 2048 8192 0 32768 0 10.754 10.363 7.427 1.683

Stampede 1024 2048 0 16384 0 10.630 12.239 10.819 2.502

system

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

kroE100 ts225 rat575 d1291

m
o

ve
s

e
va

lu
at

e
d

 p
e

r
se

co
n

d
 (t

ri
lli

o
n

s)
Keeneland

Ranger

Stampede

Table III: Best performing system configuration we tested and number of
FSM transitions evaluated per second (in trillions)

Figure 5: Number of FSM transitions evaluated per second with the largest
evaluated system configuration

On Keeneland, the framework reaches over 20 trillion FSM
transitions per second on the three smaller FSM sizes. Both
Ranger and Stampede result in quite stable performance on all
four inputs. But on Keeneland, the throughput for the largest
FSM is substantially lower. The reason for this performance
drop is that the transition tables are stored in the GPUs‟ 48 kB
on-chip shared memory, which reduces the number of thread
blocks that can simultaneously run in each streaming multipro-
cessor to one for the largest input. Nevertheless, the GPUs con-
tribute a tremendous amount of performance, as the single-
node results in Table IV reveal. On Keeneland, the three GPUs
provide over 96% of the node performance on the three smaller
inputs and over 93% on the largest input. Note, however, that it
takes each superscalar CPU core only 2.5 ns (6.7 cycles) on
average to evaluate one FSM transition and each GPU core
about 10 ns (12.5 cycles) on the three smaller inputs.

Table IV: Number of FSM transitions evaluated per second on one node

The single-node TSP results are presented in Figure 6.
Stampede uses a later generation of CPUs and a higher clock
speed than Ranger, which is why Stampede‟s nodes are much
faster than Ranger‟s. Keeneland‟s compute nodes are the fast-
est overall because of the GPUs. Nevertheless, it should again
be noted that the CPUs are very efficient. On the ts225 input, it
takes each Stampede core only 3.6 machine cycles on average
to evaluate a tour alternative. This high speed is possible be-

cause the code only evaluates and compares the change in tour
length due to an 2-opt move, which makes the amount of com-
putation per move small and independent of the input size. The
GPU code, in contrast, has to first compute four distances be-
tween cities before it can evaluate an 2-opt move, which is why
it takes 46 cycles on average even on the most efficient input.

Figure 6: Number of TSP moves evaluated per second on one compute node

B. Scaling

Figure 7 displays the TSP node scaling on Ranger on a log-
log plot. The results for the kroE100 input are mostly hidden
„behind‟ the results for the ts225 input. The results for Stam-
pede (not shown) are very similar except for higher absolute
values. Figure 8 shows the node scaling on Keeneland.

Figure 7: Number of TSP moves evaluated per second on Ranger using

different numbers of compute nodes

The ILCS framework scales very well as indicated by the
parallel efficiency, i.e., the deviation from linear speedup rela-
tive to the single-node performance. On any of the four TSP
inputs, the efficiency does not drop by more than 1% on Stam-
pede, 5% on Ranger, and 7% on the three smaller inputs on
Keeneland when scaling to the node counts listed in Table II.
On the d1291 input, Keeneland incurs up to a 21% loss in effi-
ciency. The reason for the relatively poor scaling on this input

compute total total total total 3-bit FSM 4-bit FSM 5-bit FSM 6-bit FSM

nodes CPUs GPUs CPU cores GPU cores Ttrans/s Ttrans/s Ttrans/s Ttrans/s

Keeneland 128 256 384 2048 196,608 21.532 21.050 20.670 12.435

Ranger 2048 8192 0 32768 0 9.837 9.839 9.824 9.688

Stampede 1024 2048 0 16384 0 6.551 6.543 6.530 6.654

system

0.0

5.0

10.0

15.0

20.0

25.0

3-bit FSM 4-bit FSM 5-bit FSM 6-bit FSM

tr
an

si
ti

o
n

s
e

va
lu

at
e

d
 p

e
r

se
c

(t
ri

lli
o

n
s)

Keeneland

Ranger

Stampede

compute total total total total 3-bit FSM 4-bit FSM 5-bit FSM 6-bit FSM

nodes CPUs GPUs CPU cores GPU cores Gtrans/s Gtrans/s Gtrans/s Gtrans/s

Keeneland 1 2 3 16 1,536 169.241 165.620 163.366 97.474

Ranger 1 4 0 16 0 4.807 4.800 4.799 4.756

Stampede 1 2 0 16 0 6.420 6.422 6.420 6.531

system

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

kroE100 ts225 rat575 d1291

m
o

ve
s

e
va

lu
at

e
d

 p
e

r
se

co
n

d
 (b

ill
io

n
s)

Keeneland

Ranger

Stampede

0.1

1

10

100

1000

10000

100000

m
o

ve
s

e
va

lu
at

e
d

 p
e

r
se

co
n

d
 (b

ill
io

n
s)

compute nodes

kroE100

ts225

rat575

d1291

is that the termination threshold is too short for the assigned
seed-range size. In particular, the time the system waits for all
GPU threads to finish once the termination decision has been
made amounts to a third of the overall runtime. During this
time, the parallelism decreases as the CPU worker threads and
the first two GPUs stop processing, lowering the efficiency. On
the other inputs, this overhead is much smaller because the
waiting time represents only a small fraction of the overall ex-
ecution time. Hence, the efficiency on the largest input can
likely be improved with a longer termination threshold.

Figure 8: Number of TSP moves evaluated per second on Keeneland using

different numbers of compute nodes

Nevertheless, these results demonstrate that the ILCS
framework generally scales very well over several orders of
magnitude. Clearly, the infrequent MPI_Allreduce, which is
performed once per four seconds and is the only inter-node
communication, does not significantly affect the scalability.

Figure 9: Number of FSM transitions evaluated per second on Ranger using
different numbers of compute nodes

Figure 9 shows the FSM node scaling on Ranger on a log-
log plot. The results for all four inputs overlap completely. On
this code, the framework scales perfectly, i.e., the parallel effi-
ciency drops by only 0.6% when going from 1 to 2048 nodes.

Aside from the absolute performance, the results for Stampede
and Keeneland look almost identical (not shown), except on
Keeneland the performance of the 6-bit FSM is noticeably low-
er than that of the three smaller FSMs, as discussed before. On
Stampede, the efficiency drops by no more than 0.7% and on
Keeneland by no more than 1.2% when scaling to 1024 and
128 nodes, respectively.

We illustrate the TSP intra-node scaling on the example of
Stampede in Figure 10. Note that this figure uses linear axes.
The parallel efficiency relative to the performance with one
worker thread (and a master thread) is 98.9% or better on all
inputs. These results show that the master thread is rarely
awake and that the oversubscription of threads is warranted.

Figure 10: Number of TSP moves evaluated per second on Stampede using
different numbers of worker threads in one compute node

C. Quality

Whereas it is beyond the scope of this work to improve the
TSP code per se, for completeness we also provide results on
the quality of the solutions. It should be noted, however, that
the runtime and champion quality of ILS algorithms generally
depend on luck, i.e., how quickly a „good‟ seed is encountered.

Table V: Runtime in seconds until termination, total number of evaluated
seeds, and final champion tour length over optimal tour length on the largest

system configuration

10

100

1000

10000

1 2 4 8 16 32 64 128

m
o

ve
s

e
va

lu
at

e
d

 p
e

r
se

co
n

d
 (b

ill
io

n
s)

compute nodes

kroE100

ts225

rat575

d1291

1

10

100

1000

10000

tr
an

si
ti

o
n

s
e

va
lu

at
e

d
 p

e
r

se
c

(b
ill

io
n

s)

compute nodes

3-bit FSM

4-bit FSM

5-bit FSM

6-bit FSM

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m
o

ve
s

e
va

lu
at

e
d

 p
e

r
se

co
n

d
 (b

ill
io

n
s)

worker threads

kroE100

ts225

rat575

d1291

inp system runtime seeds evaluated error

Keeneland 24.5 166,162,849 0.00%

Ranger 24.3 522,364,458 0.00%

Stampede 24.0 509,523,246 0.00%

Keeneland 24.8 17,396,687 0.00%

Ranger 24.4 38,704,838 0.06%

Stampede 24.0 45,054,888 0.06%

Keeneland 63.0 2,970,364 6.48%

Ranger 37.1 2,511,527 6.44%

Stampede 28.5 2,811,434 6.44%

Keeneland 71.7 228,182 5.02%

Ranger 28.2 32,768 6.45%

Stampede 38.0 65,536 6.41%

kr
o

E1
0

0
ts

2
2

5
ra

t5
7

5
d

1
2

9
1

Table V presents the TSP runtime in seconds on the largest
system configuration we tested (see Table II for the actual con-
figuration), the total number of distinct seeds evaluated, and the
quality of the final champion tour in terms of how much longer
it is than the truly optimal tour, as computed by the exact solver
Concorde [31]. Note that the step size is four seconds and the
termination threshold is five steps, which are the default values.

Concorde is an example of an exact solver that, as dis-
cussed earlier, provides no useful solution while it computes.
Whereas it works well on the four inputs we use, it has not ter-
minated on some inputs and takes very long on others. For in-
stance, it takes days to solve the d2103 input. Also, there is no
description of what problems will result in substantial runtime.

For the smallest input, our three systems find the optimal
solution almost right away and then keep running for five more
steps (20 seconds) until the framework terminates the search.
Clearly, the chosen termination threshold is too large for small
TSP problems. For the other inputs, some of the searches do
not find the optimal solution, but each system comes within
about 6.5% in approximately half a minute to a minute of run-
time. Note that additional experiments with larger termination
thresholds resulted in better solutions (not shown).

Keeneland is able to find a better (in fact optimal) solution
for ts225 with fewer evaluated seeds than the other two sys-
tems. The reason for this behavior is twofold. First, due to the
presence of the GPUs, it evaluates seeds early on that the other
systems are not evaluating, which may, by pure chance, lead to
a better solution. Second, the CUDA code uses a different ran-
dom number generator to create the initial tours than the C
code, which might also lead to finding a good solution faster.

The number of evaluated seeds decreases with larger prob-
lem sizes as there are more 2-opt moves to consider and more
IHC iterations to perform per seed. In fact, each Ranger core
evaluates only one seed for the d1291 input, indicating that a
substantially larger termination threshold should be chosen for
this input.

Figure 11: Champion tour length over optimal tour length after each one-
second step with 128 nodes on Keeneland

Figure 11 demonstrates, on the example of the largest Kee-
neland configuration we tested but with one-second steps, how

the champion quality improves over time. The results from the
other systems follow the same pattern and are not shown. The
curve for the d1291 input only starts at step 3 because it takes
almost three seconds for the first result to be returned to the
framework. The figure is cut off at step 30 for clarity even
though the d1291 run extends to step 47 without achieving any
further improvement.

The results in Figure 11 exhibit the step-wise improvement
that is typical for ILS algorithms. Initially, the champion tends
to improve often, but then the improvements become less fre-
quent as more and more seeds need to be evaluated to beat the
current champion.

Figure 12 shows the quality of the champion for different
node counts after 6 steps (24 seconds), i.e., after almost iden-
tical runtimes. We only provide results for Stampede as the
results for the other systems are qualitatively very similar.

Figure 12: Champion tour length over optimal tour length after six steps for
different node counts on Stampede

For the smallest input, even a single compute node with 16

CPU cores finds the optimal solution. Whereas the optima for
the three larger inputs are not found, Figure 12 illustrates that
larger node counts generally result in better solutions. This is
not always the case, though, as can be seen on the d1291 input,
where 512 nodes compute a better champion in the first 6 steps
than 1024 nodes do. The reason for this anomaly is that, due to
subtle timing variations, slightly different numbers of seeds
have been evaluated per node after six steps, i.e., the seeds eva-
luated on the larger system configuration are not a superset of
the seeds evaluated on the smaller configuration. Note that the
timeout threshold hides these variations in full runs. In general,
more parallelism clearly helps to find better solutions faster.

VI. SUMMARY AND FUTURE WORK

This paper presents and evaluates the ILCS parallelization
framework for (heterogeneous) HPC systems. It is designed for
iterative local searches with the goal of providing a quick tur-
naround for implementing an ILS algorithm, running it in pa-
rallel, and obtaining answers on whatever size machine the user
has access to. The framework records the currently best solu-
tion, called the champion, every few seconds so that the search

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

d
e

vi
at

io
n

 fr
o

m
 o

p
ti

m
al

 t
o

u
r

le
n

gt
h

step

kroE100

ts225

rat575

d1291

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

1 2 4 8 16 32 64 128 256 512 1024

d
e

vi
at

io
n

 fr
o

m
 o

p
ti

m
al

 t
o

u
r

le
n

gt
h

compute nodes

kroE100

ts225

rat575

d1291

can be stopped at any time. It handles the MPI communication
between the compute nodes, provides OpenMP and multi-GPU
support within nodes, and is completely decentralized for max-
imal performance and scaling. The ILCS framework is availa-
ble at http://cs.txstate.edu/~burtscher/research/ILCS/.

Using an iterative hill-climbing heuristic TSP solver and an
FSM configuration-space exploration as examples, we demon-
strate that the ILCS framework runs on systems with different
numbers and types of CPUs and GPUs, scales to 2048 compute
nodes with just a few percent loss in efficiency, searches over
12.2 trillion TSP tour alternatives per second on a machine
with 2048 CPUs and evaluates over 21.5 trillion FSM transi-
tions per second on a system with 256 CPUs and 384 GPUs.

In future work, we want to adapt the master thread‟s sleep
time and the termination threshold based on how long it takes
for the first results to be computed. This should make ILCS‟
default parameters useful for a larger range of input sizes.

ACKNOWLEDGMENTS

This work was supported by NSF grants 1141022 and
1217231 as well as donations from NVIDIA Corporation and
Intel Corporation.

This research was supported by an allocation of advanced
computing resources provided by the National Science Founda-
tion. The computations were performed on Keeneland at the
National Institute for Computational Sciences (NICS).

The authors acknowledge the Texas Advanced Computing
Center (TACC) at the University of Texas at Austin for provid-
ing HPC resources that have contributed to the research results
reported within this paper.

REFERENCES

[1] http://www.top500.org/ (February 2013)

[2] H.R. Lourenco, O.C. Martin, and T. Stutzle. “Iterated Local Search.”
Handbook of Metaheuristics, by G.A. Kochenberger (Ed.), pp. 321-354.
Springer, 2003.

[3] R. Agarwala, D.L. Applegate, D. Maglott, G.D. Schuler, and A.A.
Schaffer. “A Fast and Scalable Radiation Hybrid Map Construction and
Integration Strategy.” Genome Research, 10350-364. 2000.

[4] S. Mobaieen, A. Rabii, and B. Mohamady. “Optimal Robot Arm
Movement using Tabu Search Algorithm.” Research Journal of Applied
Sciences, Engineering and Technology, vol. 4, no. 4, pp. 383-386. 2012.

[5] R. Matai, S.P. Singh, and M.L. Mittal. “Traveling Salesman Problem:
An Overview of Applications, Formulations, and Solution Approaches.”
Traveling Salesman Problem, Theory and Applications, by D. Davendra
(Ed.). InTech, 2010.

[6] M.R. Garey and D.S. Johnson. “Computers and Intractability: A Guide
to the Theory of NP-Completeness.” San Francisco: W.H. Freeman.
1979.

[7] J. Ambite and C. Knoblock. “Planning by Rewriting.” Journal of
Artificial Intelligence Research, pp. 207-261. 2001.

[8] L.S. Pitsoulis and M.G.C. Resende. “Greedy Randomized Adaptive
Search Procedures.” Handbook of Applied Optimization, pp. 168-183.
Oxford University Press, 2001.

[9] D. Johnson and L. McGeoch. “The Traveling Salesman Problem: A
Case Study in Local Optimization.” Local Search in Combinatorial
Optimization, by E. Aarts and J. Lenstra (Eds.), pp. 215-310. John Wiley
and Sons, 1997.

[10] C. Rego and F. Glover. “Local Search and Metaheuristics.” The
Traveling Salesman Problem and its Variations, by G. Gutin and A.P.
Punnen (Eds.), pp. 309-368. Kluwer Academic Publishers, 2002.

[11] S. J. Jackson and M. Burtscher. “Self Optimizing Finite State Machines
for Confidence Estimators.” 2006 Workshop on Introspective
Architecture. 2006.

[12] V. Uzelac, A. Milenkovic, M. Burtscher, and M. Milenkovic. “Real-time
Unobtrusive Program Execution Trace Compression Using Branch
Predictor Events.” International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, pp. 97-106. 2010.

[13] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters.” 6th Symposium on Opearting Systems Design and
Implementation. 2004.

[14] J. Kim, M. Kim, M.O. Stehr, H. Oh, S. Ha. “A Parallel and Distributed
Meta-heuristic Framework based on Partially Ordered Knowledge
Sharing.” Journal of Parallel and Distributed Computing, vol. 72, no. 4,
pp. 564-578. 2012.

[15] http://hadoop.apache.org/ (February 2013)

[16] S. Jain and M. Mallozzi. “Parallel Heuristics for TSP on MapReduce.”
Brown University Technical Report. 2010.

[17] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. “Mars: a
MapReduce Framework on Graphics Processors.” 17th International
Conference on Parallel Architectures and Compilation Techniques, pp.
260-269. 2008.

[18] http://opt4j.sourceforge.net/ (February 2013)

[19] M. Kim, M.O. Stehr, J. Kim, and S. Ha. “An Application Framework for
Loosely Coupled Networked Cyber-physical Systems.” 2010 IEEE/IFIP
Conference on Embedded and Ubiquitous Computing. 2010.

[20] http://mapreduce.sandia.gov/ (February 2013)

[21] D. Thain, T. Tannenbaum, and M. Livny. “Distributed Computing in
Practice: The Condor Experience.” Concurrency and Computation:
Practice and Experience, vol. 17, no. 2-4, pp. 323-356. 2005.

[22] N. Fujimoto and S. Tsutsui. “A Highly-Parallel TSP Solver for a GPU
Computing Platform.” Numerical Methods and Applications, Lecture
Notes in Computer Science, vol. 6046/2011, pp. 264-271. 2011.

[23] A. Delévacq, P. Delisle, and M. Krajecki. “Parallel GPU Implementation
of Iterated Local Search for the Travelling Salesman Problem.” Learning
and Intelligent Optimization. 2012.

[24] T. Van Luong, N. Melab, and E.G. Talbi. “GPU-based Multi-start Local
Search Algorithms.” Learning and Intelligent Optimization, Lecture
Notes in Computer Science, vol. 6683/2011, pp. 321-335. 2011

[25] H. Vafaie and I.F. Imam. “Feature Selection Methods: Genetic
Algorithms vs. Greedy-like Search.” International Conference on Fuzzy
and Intelligent Control Systems. 1994.

[26] B.C. Wallet, D.J. Marchette, J.L. Solka, and E.J. Wegman. “A Genetic
Algorithm for Best Subset Selection in Linear Regression.” 28th
Symposium on the Interface. 1996.

[27] M. A. O‟Neil, D. Tamir, and M. Burtscher. “A Parallel GPU Version of
the Traveling Salesman Problem.” 2011 International Conference on
Parallel and Distributed Processing Techniques and Applications, pp.
348-353. 2011.

[28] K. Rocki and R. Suda. “An Efficient GPU Implementation of the
Iterative Hill Climbing based TSP Solver.” 24th ACM Symposium on
Parallelism in Algorithms and Architectures. 2012.

[29] http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/tsp/ (February 2013)

[30] http://www.tsp.gatech.edu/concorde/benchmarks/bench99.html
(February 2013)

[31] http://www.tsp.gatech.edu/concorde/ (February 2013)

