
A Scalable Heterogeneous Parallelization Framework 

for Iterative Local Searches 
 

Martin Burtscher 

Department of Computer Science 

Texas State University-San Marcos 

San Marcos, TX 78666, USA 

 

Hassan Rabeti 

Department of Mathematics 

Texas State University-San Marcos 

San Marcos, TX 78666, USA

 

 
Abstract—This paper describes and evaluates a highly-scalable 

framework for running iterative local searches on heterogeneous 

HPC platforms. The user only needs to provide serial CPU or 

single-GPU code that implements a simple interface. The frame-

work then executes this code in parallel using MPI between com-

pute nodes and OpenMP and multi-GPU support within nodes. It 

handles all parallelization aspects, seed distribution and program 

termination, and it regularly records the currently best solution. 

We evaluate our framework on three supercomputers using a 

heuristic iterative hill-climbing TSP solver as well as a search for 

good finite-state machines. The framework scales to 2048 nodes 

(32,768 cores) on Ranger with less than a 5% drop in efficiency, 

searches over 12.2 trillion TSP tours per second on Stampede 

using 1024 nodes, and evaluates over 21.5 trillion FSM transitions 

per second using 256 CPUs and 384 GPUs on Keeneland. 

Keywords: parallelization framework, heterogeneous CPU/GPU 

computing, iterative local champion search  

 

I. INTRODUCTION 

Most HPC systems are built of interconnected compute 
nodes whose complexity is steadily increasing. Whereas older 
systems may have used one or two single-core processors per 
compute node, many recent systems employ several multi-core 
NUMA CPUs that are paired with GPU accelerators [1]. As a 
consequence, multiple levels of program parallelization are 
needed to fully exploit today‟s high-performance computers. 
However, parallel programming is more complex and error 
prone than serial coding, and supporting heterogeneity makes it 
even more difficult. Moreover, HPC application writers are 
typically domain experts, i.e., not computer scientists, who tend 
to have little formal training in parallel programming. 

One application domain that can greatly benefit from paral-
lelization is iterative local searches (ILS). Many such search 
techniques exist [2], including n-opt iterative hill climbing, ant 
colony optimization, and other random-restart greedy algo-
rithms. ILS algorithms are frequently used in engineering and 
real-time domains because they produce a (potentially better) 
solution in every iteration and can therefore be terminated at 
any time, for example, when a certain result quality or a run-
time limit has been reached. This is in contrast to exact solvers, 
which generally only provide the final result but no directly 
useful intermediate information. For problems where the run-

ning time grows exponentially or worse with the input size, 
determining the optimal result is often intractable, rendering 
exact solvers unusable for large inputs. 

To simplify the implementation of ILS on parallel systems, 
we have developed the iterative local champion search (ILCS) 
framework. It handles all complexities related to paralleliza-
tion, including threading, communication, locking, resource 
allocation, heterogeneity, load balance, termination decision, 
and result recording. The user only has to write three serial C 
functions and/or three single-GPU CUDA functions with sim-
ple interfaces (see below). The framework then executes these 
functions in parallel to maximally exploit the underlying hard-
ware. It automatically detects how many CPU cores and GPUs 
each compute node has. It utilizes multi-GPU and OpenMP 
parallelization within a node and MPI across nodes. The user 
has the option to only provide CPU or GPU code and can omit 
the MPI component for single-node processing. The framework 
terminates the search if the solution has not improved over a 
user-defined period of time. 

The primary design goals of our framework are ease of use 
and scalability. From personal experience we know that many 
sophisticated tools and frameworks are underutilized in prac-
tice because they are overly complicated. For instance, they 
might require cryptic command line arguments and flags or 
configuration files, which makes it challenging to start using 
the tool and easy to forget how to use it. Thus, we decided to 
opt for maximal simplicity, even at the expense of some flex-
ibility, to ensure that scientists and engineers can readily use 
our framework and to encourage them to continue using it. The 
ILCS framework takes no command-line arguments. Instead, it 
passes the command line unaltered to the first user-provided 
function, which returns the size of a user-defined data structure 
for storing a search result. The second user-provided function 
returns nothing and takes three parameters: a search seed, a 
pointer to the current champion (the best solution found so far), 
and a pointer to a location for saving the search result (see Sec-
tion III for more details). The third user-provided function 
simply records or outputs the search result passed to it. We 
believe this interface to be simple yet powerful enough that 
HPC users from a wide range of domains can quickly and suc-
cessfully utilize the ILCS framework. 

We test and evaluate our framework on two examples. The 
first example is a CPU/GPU-based heuristic solver for the trav-



eling salesman problem (TSP), which is one of the most widely 
explored combinatorial optimization problems. Its objective is 
to find the shortest tour that visits all cities (i.e., predetermined 
locations) in a given set of cities. It is used in producing and 
optimizing vehicle routes, service schedules, radiation hybrid 
maps in genome sequencing, robot arm movement, drilling in 
semiconductor manufacturing, overhauling gas turbine engines, 
and other codes where the travel distance is important [3][4][5]. 

Since finding an optimal TSP solution is NP-hard [6], ILS 
algorithms such as iterative hill climbing (IHC) are often em-
ployed to find near-optimal tours. These algorithms produce an 
initial solution and then improve it using heuristic techniques 
until a local optimum is reached that cannot be further im-
proved. In each IHC step, a set of tour modifications, called 
moves, is evaluated to determine the best move [7][8]. For in-
stance, a tour can be improved using the 2-opt heuristic, which 
removes edges (vA, vB) and (vC, vD) and adds edges (vA, vC) and 
(vB, vD) [9]. The IHC algorithm repeatedly chooses the best 
move as the next step, thus reducing the length of the tour until 
it finds a locally optimal solution. Then it restarts with a new 
initial solution. This process of local improvements and restarts 
continues until a sufficiently high-quality solution has been 
found or a limit on computing resources is reached [10]. Gen-
erally, the larger the number of cities, the more restarts are 
needed to find a good solution with high probability, making 
this approach computationally expensive for large inputs. 

The second example is taken from our research in computer 
architecture. It is a CPU/GPU-based configuration-space eval-
uation of finite-state machines (FSMs) for predicting a long 
sequence of binary digits as accurately as possible. Such FSMs 
are widely used in dynamic branch predictors, memory disam-
biguation hardware, etc. We use them for confidence estima-
tion [11] and real-time compression of program traces [12]. 

 

 

Figure 1: State transition table of n-bit FSM with 1-bit input 

 

We use the (arbitrarily chosen) least significant bit of the n-
bit FSM to predict the next bit in the input sequence. Then the 
FSM transitions to the next state based on the current state and 
the true value of the input bit. In other words, the FSM imple-
ments a transition table like the one shown in Figure 1. The n 

bits of current state are concatenated with the input bit to form 
an address (or index) to determine which n-bit state to transi-
tion to. As the boxed-in letters in the figure illustrate, the transi-
tion table holds n×2

n+1
 independent bits, yielding 2^(n×2

n+1
) 

possible n-bit FSMs. Whereas not all bit combinations result in 
meaningful FSMs (e.g., there are redundancies and not all 
FSMs can reach all states), the number of possibilities grows 
super-exponentially with n. The ILCS framework is ideal for 
searching such a large configuration space to determine well-
performing FSMs. 

The rest of this paper is organized as follows. Section II 
summarizes related work. Section III presents the ILCS frame-
work, explains how to use it, and discusses its internal opera-
tion. Section IV introduces the supercomputers we used for 
evaluation. Section V presents and analyzes the results. Section 
VI concludes with a summary. The ILCS framework is availa-
ble at http://cs.txstate.edu/~burtscher/research/ILCS/. 

 

II. RELATED WORK 

Several frameworks targeting different domains exist that 
execute serial user code in parallel. The two most closely re-
lated frameworks are MapReduce [13] and PADO [14]. 

MapReduce is a distributed computation framework devel-
oped at Google to process huge amounts of data while shiel-
ding the user from the many intricacies of parallel and distri-
buted computing. The Map function takes key/value input pairs 
and produces a set of intermediate key/value pairs, which are 
sorted by their keys, and the Reduce function „merges‟ all val-
ues that are associated with the same key. 

MapReduce, and its open-source counterpart Hadoop [15], 
can be used for running the 2-opt random restart TSP heuristic 
or for finding good FSMs. For example, the Map function can 
map a random seed to a tour length by generating an initial tour 
based on the seed, performing the IHC steps, and returning the 
length of the resulting tour. The Reduce function then deter-
mines the shortest tour. Or the Map function could map a ran-
dom seed to an FSM by generating a configuration based on 
the seed, evaluating the FSM on a provided input bit sequence, 
and returning the number of incorrectly predicted bits. The 
Reduce function determines the best-performing FSM. 

Solving ILS problems in this or a similar manner takes ad-
vantage of several features of MapReduce, including the scala-
bility, design simplicity, load balancing, and distributed auto-
mation. However, other features are superfluous for ILS algo-
rithms and give rise to substantial overhead. Since MapReduce 
is designed for huge datasets requiring large numbers of reduc-
tions, the result pairs from the Map stage are transferred to the 
Reduce stage via secondary storage, which is unnecessary for 
iterative local searches. Moreover, ILS algorithms only need a 
single reduction over all the map results rather than many re-
ductions for different keys, making the Reduce functionality 
overly general and slow if it is not internally parallelized. For 
non-random restart heuristics such as tabu search [16] and ge-
netic algorithms, the MapReduce framework would have to be 
invoked repeatedly, resulting in startup overhead. The only 
termination criterion in MapReduce is the completion of all 
work, making it difficult to use in real-time environments. Al-



so, Hadoop currently does not support GPUs. However, there 
are projects such as MARS [17] that provide MapReduce func-
tionality for GPU clusters. 

PADO is a population-based (multiple islands) meta-
heuristic parallelization framework with partially ordered 
knowledge sharing consisting of two components. The frontend 
is based on the Java Opt4J framework [18], and the backend is 
the Cyber-application framework [19], which supports both 
shared-memory and distributed-memory parallelism. In PADO, 
the user specifies the problem using the Opt4J interface by ex-
pressing an algorithm in terms of genotypes, phenotypes and 
objectives and then implementing the solver using a creator, 
decoder and evaluator. In this interface, a genetic TSP heuristic 
can, for example, be expressed as follows. The phenotype 
would be a permutation of the cities, the genotype is a particu-
lar encoding of a tour, and the fitness of an individual is the 
tour length. PADO can tackle a large number of problems with 
this model. It is scalable and robust due to its ordered know-
ledge sharing and loosely coupled island model. Also, PADO 
supports flexible termination criteria, including runtime, gener-
ation, and convergence ratio. However, because PADO targets 
population-based optimization, the fixed interface can be limit-
ing for single-state local searches, such as hill climbing or tabu 
search, thus reducing its applicability to a subset of the iterative 
local search methods. Additionally, PADO‟s cyber-application 
framework also does not currently support GPUs. 

In summary, both MapReduce and PADO can be used to 
implement iterative local searches. However, due to their much 
broader target domains, they include many features that are not 
needed for ILS algorithms. These extra features incur overhead 
and may complicate the implementation. Neither PADO nor 
Hadoop support GPUs. PADO uses Java, which is not typically 
available on HPC systems. However, there exist HPC versions 
of MapReduce such as MapReduce-MPI [20]. 

HTCondor [21], a job submission batch system, also shares 
some commonalities with our ILCS framework. HTCondor 
focuses on workload management and distribution with the 
goal of using resources on compute nodes that would otherwise 
be idle. It employs a Classified Advertisements (ClassAd) me-
chanism for flexible and dynamic resource matching. This me-
chanism gives the compute nodes the ability to specify the type 
of work they can accept, allowing the system to dynamically 
distribute work to a large range of architectures and environ-
ments. Similar to our framework, HTCondor can take advan-
tage of accelerators and of compute nodes with different types 
and numbers of CPUs and GPUs. While HTCondor offers 
many other features that are beyond the scope of ILCS, such as 
job scheduling and prioritization as well as multiuser support, 
the primary distinction between it and our framework is that 
HTCondor delivers a High Throughput Computing (HTC) en-
vironment whereas ILCS offers a High Performance Compu-
ting (HPC) environment. In particular, HTCondor does not 
parallelize any code. Instead, it executes multiple serial and/or 
already parallelized user jobs concurrently. 

Though not designed as frameworks and therefore not di-
rectly related to our work, we also want to briefly mention 
some parallel GPU implementations of TSP heuristics, many if 
not all of which could be used in the ILCS framework. (To the 

best of our knowledge, there are no public GPU implementa-
tions for FSM configuration-space evaluation.) One such TSP 
implementation by Fujimoto and Tsutsui makes use of a genet-
ic algorithm with an order crossover operator and a 2-opt local 
search [22]. The authors report a 24.2-fold speedup relative to 
the corresponding CPU algorithm for problem instances with 
up to 512 cities. Another GPU implementation resulted in 
speedups of up to 6.02 using a decomposition of the 3-opt pro-
cedure and the associated data structure on problems ranging 
from 100 to 3038 cities [23]. A paper by Van Luong et al. pro-
poses a guideline to design and implement general GPU-based 
multi-start local search algorithms and reports up to a 12-fold 
speedup. The authors characterize local search heuristics as 
solution-level, iteration-level or algorithmic-level parallel mod-
els. They illustrate these models by re-designing hill climbing, 
tabu search, and simulated annealing for GPUs [24]. 

 

III. THE ILCS FRAMEWORK 

The ILCS framework requires the user to either supply seri-
al CPU C code or single-GPU CUDA code. Ideally, both are 
provided on heterogeneous systems for best performance. 

A. CPU Interface 

The CPU code implements the following interface. 

 size_t CPU_Init(int argc, char *argv[]); 

 void CPU_Exec(long seed, void const 

*champion, void *result); 

 void CPU_Output(void const *champion); 

The first function‟s purpose is to perform initialization. It 
has the same signature as the main function in C programs. Its 
arguments are passed verbatim from the command line used to 
invoke the framework. It returns the size in bytes of a user-
defined data structure for recording a search result. The frame-
work‟s only restriction on this data structure is that it starts with 
a field of type long that records the quality of the search result. 

The CPU_Init function is called once on each compute node 
before any calls to CPU_Exec are made. 

The CPU_Exec function is repeatedly invoked with differ-
ent seeds. Based on the seed (and the current champion, de-
pending on the heuristic used), it generates a solution and then 
improves it until a local optimum is reached. The function re-
turns the local optimum through the location pointed to by the 
third argument. We use this approach rather than a return value 
so that the system can handle the memory allocation (using 
malloc‟s default alignment) and, more importantly, the reuse of 
the return data structure. The framework keeps track of the 
champion by inspecting the quality field of the returned solu-
tion and updating the champion if necessary. It automatically 
spawns an OpenMP thread for each detected CPU core (includ-
ing SMT or hyperthreading cores). Each thread continually 
calls CPU_Exec to evaluate seeds with the goal of keeping all 
available CPU cores busy. 

The CPU_Output function is periodically called by the 
main thread to output (e.g., print or save) the current champion. 



B. GPU Interface 

The GPU interface is very similar to the CPU interface ex-
cept for one additional parameter and return value. The GPU 
code implements the following host functions. 

 size_t GPU_Init(int argc, char *argv[]); 

 long GPU_Exec(long seed, long stride, 

void const *champion, void *result); 

 void GPU_Output(void const *champion); 

The first function again performs initialization. It has the 
same prototype as its CPU counterpart. GPU_Init is called once 
for each detected GPU. A different GPU is selected as the de-
fault device before each call. 

The GPU_Exec function is then repeatedly called with dif-
ferent seeds (and information on the current champion). How-
ever, rather than evaluating a single seed, which would be inef-
ficient on a massively parallel device like a GPU, it evaluates 
multiple seeds. The seeds are computed as follows. 

seedk = seed + k*stride, where k = 0, 1, 2, …, n-1 

The implementer is free to choose the value n but has to in-
form the framework about how many seeds were evaluated by 
returning n from the function call. The remaining parameters 
are identical to their CPU counterparts. The framework spawns 
additional OpenMP threads, one for each detected GPU, that 
repeatedly invoke GPU_Exec for the associated device. The 
goal is to keep all available GPUs busy. 

The GPU_Output function is intermittently called by the 
master thread to record the current champion. Hybrid 
CPU/GPU code exclusively uses the CPU_Output function. 

C. Sample User Code 

We illustrate how to utilize this interface on a very simple 
CPU code fragment. Its primary purpose is to demonstrate how 
the user-defined data structure DS can be set up and used. 

 

struct DS { 

  long quality;  // lower is better 

  // other fields 

}; 

 

long map(long seed) { 

  long result = func(seed);  // perform ILS 

  return result; 

} 

 

size_t CPU_Init(int argc, char *argv[]) { 

  return sizeof(struct DS); 

} 

 

void CPU_Exec(long seed, void const 

*champion, void *result) { 

  ((struct DS*)result)->quality = map(seed); 

  // update other fields of result 

} 

 

void CPU_Output(void const *c) { 

  if (c != NULL) { 

    printf("%ld", ((struct DS*)c)->quality); 

    // print or save other fields of c 

  } 

} 

D. Code Restrictions 

So as not to interfere with the framework‟s operation, cer-
tain restrictions are imposed on the user code. For instance, the 
CPU code must be serial and cannot include OpenMP pragmas 
or MPI calls. Global variables are allowed as long as they are 
only read in the CPU_Exec function. Similarly, the GPU code 
must be genuine single-GPU code that does not include calls to 
cudaSetDevice. Global device variables are allowed but global 
host variables are not. Instead, the GPU_Init function should 
transfer any needed information to the GPU. Both the CPU and 
the GPU code should be deterministic so that the same answer 
is always computed for a given set of arguments. 

If these restrictions are violated, the program may not ex-
ecute properly, may produce incorrect output (not necessarily 
in every run), or may run at a reduced performance level. For 
example, using OpenMP pragmas might yield an unbalanced 
work distribution, writes to global variables might cause data 
races, and switching to a non-default GPU might result in an 
unavailable device and the termination of a handler thread. 

E. Sample Applications 

Our framework can be used to implement many common 
iterative local search heuristics. Here we discuss a few such 
heuristics and their interaction within the framework. 

 N-opt random restart: The user code generates a start-
ing permutation based on the seed, computes a local 
optimal solution, and returns the solution. 

 Genetic with local search: The user code starts with a 
random permutation based on the seed, climbs to a lo-
cal optimum, performs a crossover with the champion 
to perturb the state, and again climbs to a new local op-
timal solution. The code returns this solution [22]. 

 Chained Lin-Kernighan: Based on the seed, the user 
code applies a random or random-walk kick to the cur-
rent champion, computes a local optimal solution from 
the result of the kick, and returns the solution. 

These and similar heuristics are often used in combinatorial 
optimization problems. Subset-selection in regression or fea-
ture selection [25], an NP-hard problem, is another example 
domain that can benefit from our framework. Here, the user 
code would generate a binary sequence from the seed 
representing the presence/absence of a regressor/feature. Then 
the code iteratively adds and removes a regressor/feature, based 
on their respective qualities (e.g., R

2
), until it reaches a local 

optimal solution, which it returns. This popular stepwise ap-
proach is similar to n-opt. Notably, genetic algorithms have 
proven useful for subset selection in linear regression, which 
could also be applied to dimensionality reduction for discrimi-
nant analysis, semi-parametric mixture model density estima-
tion, and reduced kernel estimators [26]. 

F. Internal Operation 

The ILCS framework starts executing one MPI process per 
compute node (the master thread). It queries the number of 
CPU cores and GPUs present in each node. Then it calls 
CPU_Init once and GPU_Init for each GPU. Next it forks a 
worker thread for each detected CPU core as well as a handler 



thread for each GPU. These threads repeatedly call the respec-
tive Exec function and record the result. We oversubscribe the 
threads because the GPU handler threads are expected to sleep 
most of the time while they wait for the GPU code to finish. 

The master thread handles all MPI communication and also 
sleeps most of the time. Once the worker threads are running, 
its primary job is to scan the results of the workers to find the 
best solution computed so far (i.e., the local champion). This 
information is then globally reduced to determine the current 
system-wide champion. Node 0 outputs this information. Then 
the master threads sleep for a while before repeating their task. 

 

 

Figure 2: Threads and thread activity in the ILCS framework: Fc = framework 

CPU code, Fg = framework GPU code, Fm = Framework master code, 

h = user host code for accessing the GPUs 

 

Figure 2 illustrates the operation of the ILCS framework on 
a node of a hypothetical system with four CPU cores (without 
hyperthreading) and two GPUs. The following happens on each 
node of the system. First, the master thread starts four worker 
threads (one per CPU core) that repeatedly call the user‟s CPU 
code with different seeds and record the results. In addition, the 
master thread starts two GPU handler threads (one per GPU) 
that repeatedly call the user-provided GPU host code with dif-
ferent seeds and gather the results. The host code in turn in-
vokes the user‟s GPU code and sleeps while waiting for the 
GPU kernel to finish. Then the master thread goes to sleep. It 
awakens periodically to communicate with the master threads 
of the other nodes to determine the current global champion. 

Based on the number of compute nodes, the framework as-
signs non-overlapping ranges of unique seeds to each node. 
The CPU threads work their way up from the bottom of the 
range while the GPUs work their way down from the top of the 
range. This approach is similar to how the stack and heap grow 
towards each other and was chosen to achieve a balanced 
workload independent of the ratio of the CPU-to-GPU perfor-
mance. It also works if either the GPUs or CPUs are not used. 

Figure 3 illustrates how the seeds are distributed on the ex-
ample of a four-node system with four CPU cores and two 
GPUs per node. First, the seed range (0 through 2

64
-1) is evenly 

distributed over the four nodes. Within each node, the four 

CPU worker threads (labeled a, b, c, and d) get values from the 
bottom of their node‟s seed range, assigned in round-robin fa-
shion. The two GPUs (labeled 1 and 2) are assigned values 
from the top of their node‟s seed range. In this case, GPU1 gets 
chunks of odd numbers and GPU2 chunks of even numbers. 

 

 

Figure 3: Seed distribution 

 

In ILS algorithms, it is often unknown which seeds are 
good, so any distribution of seeds that avoids duplicates is a 
priori equally good. Users can employ the seeds to generate 
other values and distributions. As long as this mapping is injec-
tive, the independent searches will not explore overlapping 
regions. Our TSP and FSM codes use the seeds provided by the 
framework to initialize a random-number generator, so the ac-
tual values that the codes utilize are not piecewise sequential. 
We found the most common elements among ILS algorithms to 
be the use of random seeds and a champion solution, which is 
why we provide both in our framework. 

As it is unlikely that even the largest supercomputer will be 
able to scan the entire 64-bit seed range in a reasonable amount 
of time, the framework has to decide when to terminate the 
search. Because ILS algorithms typically improve the result 
quality rapidly in the beginning but then gradually plateau out 
as the quality approaches the optimal solution, the framework 
terminates the search when the quality has not improved over a 
certain period of time. The default value for this timeout is 20 
seconds. Note that this termination decision, which is based on 
an MPI_Allreduce, and all other components of the framework 
require no centralized entity that might impact scalability. 

Users can easily update the timeout value in the frame-
work‟s header file. This is also where the user selects how fre-
quently the Output function is called, whether the framework 
should run in single-node mode or use MPI, and whether only 
CPU, only GPU, or both types of code should be used. 

 

IV. EXPERIMENTAL METHODOLOGY 

A. HPC Systems 

We evaluated the ILCS framework on Keeneland at NICS 
as well as on Ranger and Stampede at TACC. Table I provides 
pertinent information about the three supercomputers. 

Keeneland is an HP cluster with dual 8-core Intel Xeon E5-
2670 processors and three NVIDIA M2090 GPUs per node. 
The Fermi-based GPUs each have 512 CUDA cores in 16 
streaming multiprocessors. Ranger is a Sun cluster with four 
quad-core AMD Opteron (Barcelona) processors per node. 

CPUs GPUs CPUs GPUs CPUs GPUs CPUs GPUs

0, 1, 2, … …, 2
63

-1, 2
63

, … …, 2
64

-2, 2
64

-1

2
62

, ... …, 2
63

-1

a b c d a b c d a b 1 2 1 2 1 2 1 2 1 2 1

CPU threads (one seed per thread at a time) GPUs (strided range of seeds per GPU at a time)

Node 0 Node 1 Node 2 Node 3



Stampede is a Dell cluster with two 8-core Intel Xeon E5-2680 
processors per node. A few of the nodes contain GPUs, but at 
the time of this writing, not all GPUs were operational in this 
brand new system. We also could not exploit the MIC accelera-
tors as symmetric processing was not yet enabled. 

 

Table I: System Information 

 

 

B. Software and Compilers 

We compiled and linked the framework, the TSP code, and 
the FSM code on the three systems with the following compi-
lers and flags. On the Keeneland system, we use nvcc 4.2 with 
„-O3 -arch=sm_20 -use_fast_math‟ and icc 12.1.5 with „-O3 
-xhost -openmp‟. On the Ranger system, we use icc 10.1 with 
„-O3 -xW -openmp‟. On the Stampede system, we use icc 
13.0.1 with „-O3 -xhost -openmp‟. 

To obtain the results presented in this paper, we instru-
mented the framework and user code to time itself and to count 
the number of moves or transitions evaluated, respectively. The 
timer is started by the master thread after an MPI barrier at the 
point where the OpenMP threads are forked. It is stopped just 
before the master thread prints the final statistics and termi-
nates. Note that we only evaluated the instrumented code to 
avoid having to rerun every experiment without instrumenta-
tion. We expect the uninstrumented code to be slightly faster. 

We use O‟Neil et al.‟s CUDA TSP solver [27], from which 
we extracted a serial C version for the CPUs. We use their TSP 
implementation for the GPU but with Rocki and Suda‟s opti-
mization to support problem sizes above 110 cities [28] as well 
as some modifications to fit the code into our framework. We 
run these codes on four successively larger datasets from 
TSPLIB [29] that are relatively difficult for their size [30]. 
They are kroE100, ts225, rat575, and d1291. The values in the 
names represent the number of cities. 

We wrote the FSM code from scratch and use it to evaluate 
the configuration space of 3-, 4-, 5-, and 6-bit FSMs as illu-
strated in Figure 1. We use a 720,320-bit long confidence-
estimation trace from a load-value predictor as input [11]. 

 

V. RESULTS 

A. Performance 

Table II lists the largest configuration we tested on the four 
systems along with the resulting framework performance on 
the TSP code in trillion (10

12
) moves evaluated per second. 

Figure 4 shows the same results in graphical format. 

On Stampede, the framework exceeds 12.2 trillion tour 
evaluations per second on the ts225 input, highlighting the tre-
mendous potential of using parallelism for local search prob-

lems. On the three larger inputs, Stampede outperforms the old 
Ranger system even though the latter uses twice as many CPU 
cores. On the GPU-accelerated Keeneland cluster, the perfor-
mance tends to increase with larger problem sizes whereas on 
the CPU-only systems the performance tends to drop off for 
larger inputs. This is why Ranger, which has the most CPUs, 
yields the best performance on the smallest input and Keenel-
and, using nearly 200,000 GPU cores, provides the highest 
performance on the largest input. 

 

Table II: Best performing system configuration we tested and number of TSP 
moves evaluated per second (in trillions) 

 

 

 

Figure 4: Number of TSP moves evaluated per second with the largest 

evaluated system configuration 

 

This performance increase and decrease is a consequence of 
a key implementation difference between the CPU and the 
GPU code. The CPU code is based on a matrix that stores the 
distance between every city pair. Since the matrix size grows 
with the square of the number of cities, distance lookups tend 
to miss in the CPU caches for large inputs, thus lowering per-
formance. In contrast, the GPU code is based on an array of 
city coordinates, which requires the (repeated) calculation of 
the distance between city pairs but only grows linearly with the 
problem size. In fact, the coordinates fit into the GPU‟s shared 
memory (a software-controlled data cache) for all four problem 
sizes. Due to the high frequency of short-running GPU kernels 
for small inputs, calling, initialization, and handler-thread 
overheads significantly lower the performance of the frame-
work for the smallest input. To improve performance, a matrix-
based GPU implementation [27] combined with larger seed-
range chunks should be used for small inputs, and an array-
based CPU implementation should be used for large inputs. 

Table III lists the largest configuration we tested along with 
the resulting framework performance on the FSM code in tril-
lion transitions evaluated per second. Figure 5 shows the same 
results in graphical format. 

compute CPU CPU clock GPU GPU clock

nodes cores frequency cores frequency

Keeneland 264 528 4,224 2.6 GHz 792 405,504 1.3 GHz

Ranger 3,936 15,744 62,976 2.3 GHz - - -

Stampede 6,400 12,800 102,400 2.7 GHz 128* n/a n/a

system CPUs GPUs

compute total total total total kroE100 ts225 rat575 d1291

nodes CPUs GPUs CPU cores GPU cores Tmoves/s Tmoves/s Tmoves/s Tmoves/s

Keeneland 128 256 384 2048 196,608 3.392 4.577 5.176 4.610

Ranger 2048 8192 0 32768 0 10.754 10.363 7.427 1.683

Stampede 1024 2048 0 16384 0 10.630 12.239 10.819 2.502
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Table III: Best performing system configuration we tested and number of 
FSM transitions evaluated per second (in trillions) 

 

 

 

Figure 5: Number of FSM transitions evaluated per second with the largest 
evaluated system configuration 

 

On Keeneland, the framework reaches over 20 trillion FSM 
transitions per second on the three smaller FSM sizes. Both 
Ranger and Stampede result in quite stable performance on all 
four inputs. But on Keeneland, the throughput for the largest 
FSM is substantially lower. The reason for this performance 
drop is that the transition tables are stored in the GPUs‟ 48 kB 
on-chip shared memory, which reduces the number of thread 
blocks that can simultaneously run in each streaming multipro-
cessor to one for the largest input. Nevertheless, the GPUs con-
tribute a tremendous amount of performance, as the single-
node results in Table IV reveal. On Keeneland, the three GPUs 
provide over 96% of the node performance on the three smaller 
inputs and over 93% on the largest input. Note, however, that it 
takes each superscalar CPU core only 2.5 ns (6.7 cycles) on 
average to evaluate one FSM transition and each GPU core 
about 10 ns (12.5 cycles) on the three smaller inputs. 

 

Table IV: Number of FSM transitions evaluated per second on one node 

 

 

The single-node TSP results are presented in Figure 6. 
Stampede uses a later generation of CPUs and a higher clock 
speed than Ranger, which is why Stampede‟s nodes are much 
faster than Ranger‟s. Keeneland‟s compute nodes are the fast-
est overall because of the GPUs. Nevertheless, it should again 
be noted that the CPUs are very efficient. On the ts225 input, it 
takes each Stampede core only 3.6 machine cycles on average 
to evaluate a tour alternative. This high speed is possible be-

cause the code only evaluates and compares the change in tour 
length due to an 2-opt move, which makes the amount of com-
putation per move small and independent of the input size. The 
GPU code, in contrast, has to first compute four distances be-
tween cities before it can evaluate an 2-opt move, which is why 
it takes 46 cycles on average even on the most efficient input. 

 

 

Figure 6: Number of TSP moves evaluated per second on one compute node 

 

B. Scaling 

Figure 7 displays the TSP node scaling on Ranger on a log-
log plot. The results for the kroE100 input are mostly hidden 
„behind‟ the results for the ts225 input. The results for Stam-
pede (not shown) are very similar except for higher absolute 
values. Figure 8 shows the node scaling on Keeneland. 

 

 

Figure 7: Number of TSP moves evaluated per second on Ranger using 

different numbers of compute nodes 

 

The ILCS framework scales very well as indicated by the 
parallel efficiency, i.e., the deviation from linear speedup rela-
tive to the single-node performance. On any of the four TSP 
inputs, the efficiency does not drop by more than 1% on Stam-
pede, 5% on Ranger, and 7% on the three smaller inputs on 
Keeneland when scaling to the node counts listed in Table II. 
On the d1291 input, Keeneland incurs up to a 21% loss in effi-
ciency. The reason for the relatively poor scaling on this input 

compute total total total total 3-bit FSM 4-bit FSM 5-bit FSM 6-bit FSM

nodes CPUs GPUs CPU cores GPU cores Ttrans/s Ttrans/s Ttrans/s Ttrans/s

Keeneland 128 256 384 2048 196,608 21.532 21.050 20.670 12.435

Ranger 2048 8192 0 32768 0 9.837 9.839 9.824 9.688

Stampede 1024 2048 0 16384 0 6.551 6.543 6.530 6.654
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compute total total total total 3-bit FSM 4-bit FSM 5-bit FSM 6-bit FSM

nodes CPUs GPUs CPU cores GPU cores Gtrans/s Gtrans/s Gtrans/s Gtrans/s

Keeneland 1 2 3 16 1,536 169.241 165.620 163.366 97.474

Ranger 1 4 0 16 0 4.807 4.800 4.799 4.756

Stampede 1 2 0 16 0 6.420 6.422 6.420 6.531
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is that the termination threshold is too short for the assigned 
seed-range size. In particular, the time the system waits for all 
GPU threads to finish once the termination decision has been 
made amounts to a third of the overall runtime. During this 
time, the parallelism decreases as the CPU worker threads and 
the first two GPUs stop processing, lowering the efficiency. On 
the other inputs, this overhead is much smaller because the 
waiting time represents only a small fraction of the overall ex-
ecution time. Hence, the efficiency on the largest input can 
likely be improved with a longer termination threshold. 

 

 

Figure 8: Number of TSP moves evaluated per second on Keeneland using 

different numbers of compute nodes 

 

Nevertheless, these results demonstrate that the ILCS 
framework generally scales very well over several orders of 
magnitude. Clearly, the infrequent MPI_Allreduce, which is 
performed once per four seconds and is the only inter-node 
communication, does not significantly affect the scalability. 

 

 

Figure 9: Number of FSM transitions evaluated per second on Ranger using 
different numbers of compute nodes 

 

Figure 9 shows the FSM node scaling on Ranger on a log-
log plot. The results for all four inputs overlap completely. On 
this code, the framework scales perfectly, i.e., the parallel effi-
ciency drops by only 0.6% when going from 1 to 2048 nodes. 

Aside from the absolute performance, the results for Stampede 
and Keeneland look almost identical (not shown), except on 
Keeneland the performance of the 6-bit FSM is noticeably low-
er than that of the three smaller FSMs, as discussed before. On 
Stampede, the efficiency drops by no more than 0.7% and on 
Keeneland by no more than 1.2% when scaling to 1024 and 
128 nodes, respectively. 

We illustrate the TSP intra-node scaling on the example of 
Stampede in Figure 10. Note that this figure uses linear axes. 
The parallel efficiency relative to the performance with one 
worker thread (and a master thread) is 98.9% or better on all 
inputs. These results show that the master thread is rarely 
awake and that the oversubscription of threads is warranted. 

 

 

Figure 10: Number of TSP moves evaluated per second on Stampede using 
different numbers of worker threads in one compute node 

 

C. Quality 

Whereas it is beyond the scope of this work to improve the 
TSP code per se, for completeness we also provide results on 
the quality of the solutions. It should be noted, however, that 
the runtime and champion quality of ILS algorithms generally 
depend on luck, i.e., how quickly a „good‟ seed is encountered. 

 

Table V: Runtime in seconds until termination, total number of evaluated 
seeds, and final champion tour length over optimal tour length on the largest 

system configuration 
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inp system runtime seeds evaluated error

Keeneland 24.5 166,162,849 0.00%

Ranger 24.3 522,364,458 0.00%

Stampede 24.0 509,523,246 0.00%

Keeneland 24.8 17,396,687 0.00%

Ranger 24.4 38,704,838 0.06%

Stampede 24.0 45,054,888 0.06%

Keeneland 63.0 2,970,364 6.48%

Ranger 37.1 2,511,527 6.44%

Stampede 28.5 2,811,434 6.44%

Keeneland 71.7 228,182 5.02%

Ranger 28.2 32,768 6.45%

Stampede 38.0 65,536 6.41%
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Table V presents the TSP runtime in seconds on the largest 
system configuration we tested (see Table II for the actual con-
figuration), the total number of distinct seeds evaluated, and the 
quality of the final champion tour in terms of how much longer 
it is than the truly optimal tour, as computed by the exact solver 
Concorde [31]. Note that the step size is four seconds and the 
termination threshold is five steps, which are the default values. 

Concorde is an example of an exact solver that, as dis-
cussed earlier, provides no useful solution while it computes. 
Whereas it works well on the four inputs we use, it has not ter-
minated on some inputs and takes very long on others. For in-
stance, it takes days to solve the d2103 input. Also, there is no 
description of what problems will result in substantial runtime. 

For the smallest input, our three systems find the optimal 
solution almost right away and then keep running for five more 
steps (20 seconds) until the framework terminates the search. 
Clearly, the chosen termination threshold is too large for small 
TSP problems. For the other inputs, some of the searches do 
not find the optimal solution, but each system comes within 
about 6.5% in approximately half a minute to a minute of run-
time. Note that additional experiments with larger termination 
thresholds resulted in better solutions (not shown). 

Keeneland is able to find a better (in fact optimal) solution 
for ts225 with fewer evaluated seeds than the other two sys-
tems. The reason for this behavior is twofold. First, due to the 
presence of the GPUs, it evaluates seeds early on that the other 
systems are not evaluating, which may, by pure chance, lead to 
a better solution. Second, the CUDA code uses a different ran-
dom number generator to create the initial tours than the C 
code, which might also lead to finding a good solution faster. 

The number of evaluated seeds decreases with larger prob-
lem sizes as there are more 2-opt moves to consider and more 
IHC iterations to perform per seed. In fact, each Ranger core 
evaluates only one seed for the d1291 input, indicating that a 
substantially larger termination threshold should be chosen for 
this input. 

 

 

Figure 11: Champion tour length over optimal tour length after each one-
second step with 128 nodes on Keeneland 

 

Figure 11 demonstrates, on the example of the largest Kee-
neland configuration we tested but with one-second steps, how 

the champion quality improves over time. The results from the 
other systems follow the same pattern and are not shown. The 
curve for the d1291 input only starts at step 3 because it takes 
almost three seconds for the first result to be returned to the 
framework. The figure is cut off at step 30 for clarity even 
though the d1291 run extends to step 47 without achieving any 
further improvement. 

The results in Figure 11 exhibit the step-wise improvement 
that is typical for ILS algorithms. Initially, the champion tends 
to improve often, but then the improvements become less fre-
quent as more and more seeds need to be evaluated to beat the 
current champion. 

Figure 12 shows the quality of the champion for different 
node counts after 6 steps (24 seconds), i.e., after almost iden-
tical runtimes. We only provide results for Stampede as the 
results for the other systems are qualitatively very similar. 

 

 

Figure 12: Champion tour length over optimal tour length after six steps for 
different node counts on Stampede 

 
For the smallest input, even a single compute node with 16 

CPU cores finds the optimal solution. Whereas the optima for 
the three larger inputs are not found, Figure 12 illustrates that 
larger node counts generally result in better solutions. This is 
not always the case, though, as can be seen on the d1291 input, 
where 512 nodes compute a better champion in the first 6 steps 
than 1024 nodes do. The reason for this anomaly is that, due to 
subtle timing variations, slightly different numbers of seeds 
have been evaluated per node after six steps, i.e., the seeds eva-
luated on the larger system configuration are not a superset of 
the seeds evaluated on the smaller configuration. Note that the 
timeout threshold hides these variations in full runs. In general, 
more parallelism clearly helps to find better solutions faster. 

 

VI. SUMMARY AND FUTURE WORK 

This paper presents and evaluates the ILCS parallelization 
framework for (heterogeneous) HPC systems. It is designed for 
iterative local searches with the goal of providing a quick tur-
naround for implementing an ILS algorithm, running it in pa-
rallel, and obtaining answers on whatever size machine the user 
has access to. The framework records the currently best solu-
tion, called the champion, every few seconds so that the search 
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can be stopped at any time. It handles the MPI communication 
between the compute nodes, provides OpenMP and multi-GPU 
support within nodes, and is completely decentralized for max-
imal performance and scaling. The ILCS framework is availa-
ble at http://cs.txstate.edu/~burtscher/research/ILCS/. 

Using an iterative hill-climbing heuristic TSP solver and an 
FSM configuration-space exploration as examples, we demon-
strate that the ILCS framework runs on systems with different 
numbers and types of CPUs and GPUs, scales to 2048 compute 
nodes with just a few percent loss in efficiency, searches over 
12.2 trillion TSP tour alternatives per second on a machine 
with 2048 CPUs and evaluates over 21.5 trillion FSM transi-
tions per second on a system with 256 CPUs and 384 GPUs. 

In future work, we want to adapt the master thread‟s sleep 
time and the termination threshold based on how long it takes 
for the first results to be computed. This should make ILCS‟ 
default parameters useful for a larger range of input sizes. 
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