
Program Phase Detection based on Critical Basic Block Transitions

Paruj Ratanaworabhan1 and Martin Burtscher2
1 Computer Systems Laboratory, Cornell University

2 Center for Distributed and Grid Computing, The University of Texas at Austin
paruj@csl.cornell.edu, burtscher@ices.utexas.edu

Abstract

Many programs go through phases as they execute. Knowing
where these phases begin and end can be beneficial. For ex-
ample, adaptive architectures can exploit such information to
lower their power consumption without much loss in perform-
ance. Architectural simulations can benefit from phase infor-
mation by simulating only a small interval of each program
phase, which significantly reduces the simulation time while
still yielding results that are representative of complete simu-
lations. This paper presents a lightweight profile-based phase
detection technique that marks each phase change boundary in
the program’s binary at the basic block level with a critical
basic block transition (CBBT). It is independent of execution
windows and does not explicitly employ the notion of threshold
to make a phase change decision. We evaluate the effectiveness
of CBBTs for reconfiguring the L1 data cache size and for
guiding architectural simulations. Our CBBT method is as
effective at dynamically reducing the L1 data cache size as
idealized cache reconfiguration schemes are. Using CBBTs to
statically determine simulation intervals yields as low a CPI
error as the well-known SimPoint method does. In addition,
experimental results indicate the CBBTs’ effectiveness in both
the self-trained and cross-trained inputs, demonstrating the
CBBTs’ stability across different program inputs.

1. Introduction
Most programs go through distinct phases during the course of
their execution [16]. For illustration purposes, consider the
control flow of the code snippet in Figure 1a, which is as-
sumed to process a large array of integers whose elements are
uniformly distributed. The first loop scales each element and
treats zeros separately. The second loop counts the number of
any three consecutives array elements that appear in ascending
order. Both loops reside in an outer loop (not shown). The ba-
sic block execution profile of this code is given in Figure 1b
whose x-axis depicts the logical time in number of committed
instructions and the y-axis represents the basic block IDs.

Figure 2 shows the branch misprediction rate of a bimodal
[20] and a hybrid branch predictor [13] on this sample code.
The x-axis depicts the logical time in number of committed
instructions. The y-axis represents the misprediction rate.

The branch misprediction profile shows that the mispredic-
tion rates divide the program execution into two distinct phases
that repeat. A branch misprediction rate of close to 0% is
achieved in the first big phase (Figure 2a and 2b) whereas the
second big phase suffers from about a 25% and 8% mispredic-
tion rate for the bimodal and the hybrid branch predictor, re-
spectively.

BB24: do {
BB24: a[i] = 3*a[i];
BB24: if (a[i] == 0) {
BB25: a[i] = 1;
BB25: }
BB26: i++;
BB26: } while (i<n);
BB27: j = 2;
BB28: do {
BB28: k = 0;
BB29: while ((k<2)&&
BB29: (a[j-k]>a[j-k-1])) {
BB30: k++;
BB30: }
BB31: if (k == 2) {
BB32: order_cnt++;
BB32: }
BB33: j++;
BB33: } while (j<n);

BB33

BB32

BB31

BB30

BB29

BB28

BB27

BB24

BB25

BB26

(a)

(b)

Figure 1: Sample code (a) and its basic block execution profile (b)

With the growing interest in optimizing power and perform-

ance in adaptive architectures [2], identifying program phases
is gaining importance. For instance, if we have two branch
prediction units, e.g., a simple and a complex predictor like the
Alpha 21264 [8], we may decide, based on the branch mispre-
diction profile, to disable or even turn off the more compli-
cated predictor to save power in the first big phase, realizing
that it cannot be used to increase the prediction accuracy in this
phase. However, in the second phase, we clearly want to turn it
back on because there it greatly reduces the branch mispredic-
tion rate.

(a)

(b)

Figure 2: Branch misprediction rate for a bimodal predictor (a) and a
hybrid predictor (b)

Architectural simulations can also take advantage of phase
behavior. Instead of simulating an entire program run, a small
interval from each phase can be chosen and simulated. If the
small interval is representative of the longer phase, we can
save simulation time without sacrificing accuracy.

Characterizing phase behavior usually involves the notion of
phase metrics, windows of execution, and thresholds. Two
execution windows are said to belong to the same phase if the
phase metric of the two windows does not differ by more than
a preset threshold. Otherwise, they are said to be in different
phases. Several phase metrics have been proposed to capture
program phase behavior [4]. In the above example, the metric
is the branch misprediction accuracy. Shen et al. [15] base the
phase behavior on the reuse distance. Balasubramonian et al.
[2] utilize information from hardware counters. Dhodapkar and
Smith [5] employ working set signatures, and Sherwood et al.
[16] use Basic Block Vectors (BBVs).

This paper presents the Miss-Triggered Phase Detection
(MTPD) algorithm. MTPD is a profile-based technique that
does not explicitly use any phase metric, measurement win-
dow, or threshold to detect program phase changes. Instead, it
employs simple program heuristics that pertain to the pro-
gram’s working set at the basic block level, and uses this in-

formation to discover the critical basic block transitions
(CBBTs). CBBTs mark phase transition points in the pro-
gram’s binary and are used to delineate the program phases. A
CBBT can be thought of as a program’s phase marker [9, 15]
that requires two reference points, a previous and a next BB, to
signal a phase change.

To motivate MTPD and CBBTs, consider the code in Figure
1 once more. The BB working set of the first loop is {BB24,
BB25, BB26}. The rarely executed BB25 is hardly visible in
Figure 2a. For the second loop, the BB working set is {BB27,
BB28, BB29, BB30, BB31, BB32, BB33}. In this example, we
see a direct correlation between the branch prediction accuracy
and the set of BBs being executed. Looking at the source code,
we see that the first loop contains two easily predictable condi-
tional branches, a loop end branch and a rarely taken branch
that checks for a zero array element. The second loop contains
one easily predictable loop-end branch and two difficult to
predict conditional branches, one associated with the condition
in the inner while loop and the other with the if condition to
update order_cnt. These two branches are, however, not com-
pletely unpredictable. The if branch behavior is dependent
upon the inner while branch. Whenever the inner while branch
falls through and enters the inner loop twice, this if branch will
also fall through. As for the inner while branch, its behavior
is—to a certain extent—dependent upon itself. If it falls
through twice, the next time it will be taken as the k<2 condi-
tion is met. A hybrid branch predictor should be able to cap-
ture this behavior with relatively high accuracy, as the branch
misprediction profile in Figure 2b shows.

For this code, the transition from BB26 to BB27 (marked in
Figure 2 with up triangles) represents the critical transition.
Whenever this transition occurs, it flags a shift in the program
behavior, in this case, as expressed by the branch prediction
accuracy. We call this transition from BB26 to BB27 a critical
basic block transition (CBBT). The other CBBT (not shown in
the sample code and marked with circles in Figure 2) is BB23
to BB24, which represents the transition from the outer loop to
the two inner loops, i.e., the two loops in the sample code.

The goal of this work is to automatically identify CBBTs
and to use them to discover program phase changes. Our ap-
proach distinguishes itself from Lau et al.’s [9] and Shen et
al.’s [15], two other profile-based phase detection schemes that
generate similar phase markers in the following respects.

1. In contrast to Lau et al.’s technique, which considers only
loops and procedures, MTPD operates at a finer granularity; it
narrows each phase change down to individual basic blocks.
This allows MTPD to more precisely identify the location
where a phase change occurs (in the source code and in the
executable). We will show in Section 2.2 that there are cases
where operating at this fine granularity is necessary to discern
important phase behavior. Even though Shen et al.’s technique
considers every instruction as a potential phase change point,
when producing the final markings, it constructs a phase hier-
archy through grammar compression that often increases the
phase granularity beyond a single basic block.

2. Contrary to Lau et al.’s and Shen et al.’s techniques,
which use only a single reference point for a phase change

marker (a code boundary such as a loop or function header),
CBBTs mark phase transition not at code boundaries but at
transitions from one boundary to another. This tends to make
the phase marking very stable across program inputs. The
CBBTs obtained with one input often faithfully track changes
in the phase length and the number of phase repetitions that
result from different inputs (see Section 2.3).

3. Our approach breaks ties with the use of execution win-
dows—of fixed or variable lengths—and explicit thresholds. In
addition, it does not employ a specific phase metric. Even
though our notion of basic block signature (Section 2) seems to
resemble Dhodapkar and Smith’s working set signature [5],
there is a key difference between the two. To detect a phase
change, the working set signature scheme uses a fixed window
measurement and a set threshold, whereas the BB signature
scheme has no notion of either. BB signatures are explained in
more detail in the following section. Being largely independent
of a phase metric, execution window, and threshold makes our
technique less susceptible to poor parameter selection and
helps to minimize the overfitting problem common to profile-
based approaches where performance is good with the self-
trained inputs but poor with cross-trained inputs.

The remainder of this paper is organized as follows. Section
2 describes the MTPD algorithm in detail. Section 3 presents
the evaluation of a phase detection scheme using CBBTs and
investigates the use of CBBTs for dynamic cache reconfigura-
tion and picking architectural simulation points. Section 4 dis-
cusses related work. Section 5 concludes the paper with a
summary.

2. Miss-Triggered Phase Detection
The Miss-Triggered Phase Detection (MTPD) algorithm iden-
tifies a program’s phase change points at the basic block level,
i.e., in the program’s binary, and works as follows. First, the
algorithm profiles an application on at least one input to gener-
ate a stream of BB identifiers (IDs). MTPD conceptually main-
tains an infinite-size cache of basic block IDs and monitors the
misses that occur in this cache. As the program under investi-
gation transitions from one phase to another for the first time,
it is likely to start executing a new working set of BBs, which
will cause compulsory misses in the BB ID cache. MTPD scru-
tinizes the BB transitions that cause such misses using heuris-
tics that are based on typical program behavior during a phase
transition and identifies CBBTs based on these heuristics. The
following subsections explain the operation of MTPD in more
detail.

2.1 Finding the CBBTs
Step 1: Create a cache with infinite capacity and prepare the
BB execution traces.

In this initialization step, we create a data structure to repre-
sent the ideal cache for the BB IDs. The most appropriate
structure seems to be a chained hash table as it allows for effi-
cient searching while faithfully mimicking infinite capacity (as
long as there is enough memory). On the benchmarks we eva-

luated, a hash table with 50,000 entries results in virtually no
collisions. We generated the BB execution traces using ATOM
[21]. ATOM assigns a unique ID to each BB, and the BB trac-
es simply consist of the sequence of IDs of the executed basic
blocks. The BB traces derived from the execution of the SPEC
CPU2000 programs with the train inputs range from 1 GB
(mgrid) to about 10 GB (bzip2) in size.

Step 2: Sequentially read in BB IDs from a trace or stream and
record the compulsory cache misses.

The BB IDs can be obtained from any source. For programs
that generate very large BB execution traces, streaming in BB
information may be the most appropriate approach. In any
case, MTPD checks whether the just-read-in BB ID is already
in the cache (i.e., has been seen before) and records a miss if it
is not. As an example, let us look at Figures 1 and 2 again.
Prior to logical time 8.3·108, the cache includes BBs 24, 25,
and 26. However, BBs 27 through 33 are not in the cache. At
time 8.3·108, the algorithm sees BB 27 for the first time and
thus records a miss.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.0E+00 2.0E+09 4.0E+09 6.0E+09 8.0E+09 1.0E+10 1.2E+10

Logical Time

C
um

ul
at

iv
e

M
is

se
s

Figure 3: Cumulative number of compulsory BB misses in bzip2

Step 3: Record the basic block transitions that are followed by
a series of compulsory misses.

When looking closely at the profile of compulsory misses in
the ideal cache, e.g., that of bzip2 executed with the train input
shown in Figure 3, we see that misses often occur in bursts.
Intuitively, this matches the expected behavior of program
execution. For instance, a program might execute a given
working set for a while and then transition to another working
set, where it again stays for a while. After that, it may transi-
tion back to a previously visited working set or move on to a
new working set. Based on such behavior, we derived the fol-
lowing simple heuristic: BB transitions that signal a true phase
change are typically followed by a series of closely spaced BB
misses. This is expected as the program is transitioning to a
new set of BBs (i.e., a new working set). In the example from
Section 1, misses for BBs 28 through 33 will almost immedi-
ately follow the transition from BB26 to BB27, which is in-
deed a critical transition that signals a phase change.

 void compressStream (FILE *stream, FILE *zStream)
{

// some initialization code

 while (True) {

 blockNo++;
 initialiseCRC ();
 loadAndRLEsource (stream);
 ERROR_IF_NOT_ZERO (ferror(stream));
 if (last == -1) break;

******************** CBBT ********************

 blockCRC = getFinalCRC ();
 combinedCRC = (combinedCRC << 1) | (combinedCRC >> 31);
 combinedCRC ^= blockCRC;

// more code

(a) (b)

Figure 4: bzip2’s phase behavior at the coarsest level; CBBT phase marking in BB profile (a) and source code (b)

Step 4: Form the BB transition signatures.

After a new BB transition is encountered, we form a BB sig-
nature for that transition by grouping together the BBs that
miss in close temporal proximity in the ideal cache following
the transition. At this point, we have a record of this new tran-
sition and its signature, the latter of which is representative of
the BB working set after this transition. In the illustrative ex-
ample, the transition is from BB26 to BB27 and its signature is
{BB28, BB29, BB30, BB31, BB32, BB33}. Note that the
length of the signature can vary depending on the BB working
set size.

Step 5: Identify the CBBTs.

In the last step, we identify CBBTs based on BB transitions
and their associated signatures. There are 2 cases to consider.

The first case deals with recorded BB transitions that only
occur once in the BB stream. Such transitions may signal a
phase change to or from a non-recurring phase. They often
reveal interesting large-scale program behavior as the next
section illustrates. Basically, a non-recurring transition must
satisfy the following conditions to be regarded as a CBBT: 1)
It must have an associated signature, i.e., form a signature of
length greater than zero, 2) the sum of frequencies of occur-
rence of all BBs in the signature must be greater than the phase
granularity of interest, and 3) a non-recurring CBBT must be
separated in logical time from the previous non-recurring
CBBT by at least the phase granularity magnitude.

The second case deals with recorded BB transitions that oc-
cur multiple times. They may indicate that the program is tran-
sitioning back to a previously seen phase. Here, we compare
the stream of unique BBs that are encountered after the transi-
tion with its previously stored signature. If the set of encoun-
tered BBs is a subset of the stored signature, we consider the
transition stable and flag it as a CBBT.

Each recorded CBBT also contains logical timestamp infor-
mation of its first and last occurrence (Time_First_CBBT and
Time_Last_CBBT) and its frequency of occurrence (Fre-
quency_CBBT). With these parameters, we can approximate

the phase granularity of a given CBBT by the following for-
mula:

Phase Granularity of CBBTi ≈ (Time_Last_CBBTi –
Time_First_CBBTi) / (Frequency_CBBTi – 1)

This information allows the user to select how fine-grained a
phase behavior to detect.

Occasionally, recurring transitions have instances where
some rare control flow conditions introduce BBs that are not in
the original signature. To account for this situation, we con-
sider two signatures to match if at least 90% of their BBs are
the same, which increases the robustness of the algorithm. The
C source code for MTPD is available on-line at:

http://www.csl.cornell.edu/~paruj/cbbt.html

Once the CBBTs are discovered, the application code can be
instrumented at the CBBTs using a binary rewriting tool such
as ATOM or ALTO [14]. If the source code is available, it
could even be augmented with ISA-independent phase-change
markings (see Section 2.2 below). A CBBT involves two basic
blocks, representing the critical transition, that are consecu-
tively executed. In our working example, the consecutive exe-
cution of BB26 and BB27 marks a phase change.

2.2 CBBT Source-Code Association
In this section, we show on two examples how the CBBTs
discovered by the MTPD algorithm map to source code.

bzip2 example
At the coarsest granularity, bzip2 has two distinct phases as

shown in Figure 4a. In the source code we see that this transi-
tion, indeed, signals a major change as the program execution
switches from compression to decompression (marked with up
triangles in Figure 4a) and vice versa. Mapping this critical
transition back to the source code identifies the code section
shown in Figure 4b. The while (True) loop follows some ini-
tialization code in the compressStream function. The program
executes this loop many times to compress the input data.
Then, shortly after logical time 4·109, a CBBT is executed.

double phi2(t)
double t;
{
 double value;

 if (t <= Exc.t0) {

 value = 2.0 * PI / Exc.t0 / Exc.t0 * sin(2.0 * PI * t / Exc.t0);
 return value;

 }

************** CBBT **************

 else
 return 0.0;
}

(a) (b)
Figure 5: equake’s phase behavior at the coarsest level; CBBT phase marking in BB profile (a) and source code (b)

The same critical transition occurs again shortly after logical
time 10·109. This CBBT corresponds to the fall-through path
of the if (last == -1) statement to the break statement. Once
program execution reaches this point, it terminates the while
loop and enters decompression mode. The CBBT boundary is
also marked in Figure 4b.

equake example
Figure 5a shows equake’s phase boundaries at the coarsest

granularity. At this level, there exists no recurring phase be-
havior; the program keeps transitioning to new working sets.
The last phase transition (marked with a square) exhibits an
interesting CBBT behavior. The critical transition is from
BB254 to BB261.

Figure 5b shows the source code of the procedure phi2. This
procedure compiles into ten basic blocks whose IDs range
from 253 to 262. BB254 is a commonly executed BB prior to
and after the CBBT for the last phase transition; it represents
the if (t <= Exc.t0) condition. Prior to encountering the critical
transition from BB254 to BB261, the if (t <= Exc.t0) condition
is always met. The program takes the “then” path and returns
the calculated value. BB261, which represents the “else”
block, is not yet in the program working set. At the phase tran-
sition, the program branches to the “else” path and returns 0.0.
As we can see from Figure 5a, this “else” path (i.e., the jump
from BB254 to BB261) becomes the regular path after encoun-
tering this CBBT. Note that phase detection schemes that op-
erate at the loop or procedure level would not have caught this
last phase transition in equake because it occurs inside an if
statement.

2.3 Self-Trained versus Cross-Trained CBBTs
To determine whether CBBTs mark phase boundaries in an
input-independent way, we investigate how well CBBTs per-
form when applied to program runs with the train inputs (self-
trained) and the reference inputs (cross-trained). Note that we
obtain the CBBTs from profiles with the train inputs in both
cases. If CBBTs indeed mark inherently critical program tran-

sitions, they should perform well on the self- and cross-trained
inputs.

This section provides a qualitative assessment of CBBT
markings. A more quantitative evaluation will follow in the
next section. We find that the CBBTs discovered with the train
inputs do, in fact, work well on the reference inputs. Figure 6
shows the CBBT markings for mcf and gzip. For clarity, only
large-scale phase markings (at a granularity of a billion exe-
cuted instructions) are shown.

Clearly, the CBBT markings adapt well to changes in the
phase length and the number of phase recurrences due to dif-
ferent program inputs. In case of mcf, a 5-cycle phase behavior
with the self-trained input is correctly partitioned into a 9-cycle
phase behavior with the cross-trained input. Note that each
unique CBBT is marked with a different symbol. For mcf, the
up triangles represent the CBBT transitions into a phase where
the two functions primal_bea_mpp and refresh_potential are
frequently executed whereas the circles represent the CBBT
transitions into a phase where the function price_out_impl is
frequently executed. For gzip, the first two phase cycles toggle
between deflate_fast (down triangle) and inflate_dynamic (up
triangle) phases, and the next three cycles alternate between
deflate (circle) and inflate_dynamic (up triangle) phases.

3. Evaluation
This section studies how the phase boundaries marked by
CBBTs can be used to detect phase changes and evaluates
CBBTs’ effectiveness. Section 3.1 describes the benchmark
programs. Section 3.2 discusses phase detection using BB
worksets (BBWS) and BB vectors (BBV). Applying CBBT
phase detection for dynamic cache configuration and for pick-
ing representative architectural simulation points is the subject
of Sections 3.3 and 3.4, respectively.

3.1 Benchmarks
We evaluate CBBT-based phase detection on ten programs
from the SPEC CPU2000 benchmark suite [4]. They are the
four floating-point programs art, equake, applu, and mgrid and

Figure 6: mcf’s BB profile with CBBT phase markings (upper panels). gzip’s BB profile with CBBT phase markings (lower panels). Self-trained CBBT
markings (left panels) and cross-trained CBBT markings (right panels)

the six integer programs bzip2, gap, gcc, gzip, mcf and vortex.
Four integer benchmarks have high phase complexity [11]
(gap, gcc, mcf and vortex) and the remaining two have medium
complexity (gzip and bzip2). The four floating-point programs
are quite regular and can be classified as having low complex-
ity. In general, floating-point programs do not have as much
phase complexity as their integer counterparts, and the four
selected programs seem to be representative of all the floating-
point programs in the suite. Each program was compiled with
the DEC-Alpha C compiler version 6.5 with the “-O3 -arch
ev68” optimization flags. The integer programs further include
feedback optimization. Our reference machine is an 833 MHz
Alpha 21264B running Tru64 UNIX 5.1. Except for gzip and
bzip2, for which we use two additional input sets (named
graphic and program), all benchmarks are evaluated with two
inputs, namely the SPEC provided train and reference inputs.
The train inputs are used for self-trained phase detection; the
reference inputs, as well as the two additional inputs for gzip
and bzip2, are used for cross-trained phase detection.

3.2 CBBT-based Phase Detection
This section provides a quantitative assessment of the CBBTs’
effectiveness in detecting phase change. We use two microar-
chitecture independent characteristics, namely BB worksets

(BBWSs) and BB vectors (BBVs), as phase characteristics.
BBWSs capture the unique BB IDs touched by a program exe-
cuting for a given period of time. BBVs are similar but include
the frequency with which each BB is touched. We use normal-
ized BBVs where each entry is divided by the total frequency
of all BBs in the vector. The vector dimension is kept constant
and its size is determined by the program/input combination
that touches the maximum number of distinct BBs (in our case
this is gcc/train). Note that we do not suffer from the “curse of
dimensionality” as we do not use these vectors for further clas-
sification or statistical inference. The microarchitecture inde-
pendent BBVs and BBWSs have been shown to strongly cor-
relate with microarchitecture dependent characteristics such as
the IPC and the L1 cache miss rate [4].

Next, we need to decide the desired level of phase granular-
ity. As different CBBTs correlate with different phase
granularities per the formula given in Section 2.1 (Step 5), they
allow phase behavior to be detected at various levels. This
study evaluates phase behavior at a granularity that corre-
sponds to 10M executed instructions.

The CBBT phase detector works as follows. It associates a
unique phase characteristic (i.e., a BBWS or a BBV) with each
CBBT. Every time this CBBT is encountered during execu-
tion, a program phase change is signaled, and the phase the

70%

75%

80%

85%

90%

95%

100%

ap
plu

/tr
ain

ap
plu

/re
f

art
/tr

ain
ar

t/re
f

bz
ip2

/tra
in

bz
ip2

/so
urc

e

bz
ip2

/grap
h ic

bz
ip2

/p
rog

ram

eq
ua

ke
/tra

in

eq
ua

ke
/re

f

ga
p/t

rain

ga
p/r

ef

gc
c/t

ra
in

gc
c/r

ef

gz
ip/

tra
in

gz
ip/

so
ur

ce

gz
ip/

gr
ap

hic

gz
ip/

pro
gr

am

mcf/
tra

in

mcf/
re

f

mgri
d/tra

in

mgr
id/re

f

vo
rte

x/t
rai

n

vo
rte

x/r
ef

GMEAN

BBWS single_update BBWS LV_update BBV single_update BBV LV_update

Figure 7: BB workset and BBV similarities as measured in percentage of their normalized forms

0

0.2
0.4

0.6

0.8

1
1.2

1.4

1.6
1.8

2

ap
plu

/re
f

ap
plu

/tra
in

art
/re

f

art
/tra

in

bz
ip2

/gr
aph

ic

bz
ip2

/pr
og

ram

bz
ip2

/so
urc

e

bz
ip2

/tra
in

eq
ua

ke
/tra

in

eq
ua

ke
/re

f

ga
p/r

ef

ga
p/t

rain

gc
c/t

rai
n

gc
c/r

ef

gz
ip/

gra
ph

ic

gz
ip/

pro
gram

gz
ip/

so
urc

e

gz
ip/

tra
in

mcf/
ref

mcf/
tra

in

mgri
d/re

f

mgri
d/tra

in

vo
rte

x/t
rai

n

vo
rte

x/r
ef

GEOMEAN

N
or

m
al

iz
ed

 M
an

ha
tta

n
D

is
ta

nc
e

BBV BBWS
Figure 8: Average Manhattan distance between two CBBT phases. When calculating this value, we compare each CBBT phase to every

other CBBT phase. The number of comparison is nC2 where n is the number of CBBT phases in a given program

CBBT transitions to is predicted to have the characteristics that
are associated with the current CBBT. When a CBBT is en-
countered for the first time, the phase detector makes no pre-
diction. Instead, it collects the phase characteristics to be asso-
ciated with this CBBT. The phase characteristics are gathered
from the time this CBBT is encountered until the next CBBT
occurs, which signals the end of the phase associated with the
current CBBT.

When updating the characteristics associated with a CBBT,
we use two policies—single update and last-value update. In
the single update policy, the characteristics associated with the
CBBT the first time it is seen is used to predict the characteris-
tics of the phase this CBBT initiates every time it is encoun-
tered. In the last-value update policy, the characteristics asso-
ciated with the CBBT that starts a phase are always updated at
the end of the phase.

A good CBBT phase detector should be able to accurately
foretell the characteristics of the phase that a CBBT initializes.
That is, the phase a CBBT transitions to should have similar
characteristics to the characteristics associated with this
CBBT. Figure 7 shows the quality of the CBBT phase detector
on 24 benchmark/input combinations in terms of BBWS and
BBV similarities. The similarity of BBVs and BBWSs for a
given phase is measured in terms of the Manhattan distance
between the two BBVs and BBWSs. Because we use normal-
ized vectors, the Manhattan distance gives the difference in
percent. Note that the figure is not zero-based to improve read-

ability. Generally, the last-value update performs well. It out-
performs single update in all cases and achieves over 90%
similarity with both metrics, indicating that the CBBT-based
phase detector accurately predicts the phase characteristics.

Accurate phase prediction is, nevertheless, not the only
property that we desire. We must also consider the quality of
the detected phases. A good phase detector must sufficiently
distinguish one phase from another. Figure 8 shows on average
how distinct two detected CBBT phases are based on the Man-
hattan distance between the two phases. The maximum distinc-
tion occurs when the Manhattan distance is 2, i.e., the two
phases have no overlapping code execution. With the CBBT
phase detector, we find that the Manhattan distance between
two different phases is at least 1, meaning that each of the two
phases has over 50% non-overlapping code execution and is,
therefore, quite distinct from the other.

 3.3 Dynamic Cache Reconfiguration
This section investigates how CBBT-based phase detection
can be used to dynamically reconfigure the L1 data cache size.
This reconfiguration scheme exploits program phase behavior
to reduce the cache size by turning off cache ways [1] in phas-
es where a large L1 cache is not necessary. Doing so can result
in considerable energy saving without much loss in perform-
ance. We evaluate the cache reconfiguration with CBBTs cor-
responding to a granularity of 10M executed instructions. We
follow the implementation setup given by Shen et al. [15].

0

32

64

96

128

160

192

224

256

288

ap
plu

/tra
in

ap
plu

/re
f

ar
t/tr

ain
art

/re
f

bz
ip2

/tr
ain

bz
ip2/s

ou
rce

bz
ip2

/g
rap

h ic

bz
ip2

/p
rog

ra
m

eq
ua

ke
/tr

ain

eq
ua

ke
/re

f

ga
p/t

rai
n

ga
p/r

ef

gc
c/t

rain

gc
c/r

ef

gz
ip/

tra
in

gz
ip/

so
urc

e

gz
ip/

gra
ph

ic

gz
ip/

pr
og

ram

mcf/tr
ain

mcf/
ref

mgr
id /tra

in

mgri
d /re

f

vo
rte

x/t
ra

in

vort
ex/r

ef

GMEAN

L1
 D

at
a

C
ac

he
 S

iz
e

(k
B)

oracle_single_size phase_tracking interval_100M interval_10M cbbt

Figure 9: Adaptive cache resizing

There are eight L1 cache sizes that can be selected while the
program executes. They range from the smallest size of 32 kB
to the largest size of 256 kB in increments of 32 kB. For each
cache size, the number of cache lines and the block size stay
constant (512 lines and 64 bytes). Increasing (or decreasing)
the cache size is achieved by varying the degree of associativ-
ity from 1 (direct-mapped) to 8. We use ATOM to model and
simulate these cache configurations as well as the dynamic
reconfiguration logic. We compare CBBT-based cache recon-
figuration with three idealized techniques. For each bench-
mark/input combination, each technique tries to maintain a
miss rate within 5% of the 256 kB cache miss rate while reduc-
ing the active cache size as much as possible.

Adaptive cache resizing with CBBTs works as follows.
When a CBBT is encountered for the first time, it finds the
optimal cache size for the phase it initiates by performing a
binary search for the best cache size over the next four 10k
instruction intervals of the phase. The miss rate of the 256 kB
cache is determined in the first interval. The next interval is
tried with half of this size, i.e., 128 kB. If the miss rate in-
crease is below the 5% threshold, 64 kB is tested next. Other-
wise 192 kB is tried. This process repeats one more time to
detect the best minimal cache size. Once this size has been
determined for a newly encountered CBBT, it is associated
with that CBBT, and will be applied when this CBBT is en-
countered again. However, when this CBBT is later encoun-
tered and this cache size results in a miss rate difference (in-
crease or decrease) of more than 5% when compared to the
miss rate of the previous instance of this CBBT phase, the
cache size will be reevaluated following the binary search
steps given above. (This is similar to the last-value update pol-
icy in the previous section).

The three idealized techniques—single-size oracle, phase
tracking, and interval based—work as follows. The single-size
oracle uses the best single cache size that, when used through-
out the entire program execution, will not result in a miss rate
exceeding the 5% bound. Phase tracking implements an ideal-
ized version of Sherwood’s phase tracker [19], where phase
prediction is assumed to be 100% correct. This is a BBV-based
technique that uses BBV signatures gathered for every 10M
instruction execution interval and a threshold to recognize a
phase change. Instead of using a compressed BBV signature,

we use the full BBV signature and investigate thresholds of
10%, 50%, and 80%. On average, we did not find that these
various thresholds yielded substantially different results.
Hence, we picked the threshold that performs best for this
study (i.e., 10%, which is the same as in the original phase
tracker paper). The ideal interval-based technique is straight-
forward. The program execution is chopped up into fixed
length windows of 10M and 100M committed instructions. An
oracle determines the best cache size for each interval.

Figure 9 shows the effective cache size for the 24 bench-
mark/input combinations. Except for the programs applu and
art, the phase-based cache resizing techniques—phase track-
ing, fixed interval, and CBBT—reduce the effective cache size
below that of the single-size oracle. On average, we find that
the realizable CBBT scheme performs as well as the two ideal-
ized phase-based schemes. It effectively reduces the cache size
by half. Compared to the single-size oracle scheme, the CBBT
scheme is able to exploit phase information and thus further
reduces the effective cache size from about 150 kB to 128 kB,
which is a 15% reduction. It performs almost as well as the
10M fixed interval and slightly better than the idealized phase
tracker, which indicates that the phase behavior to be exploited
for dynamic cache reconfiguration has about this level of
granularity. In general, the CBBT approach performs well be-
cause it generally stays synchronized with the miss rate char-
acteristics, whereas an interval-based oracle scheme, e.g.,
10M, can be “out of sync”, i.e., a 10M interval may straddle
both a high and a low miss rate region, so the cache size must
be conservatively chosen to accommodate the high miss rate
region to stay within the 5% bound.

As a final note, the drawback of using the cache miss rate to
evaluate the effectiveness of CBBT phase detection is that it
does not explicitly spell out the run-time or the energy con-
sumption. Nevertheless, we opted to use this metric for sim-
plicity and reproducibility. For each program/input combina-
tion, we can take measurements throughout the full execution
without resorting to sampling. This is in contrast to an evalua-
tion with a more elaborated cache model and using cycle-
accurate simulation to measure time and energy. Although the
latter approach is theoretically more sound, in practice, it can
suffer from measurement inaccuracies because of inadequate
modeling, unfaithful simulation, and sampling issues.

0

1

2

3

4

5

6

7

8

9

10

app
lu/

tra
in

ap
plu

/re
f

art
/tra

in
art

/re
f

bz
ip2

/tra
in

bz
ip2

/so
urc

e

bz
ip2

/grap
hic

bz
ip2

/pr
og

ram

eq
ua

ke
/tra

in

eq
ua

ke
/re

f

ga
p/t

rai
n

gap
/re

f

gc
c/t

rai
n

gc
c/r

ef

gz
ip/tra

in

gz
ip/

so
urc

e

gz
ip/

gra
ph

ic

gz
ip/

pro
gra

m

mcf/
tra

in

mcf/
ref

mgri
d/t

rai
n

mgri
d/r

ef

vo
rte

x/t
rai

n

vo
rte

x/r
ef

GMEAN

GMEAN S
im

Pha
se

C
PI

 E
rro

r (
%

)

SimPoint_300M SimPhase_300M
Figure 10: CPI error of SimPhase and SimPoint. The two rightmost bars indicate the GMEAN CPI error for SimPhase with self-

trained CBBTs (left bar) and cross-trained CBBTs (right bar)

3.4 SimPhase and SimPoint
This section demonstrates an approach to picking architectural
simulation points using a program’s CBBTs, which we call
SimPhase. We compare SimPhase with SimPoint [18], a popu-
lar tool that is widely used for this purpose. We use version 3.2
of SimPoint [7], released in February 2006.

To run SimPoint, a user specifies two parameters, an interval
size and the number of simulation points. The latter is speci-
fied through the parameter maxK, which is essentially the
number of distinct phases to be discovered by SimPoint. maxK
times the interval size is the maximum number of instructions
to simulate. In this study, we limit the number of simulated
instructions to 300 million and use the interval_size/maxK
combination of 10M/30. This combination has been shown to
provide good accuracy while staying within a reasonable simu-
lation time [6].

SimPoint gathers BBV profiles for each non-overlapping in-
terval throughout the execution of a specific program/input
combination. Then, a k-mean clustering algorithm groups
similar BBVs from each interval and forms maxK BBV clus-
ters. After that, a representative BBV from each cluster is cho-
sen. The start time of the interval that generates the representa-
tive BBV becomes the simulation point for that cluster, i.e., for
that phase. The SimPoint algorithm picks a representative
BBV that is closet to the centroid of the cluster.

Our SimPhase approach incorporates, in a sense, the reverse
process of SimPoint. In SimPhase, “clustering” is performed
first. Then, in going from one instance of a “cluster” to another
instance of the same “cluster”, a similarity metric between the
two instances is calculated and the simulation point is picked
accordingly. To allow a direct comparison with SimPoint,
SimPhase also uses BBVs as a phase metric.

SimPhase starts by generating CBBTs that divide the pro-
gram execution into distinct regions of code (see Figure 6 for
an example of large-scale phase boundary marks). We can
think of this code division as performing a form of clustering.
A program phase is marked by one CBBT at the start and an-
other CBBT at the end. Once these boundaries are determined
for a given program, they are reused across all inputs for this
program. A natural place for SimPhase to pick a simulation

point is at the midpoint of a phase (recall that SimPoint also
tries to pick simulation points at the clusters’ centroids).

Once we have obtained the CBBT markings, we rerun the
program with the same or a different input to determine simu-
lation points for a given program/input combination. For the
first instance of each CBBT, a BBV profile is calculated for
this CBBT. The phase extends from this CBBT to the next. A
simulation point is selected midway between these two marks.
When the same CBBT is encountered again, SimPhase calcu-
lates a new BBV profile and compares it to the most recent
BBV for this CBBT. If the two BBVs differ by more than a
preset threshold, there is, indeed, a significant change in BBVs
detected, and, hence, another simulation point is picked. Once
this process ends, we divide the number of simulated instruc-
tions by the number of simulation points selected to obtain the
number of instructions to simulate for each simulation point.
This last number is analogous to the interval size in SimPoint.
In this study, we cap the number of simulated instructions to
the same as in the SimPoint case, i.e., 300M instructions.
However, depending on how the clusters are generated, Sim-
Point may choose to simulate fewer instructions, whereas
SimPhase will always simulate the full 300M instructions. The
threshold used to gauge BBV similarities for SimPhase is 20%.
This relatively low threshold allows more simulation points to
be picked for the limit of 300M simulated instructions. Note
that the SimPoint parameters chosen for this case also result in
a large number of clusters (maxK=30) that will yield up to 30
simulation points to be simulated with 10M instructions each.

Our evaluation platform for SimPoint and SimPhase is Sim-
pleScalar [3], a popular cycle-accurate simulator that models
an out-of-order superscalar machine with varying configura-
tions. We use SimpleScalar version 3 with the machine con-
figuration given in Table 1 to measure the CPI errors resulting
from the use of both methods compared to full simulation runs.
The simulation points from both SimPhase and SimPoint are
weighed according to the phases they represent before per-
forming the final CPI calculation.

Figure 10 shows the CPI errors for the 24 benchmark/input
combinations. Although there are some variations in a few
programs, on average, the error rates for both approaches are

comparable. With the number of simulated instructions limited
to 300M, the geometric mean CPI errors for SimPoint and
SimPhase are 1.56% and 1.29%, respectively. This should not
come as a surprise as both SimPhase and SimPoint use the
same metric to represent program phases, i.e., BBVs. So, even-
tually, given decent means of grouping representative BBVs,
the measured CPI errors depend on how strongly an architec-
ture independent characteristic such as a BBV correlates with
an architecture dependent characteristic like CPI.

Table 1: Baseline machine for comparing SimPhase and SimPoint

Parameter Values
Issue width 4-way
Branch predictor 4K combined
ROB entries 32
LSQ entries 16
Int/FP ALUs 2 each
Mult/Div units 1 each
L1 data cache 32 kB, 2-way
L1 hit latency 1 cycle
L2 cache 256 kB, 4-way
L2 hit latency 10 cycles
Memory latency 150

SimPhase offers an interesting feature, however. The phase

boundaries marked by the CBBTs using the train inputs can
also be used for other inputs. With SimPoint, every time there
is a change in program inputs, one needs to perform new k-
mean clustering with a new BBV profile. If we revisit the re-
sults shown in Figure 10 and compare the SimPhase geometric
mean CPI errors (the two rightmost bars in Figure 10) for the
runs with the train inputs (self-trained CBBT) to those with the
reference inputs (cross-trained CBBT), we find that there is no
significant difference between the two average CPI errors,
which are 1.31% and 1.28%. In fact, the cross-trained CBBTs
seem to do a little better. This is because there are programs,
notably gcc and gap, whose phase behavior is more subtle
when run with the train inputs; this phase behavior becomes
more discernible when run with the reference inputs.

4. Related Work
Sherwood et al. [16] exploit the time varying behavior of pro-
grams to reduce simulation time. They propose off-line algo-
rithms to capture program phases. Their first method finds a
representative code segment that has a similar BB distribution
as the entire program [17]. Their second approach is based on
clustering and uses the k-mean algorithm [18]. Both schemes
are strictly concerned with off-line phase detection. However,
the authors later also propose a hardware-based method for on-
line phase detection and prediction [19]. They approximate
their off-line algorithms through the on-line discovery of key
parameters. For example, they approximate the BB length by
the number of executed instructions between branches. Sher-
wood et al. further propose a phase prediction scheme, which
is later enhanced by Lau et al. [10].

Dhodapkar and Smith [5] improve upon the algorithm pro-
posed by Balasubramonian et al. [2] by using working set sig-

natures to detect phase changes on-line and employing this
information to guide hardware re-tuning. They weigh the im-
portance of each working set segment equally regardless of
frequency. This is in contrast to the hardware-based detector
proposed by Sherwood et al., which takes into account the
frequency of the executed BBs in a working set.

Shen et al. [15] propose a software-based phase prediction
scheme that gathers phase knowledge through off-line profil-
ing and incorporate this information into the program binary.
Their off-line profiling requires two traces. As their phase be-
havior is based on reuse distance [12], they need a reuse dis-
tance trace along with a BB execution trace. The information
obtained from profiling results in a form of phase markings,
which is used to form hierarchical phase markers. Such mark-
ers are constructed through grammar compression using SE-
QUITUR, and are incorporated into the original binary through
binary rewriting for phase prediction.

Lau et al. [9] present a profile-based approach to identify
code locations that correlate with phase changes. Such loca-
tions can serve as software phase markers independent of pro-
gram inputs. They demonstrate how to obtain the phase mark-
ers through the formation of a Hierarchical Call-Loop graph.
This graph is basically an abstraction of the full control flow
graph where only loops and procedure calls are represented
and contains information about each loop and procedure exe-
cution.

Lau et al.’s software phase markers may also be used to pick
simulation points for a program’s binary across different in-
puts. This feature is comparable to CBBT-based phase bound-
ary markings. Perelman et al.’s work [14] goes further by pro-
viding such markers across different ISAs to generate cross
binary simulation points. The CBBT approach has the poten-
tial to perform such cross ISAs markings as well. As seen in
Section 2.2, phase boundaries marked by CBBTs can be di-
rectly associated with high-level source code.

5. Summary
This paper presents a light-weight phase detection mechanism
that identifies program phase change points via Critical Basic
Block Transitions (CBBTs). Such CBBTs are identified using
the Miss-Triggered Phase Detection (MTPD) algorithm. When
a series of misses to an infinite size basic block ID cache is
encountered while traversing a stream of BB IDs, program
execution may have reached a phase change point. The MTPD
algorithm employs simple program heuristics to determine
whether such a point is likely to be an actual phase change
and, if so, records the corresponding CBBT. We show how
mapping a CBBT back to the source level allows us to discern
program phase behavior in the source code. We evaluate
CBBTs for guiding dynamic cache resizing and picking repre-
sentative architectural simulation points, respectively. Our
CBBT-based scheme performs well on both accounts. In dy-
namic cache reconfiguration, it is able to effectively reduce the
cache size to 50% of the maximum cache size on our bench-
marks without increasing the miss rate by more than 5%, a
performance that is comparable to idealized adaptive cache
resizing schemes. In picking appropriate architectural simula-
tion points, our CBBT-based approach produces an average

CPI error that is comparable to the widely used SimPoint me-
thod. In addition, the CBBT approach is as effective on the
self-trained inputs as on the cross-trained input.

6. References
[1] D. H. Albonesi, Selective Cache Ways: On-Demand Cache Re-

source Allocation, 32nd International Symposium on Microar-
chitecture, 1999, pp. 248-259.

[2] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu and S.
Dwarkadas, Memory Hierachy Reconfiguration for Energy and
Performance in General-Purpose Processor Architectures, Pro-
ceedings of the 33rd International Symposium on Microarchitec-
ture, Monterey, California, 2000.

[3] D. Burger and T. Austin, The SimpleScalar Tool Set, Version
2.0, University of Wisconsin-Madison Computer Sciences, 1997.

[4] A. S. Dhodapkar and J. E. Smith, Comparing Program Phase
Detection Techniques, Proceedings of the International Sympo-
sium on Microarchitecture, 2003.

[5] A. S. Dhodapkar and J. E. Smith, Managing Multi-Configuration
Hardware via Dynamic Working-Set Analysis, Proceedings of
the International Symposium on Computer Architecture, An-
chorage, Alaska, 2002.

[6] G. Hamerly, E. Perelman, J. Lau and B. Calder, SimPoint 3.0:
Faster and More Flexible Program Analysis, Journal of Instruc-
tion Level Parallelism (2005).

[7] http://www.cse.ucsd.edu/~calder/simpoint/.
[8] R. E. Kessler, The Alpha 21264 microprocessor, IEEE Micro,

1999, pp. 24-36.
[9] J. Lau, E. Perelman and B. Calder, Selecting Software Phase

Markers with Code Structure Analysis, Proceedings of the Inter-
national Symposium on Code Generation and Optimization,
2006.

[10] J. Lau, S. Schoenmackers and B. Calder, Transition Phase Clas-
sification and Prediction, 11th International Symposium on High
Performance Computer Architecture, 2005.

[11] T. Li and C. B. Cho, Complexity-based Program Phase Analysis
and Classification, Proceedings of the 2006 International Con-

ference on Parallel Architectures and Compilation Techniques,
Seattle, Washington, 2006.

[12] R. L. Mattson, J. Gecsei, D. Slutz and I. L. Traiger, Evaluation
Techniques for Storage Hierarchies, IBM Systems Journal
(1970), pp. 78-177.

[13] S. McFarling, Combining Branch Predictors, Tech. Rep. WRL
Technical Note TN-36, Digital Equipment Corporation - Western
Research Laboratory, 1993.

[14] E. Perelman, J. Lau, H. Patil, A. Jaleel, G. Hamerly and B. Cal-
der, Cross Binary Simulation Points, Proceedings of the Interna-
tional Symposium on Performance Analysis of Systems and
Software, 2007.

[15] X. Shen, Y. Zhong and C. Ding, Locality Phase Prediction, Pro-
ceedings of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems,
Boston, Massachusetts, 2004.

[16] T. Sherwood and B. Calder, Time Varying Behavior of Pro-
grams, Technical Report UCSD-CS99-630, UC San Diego,
1999.

[17] T. Sherwood, E. Perelman and B. Calder, Basic Block Distribu-
tion Analysis to Find Periodic Behavior and Simulation, Proc. of
the Intl. Conf. on Parallel Architectures and Compilation Tech-
niques, 2001, pp. 3-14.

[18] T. Sherwood, E. Perelman, G. Hamerly and B. Calder, Automati-
cally Characterizing Large Scale Program Behavior, Proceed-
ings of the 10th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, 2002,
pp. 45-57.

[19] T. Sherwood, S. Sair and B. Calder, Phase Tracking and Predic-
tion, Proceedings of International Symposium on Computer Ar-
chitecture, San Diego, California, 2003.

[20] J. E. Smith, A Study of Branch Prediction Strategies, Proc. 8th
Int. Sym. on Computer Architecture, 1981, pp. 135-148.

[21] A. Srivastava and A. Eustace, ATOM: A System for Building
Customized Program Analysis Tools, Proceedings of SIGPLAN,
1994.

