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Abstract—Energy consumption is a major concern in high-
performance computing. One important contributing factor is
the number of times the wires are charged and discharged, i.e.,
how often they switch from ‘0’ to ‘1’ and vice versa. We describe a
software technique to minimize this switching activity in GPUs,
thereby lowering the energy usage. Our technique targets the
memory bus, which comprises many high-capacitance wires that
are frequently used. Our approach is to strategically change data
values in the source code such that loading and storing them
yields fewer bit flips. The new values are guaranteed to produce
the same control flow and program output. Measurements on
GPUs from two generations show that our technique allows
programmers to save up to 9.3% of the whole-GPU energy
consumption and 1.2% on average across eight graph-analytics
CUDA codes without impacting performance.

Index Terms—bit flips, energy consumption, memory, GPUs

I. INTRODUCTION

Computing is often power constrained, and the primary
means to building faster computers is to improve their energy
efficiency [1]. Since many important aspects of our lives
depend on software, lowering the energy consumption has
the potential to accelerate lifesaving computations. Making
computers more energy efficient is also important for other
reasons. For example, the energy used by just the servers
and data centers in the United States is equal to the annual
energy usage of millions of U.S. households [2]. Moreover, a
single supercomputer’s energy consumption can result in the
emission of over 185,000 metric tons of CO2 annually, which
is about the same as burning 21 million gallons of gasoline [3].

Most modern computer chips are based on CMOS tech-
nology. Such circuits constantly draw a little (static) leakage
power whenever they are on [4]. However, most of the power
draw is due to circuit switching activity during computa-
tions [4]. This dynamic power is the product of four factors:

Pdynamic = C · V 2 ·N · f

Here, C denotes the capacitance, V the voltage, N the
switching activity, and f the clock frequency. The capacitance
is mostly affected by the wire length, layout, and semiconduc-
tor material used, all of which tend to improve with each new
chip generation [4]. The voltage has already been decreased
to a level where lowering it further would greatly increase the
leakage power and therefore negate any benefit in dynamic

power savings [4]. Reducing the frequency diminishes the
performance [5]. This leaves the switching activity, which has
been studied the least, as a target for improving the energy
efficiency of computers.

The switching activity is proportional to how often the wires
of the circuit are charged and discharged, i.e., the number of
times they change from ‘0’ to ‘1’ or ‘1’ to ‘0’. The resulting
energy consumption depends on the capacitance. Hence, the
memory bus is of great interest because it is used frequently
and comprises many high-capacitance wires.

Data Bus Inversion (DBI) is a commercial solution to reduce
the number of bit flips on memory buses that first became
available with DDR4 SDRAM [6]. It requires an extra wire
for every eight bits on the bus and works as follows. It starts
by comparing the next value to be sent over the bus with the
value currently on the bus. This is done at byte granularity.
If more than four bits differ for any byte, the corresponding
bytes are inverted. The remaining bytes are placed on the bus
unmodified. For each modified byte, the extra DBI wire is
activated to tell the receiver which bytes must be inverted back
to recreate the original value.

The approach we describe in this paper does not require
any additional wires. It is entirely software based and can,
therefore, readily be deployed on existing systems. It targets
specific integer values that are often read from or written
to memory such as sentinels and the initial values of data
structures. For example, breadth-first search (BFS) computes
the distance of every vertex in a graph from a given source
vertex s in number of edges that must minimally be traversed
to reach the vertex. BFS implementations typically start by
setting the distance of s to 0 and the distance of all other
vertices to ∞. In practice, a large value such as UINT MAX
is often used to represent ∞. This value may be transferred
many times over the memory bus during the BFS computation.
However, each copy of the value will eventually be overwritten
with the vertex’s distance, which tends to be a small integer.
The problem is that the bits in the initial and final values differ
in many positions. Whereas the initial values contain mostly
‘1’ bits, the final values contain mostly ‘0’ bits as illustrated
in Table I, leading to a large number of bit flips and, therefore,
high energy consumption.

We can reduce the bit flips by selecting a different initial



TABLE I
BINARY REPRESENTATION OF FOUR VALUES

32-bit representation Value Bit-flips with 5
11111111...1...11111111 UINT MAX 30
11111111...1...11111110 UINT MAX − 1 31
10000000...0...00000000 UINT MAX/2 + 1 3
00000000...0...00000101 5 (a small integer) 0

value such as UINT MAX/2 + 1, which is also a large
value but contains mostly ‘0’ bits as shown in Table I. If this
new value is large enough to represent ∞ (i.e., larger than the
diameter of the graph), using it instead of UINT MAX will
yield the same BFS result. However, the number of bit flips
will be lower, thus saving energy. In summary, our approach
is to replace frequently accessed values with new values that
yield the same result and control flow but fewer bit flips.

This paper makes the following main contributions.
• We experimentally confirm that bit flips on memory buses

contribute significantly to the GPU’s energy consumption.
• We demonstrate that strategically replacing sentinel and

initialization values in the source code can result in over
9% GPU-wide energy savings without impacting perfor-
mance or changing the program’s control-flow decisions.

• We show that such savings can be obtained on optimized
and unoptimized codes across different GPU generations.

The bit-flip-reduced codes are available in open source at
https://cs.txstate.edu/∼burtscher/research/bit-flips/.

The rest of this paper is organized as follows. Section II
explains our approach in detail. Section III summarizes related
work. Section IV describes the experimental methodology.
Section V presents and discusses the results. Section VI
concludes the paper with a summary and future work.

II. APPROACH

Due to their high performance and energy efficiency, GPUs
are widely used in HPC. For example, over half of the ten
fastest supercomputers on the TOP500 list contain GPUs [7],
and all but one of the ten most energy-efficient computers on
the GREEN500 list are GPU-based [8]. Hence, GPUs make
an interesting target for energy-reduction optimizations.

To demonstrate that our approach works across a range of
programs, we applied it to four simple codes that we wrote
and to four highly-optimized CUDA codes from the literature.
In both categories, one code is regular with strided memory
accesses and the remaining codes are irregular with complex
memory access patterns [9]. All of them stem from the field
of graph analytics and implement real-world algorithms.

Table II lists the eight programs. The top of the table shows
the four high-performance GPU codes, two of which are ours,
and from where we obtained them. The bottom shows the
four simple codes we added to provide additional test cases.
They are less optimized and not particularly fast. We included
them to demonstrate that our approach benefits a wide range
of codes and is not limited to HPC codes.

APSP: The all-pairs-shortest-paths codes implement the
Floyd-Warshall algorithm [13] to compute the shortest distance

TABLE II
CUDA CODES USED IN EXPERIMENTS

Name Source
ECL APSP [10]
Gardenia BFS [11]
ECL MIS [12]
Gardenia SSSP [11]
Simple APSP ours
Simple BFS ours
Simple MIS ours
Simple SSSP ours

between all possible pairs of vertices in a weighted, directed
graph with n vertices and record the result in an n×n matrix.
They perform O(n3) strided memory accesses as they make
n passes over the matrix. For any edge from vertex u to
vertex v, the matrix element m[u][v] is initialized to the weight
of the edge. All remaining matrix elements are initialized to
INT MAX/2 in both codes. We replaced these values by
INT MAX/4 + 1 in the bit-flip optimized versions. The
initialization value must be larger than the largest edge weight
and doubling it must not produce signed overflow.

BFS: The breadth-first-search codes compute the minimum
number of hops from a source vertex to all other vertices
(cf. Section I) in an unweighted graph and record the result
in an n-element array. Since the vertices are processed in
graph order, the array is accessed in a complex pattern. The
Gardenia code employs a data-driven [14] implementation that
processes the vertices level by level. The simple code employs
a topology-driven [14] implementation that performs push-
style [15] updates until no more updates can be made. Except
for the source element, all array elements are initialized to
1 billion in the Gardenia code and to INT MAX − 1 in
the simple code. We also ran a version of the Gardenia code
that uses INT MAX − 1 to show the consumption when
a more conventional initial value is used. In all three cases,
we replaced the values by INT MAX/2 + 1 in the bit-flip
optimized versions. The initialization value must be larger than
the maximum hop count from the source vertex. In the simple
code, adding 1 to it must not produce signed overflow.

MIS: The maximal-independent-set codes use Luby’s ran-
domized algorithm [16] to compute a maximal independent set
of the vertices of an unweighted graph. They record whether a
vertex is in the set, out of the set, or not yet decided in an n-
element array. They further record a priority (random number)
for each vertex. Again, the vertices are processed in graph
order, and the data are accessed in an irregular fashion. The
codes employ a topology-driven implementation. The simple
code only performs pull-style updates [15] whereas the high-
performance code executes push and pull updates until the
status of every vertex is known.

ECL MIS encodes the combined status and priority of each
vertex in a byte array as follows. If the top 7 bits of the byte
are 0, the vertex is out of the set. If they represent 127, the
vertex is in the set. Any value between 1 and 126 means
the status is undecided and the value indicates the priority.
The LSB is cleared for the two decided values and set for all
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undecided values to speed up a timing-critical test in the code
“if (val & 0x01)” [12]. Hence, the array starts out with mostly
random bits that are eventually replaced by either 0x00 or
0xFE. However, those two final values differ in 7 bit positions.
To alleviate this problem, we changed the encoding as follows
in our bit-flip optimized version. 0x00 still indicates that the
vertex is out of the set and values between 1 and 126 represent
priorities. However, 0x80 now means the vertex is in the set.
Note that 0x00 and 0x80 differ in only one bit position. We
further replaced the timing-critical test with the equally fast “if
(val & 0x7F)”. In addition to supporting a fast test to check
if a vertex is undecided, the values must fit in a byte and
maintain their greater-than relationship. The simple MIS code
works similarly but uses an integer instead of a byte array.

SSSP: Both of the single-source-shortest-path codes com-
pute the minimum distance from a given source vertex to all
other vertices in a weighted graph. The simple code records
the result in an n-element array. Again, the array is accessed
following a complex pattern. The codes employ a topology-
driven implementation that performs pull-style updates until
all distances have converged. Except for the source element,
all array elements are initialized to INT MAX in the simple
code and to INT MAX/2 in Gardenia. We replaced these
values by INT MAX/2+1 in the bit-flip optimized versions.
The initialization value must be larger than the maximum
distance from the source vertex.

III. RELATED WORK

We are not aware of prior software-based work on reducing
energy consumption through bit-flip minimization. Hence, we
briefly summarize hardware-based approaches as well as bit-
flip-minimization techniques for non-energy-related purposes.

Section I already introduced DBI, a hardware-based mech-
anism to reduce bit flips on the memory bus by selectively
inverting bytes. It requires an extra wire for each byte, that
is 12.5% more wires. It automatically adapts to the data and
potentially works on all values going over the bus. In contrast,
our approach does not require any additional wires but only
applies to some of the values being transferred. Also, our
approach can employ more sophisticated encoding schemes
than simple bit inversion, like we use in ECL MIS.

Li et al.’s work is based on the observation that 8T SRAM
consumes less energy when reading a ‘1’ than a ‘0’. They
propose a new circuit design to exploit this asymmetric energy
consumption [17]. They profiled many applications to generate
a coding scheme that increases the quantity of ‘1’ bits in both
the data and instruction stream and, as a side effect, reduces the
switching activity on the connections between SRAM units.

Lucas et al. demonstrate how neither reducing the number of
zeros, nor reducing switching activity, are optimal techniques
on their own in memory with ‘1’ affinity [18]. They introduce a
novel scheme that finds the optimal encoding given the power
ratio between transmitting a zero and switching activity for
this type of memory. Further, they show how their scheme
could be implemented in hardware.

Dgien et al. suggest a compression architecture for non-
volatile memory (NVM) that, when storing data, uses frequent
pattern compression and read-modify-write accesses to modify
as few bits as possible and only writes the bits that need to be
changed [19]. The resulting reduction of bit writes can extend
the lifetime of NVM.

Bittman et al. discuss how reducing bit flips is more
important than reducing writes to NVM [20]. They present
a linked-list implementation that is designed to reduce the
number of bit flips in memory to extend the lifetime of phase
change memory.

IV. EXPERIMENTAL METHODOLOGY

We collected our energy measurements using NVIDIA’s
NVML library [21], which accesses the GPU’s on-board
energy sensor. It is important to note that the energy readings
are of the entire GPU and not just the memory bus. We ran
each experiment on two GPUs from different generations:
a TITAN V compute GPU (Volta architecture) with a core
clock frequency of 1200 MHz, and a GeForce RTX 2070
SUPER consumer GPU (Turing architecture) with a core clock
frequency of 1605 MHz. Table III provides details about the
global (main) memory of these GPUs.

TABLE III
GPU MEMORY SPECIFICATIONS

GPU Type Size Bandwidth Frequency
TITAN V HBM2 12 GB 653 GB/s 850 MHz
RTX 2070 SUPER GDDR6 8 GB 448 GB/s 7000 MHz

These GPUs employ two distinct types of memory: GDDR6
and HBM2. GDDR6 uses non-return-to-zero encoding. HBM2
employs vertically stacked DRAM dies, which allows for a
much wider bus than GDDR6.

The system used for these experiments is based on an AMD
Ryzen Threadripper 2950X CPU that holds both the TITAN
V and the RTX 2070 SUPER. It runs Fedora 34, nvcc 11.4,
and g++ 11.2.1. The CUDA driver version is 470.63.

We evaluated the eight programs listed in Table II. We
instrumented them to read the GPU energy sensor before
and after executing the kernel(s) of interest and print the
difference. In addition to this baseline version, we created
a second version of each program that includes our bit-flip
optimizations described in Section II. These modifications do
not change the instructions generated by the compiler (except
for some immediate fields) or the control flow of the programs.

We used the 18 graphs listed in Table IV as inputs. They
were obtained from the Center for Discrete Mathematics and
Theoretical Computer Science at the University of Rome (Di-
macs) [22], the Galois framework (Galois) [23], the Stanford
Network Analysis Platform (SNAP) [24], and the SuiteSparse
Matrix Collection (SMC) [25]. The table lists the name, type,
number of vertices, and number of edges for each input. Where
necessary, we made the graphs undirected, removed self edges,
or added weights to the edges. In the used CSR format,
each undirected edge is represented by two directed edges.



We selected these inputs for their wide variety. The highest
edge weight is 134 million, which allows us to implement our
method as described in Section II without invalidating any
invariants, i.e., without affecting program correctness.

Due to the quadratic memory usage, we had to resort to
much smaller inputs for the APSP codes. We generated APSP
inputs for several vertex counts with pseudo-random edges.
The edge count is 4, 16, and 64 times the vertex count.

TABLE IV
INPUT GRAPHS USED IN EXPERIMENTS

Name Type Vertices Edges
2d-2e20.sym grid 1,048,576 4,190,208
amazon0601 co-purchases 403,394 4,886,816
as-skitter Internet topo. 1,696,415 22,190,596
citationCiteseer citations 268,495 2,313,294
cit-Patents patent cites 3,774,768 33,037,894
coPapersDBLP citations 540,486 30,491,458
delaunay n24 triangulation 16,777,216 100,663,202
europe osm road map 50,912,018 108,109,320
in-2004 web links 1,382,908 27,182,946
internet Internet topo. 124,651 387,240
kron g500-logn21 Kronecker 2,097,152 182,081,864
r4-2e23.sym random 8,388,608 67,108,846
rmat16.sym RMAT 65,536 967,866
rmat22.sym RMAT 4,194,304 65,660,814
soc-LiveJournal1 community 4,847,571 85,702,474
uk-2002 web links 18,520,486 523,574,516
USA-road-d.NY road map 264,346 730,100
USA-road-d.USA road map 23,947,347 57,708,624

To increase the accuracy of the energy measurements and
make the comparisons as fair as possible, we employed the fol-
lowing methodology. We ran each baseline code in a loop until
the total execution time exceeded 10 seconds and recorded
how many loop iterations this required. We then ran the bit-
flip optimized code with the same number of iterations. We
repeated these alternating experiments 10 times for each input,
yielding 10 matched pairs of results, each pair containing the
consumption of the baseline code and the consumption of the
corresponding bit-flip optimized code. These measurements
were evaluated with a paired t-test using α = 0.05.

We divided the bit-flip optimized energy consumption by
the consumption of the baseline code to generate 10 ratios
for each input. We report these consumption ratios in box
and whisker plots that show the distribution of the data. The
minimum and maximum values are displayed using whiskers
that extend above and below the two boxes. The top box
extends from the median value to the third quartile. The bottom
box reaches from the median to the first quartile. A shaded box
indicates failure of the t-test. In other words, all non-shaded
boxes are inputs with a confidence of at least 95% that our bit-
flip-minimization approach reduces the energy consumption.

V. RESULTS

In this section, we first describe the experiments we used
to confirm that bit flips on the memory bus contribute sub-
stantially to the overall energy consumption of GPUs. Then,
we present the energy savings of our technique on the highly-
optimized CUDA codes and, finally, on the simple codes. Since

the runtimes are identical for the bit-flip optimized codes and
the original codes, we do not show runtimes.

A. Buffer Transfer Experiments

To evaluate the potential behind our approach, we trans-
ferred 10 MB buffers holding specific bit patterns back and
forth across the memory bus using device-to-device copies.
The three patterns are all ‘0’ bits, all ‘1’ bits, and a sequence
of pseudo-random numbers. The median results of these mea-
sured transfers are listed in Table V, which shows the GPU-
wide energy consumption in millijoules for the approximately
ten seconds of operation. Table VI lists the consumption as a
percentage relative to transferring only zeros.

TABLE V
BUFFER TRANSFER ENERGY IN MILLIJOULES

GPU All 0s All 1s Random
TITAN V 944,507 955,481 1,211,705
RTX 2070 SUPER 1,176,937 1,180,755 1,468,913

TABLE VI
BUFFER TRANSFER ENERGY RELATIVE TO ALL 0S

GPU All 0s All 1s Random
TITAN V 100% 101% 128%
RTX 2070 SUPER 100% 100% 124%

These result show that bit flips greatly affect the energy
consumption even though the running time and the number
of bytes transferred are the same. Transferring random data,
with a 50% bit-flip probability on each wire of the memory
bus, requires 28% more energy on the Titan V and 24% more
energy on the RTX 2070 than transferring only zeros (but
the same runtime). This substantial difference is the basis of
our work and constitutes an approximate upper bound on the
possible energy savings using bit-flip minimization.

B. High-Performance Codes

This subsection studies the energy reduction in the high-
performance CUDA codes that we modified as outlined in
Section II to minimize bit flips. For reference, the result charts
include a blue line marking the 100% ratio. A value below this
line indicates that the bit-flip-reduced code is more energy
efficient than the original code.

ECL APSP: The ECL APSP results are shown in Figures
1 and 2. For the Titan V, no median ratio is above 100%, and
for the RTX 2070 only two median ratios are above 100%,
indicating that our bit-flip minimization technique is saving
energy in the majority of the cases. On both GPUs, the median
savings range from -0.5% to 3.2%. In the worst case, our
modified code requires 2% more energy on the Titan V and
1.5% on the RTX 2070. In the best case, it requires 9.3%
and 3.2% less energy. On the Titan V, 6 of 18 inputs did
not meet the t-test, and on the RTX 2070 8 inputs did not.
There is a clear trend on both GPUs. Whereas the overall
variance is high as indicated by the long whiskers, the sparser
the input (adjacency matrix) the higher the energy savings is



for all tested vertex counts. This is due to the sparser matrices
containing a larger number of the modified initialization value,
resulting in a higher reduction in bit flips and, therefore, a
lower energy consumption relative to the original code.

Fig. 1. Titan V ECL APSP results

Fig. 2. RTX 2070 ECL APSP results

Gardenia BFS: The Gardenia BFS results are shown in
Figures 3 and 4. The Titan V has one input with a median
above 100% and the RTX 2070 has two. These inputs failed
the t-test, as did one additional input for the RTX 2070. On all
remaining inputs, we are saving energy. On the Titan V, the
worst case requires 0.5% more energy whereas the best case
requires 1.8% less. On the RTX 2070, the worst case requires
0.4% more energy and the best case 1.8% less. The average
savings is 0.4% on both GPUs. When we replaced the default
constant of 1,000,000,000 with INT MAX− 1 as discussed
in Section II, the savings increased on both GPUs as expected
(to 0.7% on average) since one billion has fewer ‘1’ bits in
binary than INT MAX − 1.

ECL MIS: The ECL MIS results are shown in Figures 5 and
6. The RTX 2070 has two inputs with a median above 100%,
and the Titan V has none. On the Titan V, the average savings
is 1.5%, the worst case is an 0.3% increase in consumption,
and the best case is a savings of 2.8%. On the RTX 2070, the
average savings is 1.2%, the worst case is a 1.1% increase,
and the best case is a 3.4% saving. One input does not pass
the t-test on the Titan V and 3 of the 18 inputs do not on

Fig. 3. Titan V Gardenia BFS results

Fig. 4. RTX 2070 Gardenia BFS results

the RTX 2070. This GPU yields the highest savings on inputs
with a low average vertex degree. Conversely, the three worst
medians belong to the graphs with the highest average degrees.

Fig. 5. Titan V ECL MIS results

Gardenia SSSP: The Gardenia SSSP results are shown in
Figures 7 and 8. For both GPUs, there is only one input with a
median ratio above 100%, meaning we save energy on average
on most inputs. On the Titan V, the average savings is 0.7%,
the worst case is a 1.7% increase in consumption, and the
best case is a 2.6% savings. On the RTX 2070, the average
savings is also 0.7%, but the worst case is a 0.4% loss in
consumption and the best case is a savings of 2.6%. Two inputs



Fig. 6. RTX 2070 ECL MIS results

on each GPU fail the t-test, meaning we cannot say with 95%
confidence that we are saving energy even if the median is
below 100%.

Fig. 7. Titan V Gardenia SSSP results

Fig. 8. RTX 2070 Gardenia SSSP results

In summary, we find that, on all four high-performance
codes, our bit-flip reduction technique yields statistically sig-
nificant energy savings on average on most of the inputs. In
three of these programs, the savings are due to changing
a key constant in the source code. Note that none of our
modifications affect the running time or the correctness of the
programs.

C. Simple Codes

APSP: The results for the simple APSP code are shown
in Figures 9 and 10. The RTX 2070 has two inputs with a
median above 100%. Due to the large variance seen in the
results, six inputs on each GPU fail the t-test. On average, the
modified initialization values save 1.1% energy on the Titan
V. In the worst case, they increase the energy consumption by
2.5%, and in the best case they yield a savings of 6.2%. On
the RTX 2070, the median savings is 1%, the worst case is a
1.2% increase in energy, and the best case is a 4% reduction.
This simple version performs similarly to its high-performance
counterpart, sparser inputs yield higher savings. Moreover, the
smallest 4x input exhibits substantially lower savings than the
larger 4x inputs. This is due to the fact that the 1024-by-1024
adjacency matrix fits entirely into the L2 cache of the Titan
V and mostly into the L2 cache of the RTX 2070. The larger
inputs substantially exceed the L2 size, thus resulting in more
global memory accesses and, therefore, more opportunity for
saving energy.

Fig. 9. Titan V simple APSP results

Fig. 10. RTX 2070 simple APSP results

BFS: The results for the simple BFS code are shown in
Figures 11 and 12. BFS is an input-dependent irregular code.
Despite this input dependence, the medians show that applying
our bit-flip reduction technique always saves some energy on
both GPUs. On the Titan V, every ratio is below 100%, and
no inputs fail the t-test. On the RTX 2070, three inputs fail



the t-test even though no median is above 100%. On average,
the Titan V with bit-flip reduction consumes 1.9% less energy.
Even in the worst case, the energy consumption is reduced by
0.5%, and in the best case it decreases by 4.8%. The RTX
2070 consumes an average of 1.2% less energy with bit-flip
reduction. The worst case is a 1% increase and the best case
a 3.4% savings.

Fig. 11. Titan V simple BFS results

Fig. 12. RTX 2070 simple BFS results

MIS: The results for the simple MIS code are shown in
Figures 13 and 14. MIS performs similarly to BFS. For both
GPUs, 4 of 18 inputs fail the t-test. On the Titan V, the median
savings is 3.1%, the largest loss is 2.7%, and the maximum
savings is 10.6%. On the RTX 2070, bit-flip reduction saves
2.2% on average, increases the energy consumption by 1.7%
in the worst case, and decreases it by 8.3% in the best case.
Again, both GPUs tend to exhibit only small energy savings
with higher-degree inputs such as coPapersDBLP and rmat16.
The low-degree road maps, in contrast, yield some of the
highest savings.

SSSP: The results for the simple SSSP code are shown in
Figures 15 and 16. This code exhibits a lot of variance in
consumption. As a result, eight inputs failed the t-test on the
Titan V, and 13 failed on the RTX 2070. On the Titan V,
the median savings is 0.4%, the maximum loss is 1.7%, and
the maximum savings is 2.4%. On the RTX 2070, the median
savings is 0.3%, the maximum loss is 3.2%, and the maximum

Fig. 13. Titan V simple MIS results

Fig. 14. RTX 2070 simple MIS results

savings is 4.2%. The trends seen in SSSP are less pronounced
but still similar to those of the other simple codes.

Fig. 15. Titan V simple SSSP results

In summary, all four simple programs yield noticeable
energy savings on most of the inputs on average. Note that
we focus on the averages and medians as the variance is quite
significant in many of our measurements. A high variance
is expected because the programmer cannot influence the
timing behavior of the threads nor the ordering of the memory
accesses that the memory controller produces, both of which
are likely to change from run to run even when using the
same input, executable, and GPU. In programs where such



Fig. 16. RTX 2070 simple SSSP results

reorderings do not matter, e.g., our buffer transfer experiments,
the variance is much smaller. In general, the RTX 2070 tends
to exhibit less variance than the Titan V, and the simple codes
tend to have more variance than the highly optimized codes.
Like in the highly-optimized codes, none of our modifications
affect the running time or the correctness of the programs.

VI. CONCLUSION AND FUTURE WORK

CMOS-based computers primarily expend energy when
flipping bits. Hence, reducing bit flips can save energy, partic-
ularly on high-capacitance wires such as those of the memory
bus. Measuring the energy when copying fixed-size buffers
filled with random or identical values revealed that the random
values require 28% more GPU energy on a Titan V with
HBM2 memory and 24% more GPU energy on an RTX 2070
with GDDR6 memory, even though the copying takes the same
amount of time in all cases.

In this paper, we demonstrate how programmers can modify
their source code to minimize bit flips on the memory bus.
Being a software-only approach, our technique works on
existing hardware. We show the benefit of such modifications
on four high-performance and four unoptimized codes, two
with regular and six with irregular memory access patterns.
Surprisingly, it is often possible to reduce the energy consump-
tion (without affecting the running time) with an intelligent
change of the initialization value of a key data structure.
We select the new initialization value to maintain existing
program invariants such as exceeding the largest data value
while also being closer to the expected final values in terms
of the number of bits that differ (the Hamming distance). We
further provide an example where we successfully changed a
complex encoding scheme.

In future work, we plan to use memory profiling to deter-
mine which constants are being used often and are, therefore,
potential targets for our technique. The ultimate goal is to
automate as much as possible to lessen the human efforts
required to identify and apply these optimizations.

In summary, we show how changing just one key constant in
the source code can yield surprisingly large GPU-wide energy
savings without affecting program correctness or performance.
Having demonstrated the potential and feasibility of this idea,

we believe our work so far is only the tip of the iceberg. We
hope that it will raise awareness in software developers to
carefully select data-structure initialization values, encourage
hardware designers to provide more support for bit-flip reduc-
tion, and inspire researchers to search for further opportunities
to minimize bit flips and save energy.
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