On the Impor tance of Optimizing the Configuration of
Stream Prefetchers

llya Ganusov and Martin Burtscher
Computer Systems Laboratory, Cornell University
Ithaca, New York

{ilya, burtscher}@csl.cornell.edu

ABSTRACT

This paper provides a detailed analysis of how the parame-
ters of hardware prefetchers affect the memory system per-
formance. In particular, we found the configuration of the
frequently used stream prefetcher to have a major impact
on the runtime, making parameter optimizations impera-
tive when comparing a stream prefetcher with other prefe-
tching techniques. For example, we show that adjusting the
prefetch distance to the optimal value can increase the aver-
age speedup over the SPECcpu2000 benchmark suite from
40% to 70%. Moreover, our investigation of the performance
of runahead prefetching relative to stream prefetching shows
that choosing a non-optimal stream prefetcher as a baseline
can distort the results by as much as a factor of two.

Categoriesand Subject Descriptors

B.8 [Performance and Reliability]: Miscellaneous

General Terms

Performance

Keywords

hardware prefetching, stream prefetcher, runahead execu-
tion

1. INTRODUCTION

The cores of modern high-end microprocessors deliver only
a fraction of their theoretical peak performance. One of the
main reasons for this inefficiency is the long latency of mem-
ory accesses. Often, load instructions that miss in the on-
chip caches reach the head of the reorder buffer before the
data is received, which clogs the pipeline and stalls the pro-
cessor. As a result, the number of instructions executed per
unit time is much lower than what the CPU is capable of
handling. The rapid improvements in processor clock speed

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

MSP’ 05, Chicago,USA.

Copyright 2005ACM 1-59593-147-3/05/06.$5.00.

exacerbate this problem by widening the gap between the
speed of the processor and the main memory.

Memory prefetching attempts to guess what data the pro-
gram will need in the future and reads them in advance of
the actual program references. If the prefetch is initiated
sufficiently far in advance of the load, the entire latency of
the memory access is hidden and the load does not result
in any stall cycles. Even if the prefetch does not hide all of
the access latency, the prefetch is still beneficial because it
reduces the cycles that the processor is stalled waiting for
the load to complete.

Many general-purpose processors have instruction set sup-
port for software prefetching. The processor moves the cache
line addressed by software prefetch instructions to a specified
level in the cache hierarchy. Software prefetching schemes
have proven to be very effective for regular applications,
which are dominated by loops traversing regular data struc-
tures such as arrays. Optimizing compilers are generally
successful at generating binaries with software prefetching
that significantly reduce the number of critical cache misses
12, 9.

Hardware prefetchers observe the behavior of a running
application and initiate prefetching on repetitive patterns if
the cache misses. In contrast to software prefetching, hard-
ware prefetching does not require support from an optimiz-
ing compiler or a profiler. Furthermore, hardware prefe-
tching can automatically adapt to the dynamic behavior of
the application, such as varying data sets, or the hardware,
such as systems with various cache sizes. Also, hardware
prefetches are generated without the overhead of additional
address-generation and prefetch instructions.

Stream prefetching is a well-known hardware prefetching
technique that was proposed almost fifteen years ago [8].
Since its introduction stream prefetching has proved its use-
fulness by being introduced in different forms to virtually ev-
ery modern high-performance microprocessors. As a conse-
quence, researchers developing new prefetching mechanisms
often compare their newly developed techniques to prefe-
tching based on the idea of stream buffers.

Despite the fact that stream prefetchers are often used as
a baseline to compare with new prefetching approaches, we
could not find any kind of published material that analyzes
the effectiveness of stream prefetchers on SPECcpu2000 pro-
grams in great detail. Nevertheless, in many cases new pre-
fetching techniques are compared to stream prefetching, but
the parameters of the stream prefetcher are not specified. In
other cases the parameters are specified but the authors do
not identify why they were chosen or whether these parame-

ters are optimal for the benchmark suite and microprocessor
under investigation.

This paper pursues two goals. The first goal is to provide
a thorough analysis of stream prefetcher performance on all
SPECcpu2000 programs and to identify the parameters that
are the most critical for the stream prefetcher’s effectiveness.
We found the most crucial parameter to be the prefetch dis-
tance. Varying this parameter within a reasonable range can
almost double the performance benefit. At the same time,
the prefetch distance is probably the most ignored parame-
ter in many prefetching studies. For instance, we analyzed
the past 8 years of ISCA submissions and found that out
of the four papers that use a stream prefetcher as a base-
line for comparing with other prefetching techniques, only
two specify the prefetch distance supported by the stream
prefetcher.

The second goal of this paper is to provide an example
of how non-optimal stream prefetcher parameters can dis-
tort evaluation results when stream prefetching is used as
a baseline in a comparison with other prefetching schemes.
To this end, we evaluate runahead execution [13] on sev-
eral baselines with the same stream prefetcher but differ-
ent prefetch distances. One may think that since runahead
execution and stream prefetching target different types of
load address patterns, the performance advantage of runa-
head execution over stream prefetching should stay about
the same. However, our simulations show that changing the
prefetch distance of the stream prefetcher from a subopti-
mal to the best value for the SPECcpu2000 benchmark suite
reduces the average performance advantage of runahead ex-
ecution from 13.7% to 7%. Note that we are not trying to
say that runahead execution is a bad prefetching technique
(we think it is great), but rather we are showing that using
non-optimized stream prefetchers can results in an unfair
comparison.

The rest of the paper is organized as follows. Section 2
provides an overview over the related work on stream pre-
fetching. Section 3 describes the design of the stream pre-
fetcher used in this study and the simulation methodology.
Section 4 provides the sensitivity study of the stream prefe-
tcher parameters and our case study of evaluating the per-
formance benefit of runahead execution over stream prefe-
tching with different parameters. Section 5 concludes the

paper.

2. RELATED WORK

Hardware prefetching is an active area of research and sev-
eral aggressive schemes have been proposed to mitigate the
increasing performance impact of cache misses. In this work
we use only the class of stream prefetchers, hence we limit
our discussion to stride-based hardware stream prefetching
mechanisms.

A stream prefetcher is usually located between the L1
and the L2 cache, monitoring the L1 cache miss requests
that are delivered to the L2 cache. Stream prefetchers iden-
tify distinct streams within the sequence of the L1 cache
misses, associate strides with each of the identified streams,
and issue memory requests for the addresses further ahead
in the stream. This kind of prefetching is usually effective
for regular and structured workloads, including many high-
performance and technical computing applications [8]. The
simplest form of stride prefetching is next-sequential prefe-
tching in which the prefetcher issues a request for line L+1

as soon as line L is referenced [3, 14]. Depending on the
design complexity of the stream prefetchers, they can either
detect streams with a unit stride or they can handle both
unit and non-unit stride streams. A unit-stream prefetcher
observes misses for sequential cache lines and prefetches ad-
ditional sequential cache lines. More sophisticated stream
prefetchers handle streams with non-unit strides, e.g., ob-
serving misses for cache lines L, L+4, and L+8, a non-unit
stream prefetcher issues a prefetch for line L+12 [12]. A unit
stream prefetcher will not be able to detect such a stream
since it can only prefetch streams with the miss pattern L,
L+1, L+2, etc. 2-delta stride prediction allows preventing
single unrelated misses from causing the prefetcher to devi-
ate from the correct stride [4].

In many cases the L1 cache miss addresses are composed
of an interleaving of several streams. A typical case of
multiple streams is the traversal of several arrays within a
matrix-matrix multiplication loop. Stream prefetchers em-
ploy special mechanisms to decipher and disambiguate in-
terleaving streams. If the memory hierarchy propagates the
program counter (PC) of the instructions that cause cache
misses beyond the L1 cache, the prefetcher can attribute
misses to specific instructions and track streams on a per
PC basis [1, 5, 6]. If PC information is not available, the
stream prefetcher needs to identify distinct streams within
the global memory access pattern. Minimum delta predic-
tion and memory partitioning were proposed to handle this
problem. Minimum delta prediction associates a miss with
the stream or prior miss that is the closest [19]. Memory
partitioning partitions the physical memory address space
into regions and attributes all misses falling within a single
region to a single stream [19]. The scheme used in this paper
is based on the minimum delta approach.

The benefit from prefetching is largely determined by the
timeliness of the issued prefetches. If prefetches are issued
too late, they will hide only a fraction of the memory access
latency. Stream prefetchers control the timeliness of prefe-
tching by prefetching several stream elements ahead of the
data consumption of the processor. This number of stream
elements is called the prefetching distance and usually cor-
responds to the number of prefetches issued when a prefe-
tcher learns a new stream. The optimal prefetch distance
depends on several implementation-dependent factors, in-
cluding the memory latency, the available bandwidth and
the cache sizes. A very long prefetch distance may result in
a lot of redundant prefetches, a waste of valuable memory
bus bandwidth and pollution of the caches. If the prefetch
distance is too short, prefetches issued by the stream prefe-
tcher hide only a fraction of the memory latency and provide
little benefit. To deal with this problem, it was proposed to
temporarily delay prefetching or limit the prefetch ahead
distance until it becomes more certain that a new stream
has been identified [17]. Extending the training period has
minimal performance impact but significantly reduces the
negative effects of redundant prefetching [5]. Our experi-
mental results are based on fixed prefetch distances.

A stream prefetcher issues prefetches only when encoun-
tering a missing load or additionally when detecting the use
of a previously prefetched cache line by the processor. In
the latter case, the cache notifies the prefetcher when the
processor issues the first load to a cache line that was pre-
viously requested by the stream prefetcher. After that the
prefetcher initiates additional prefetches. This is made pos-

sible by “tagging” the cache lines that are being delivered
into the cache on behalf of the stream prefetcher. This way
the cache controller can easily identify which cache lines
were requested by the prefetcher. Tagging allows to com-
pletely avoid misses for a particular stream with the excep-
tion of the misses incurred while the behavior of the stream
is learnt. Furthermore, since the prefetcher is informed as
the prefetched data is consumed, additional prefetches can
be issued in a more timely fashion [16]. The scheme de-
scribed in this paper employs tagging.

Stream prefetchers either prefetch directly into the proces-
sor’s caches or into special prefetch buffers that are accessed
in parallel with the processor’s caches. The original proposal
of stream prefetchers by Jouppi assumed dedicated prefetch
buffers, with each stream buffer holding the prefetched data
for a single stream [8]. In the original implementation, only
the head of each buffer was compared with the memory ad-
dress of the requests, but later proposals added support to
compare requests with all the elements in the stream buffers
[5]. Prefetching into dedicated buffers ensures that incorrect
prefetches do not pollute the caches [14]. However, the spe-
cial storage for prefetched data does not only require addi-
tional area, but also complicates the design and verification
associated with maintaining cache coherency between the
stream buffers and the regular caches. The evaluations pre-
sented in this paper are based on directly prefetching data
into the L1 cache.

3. EXPERIMENTAL SETUP

This section describes the organization and operation of
the stream prefetcher used in this study as well as the ar-
chitecture of the processor and the benchmark suite under
investigation.

3.1 Stream Prefetcher Organization

In this paper, we investigate the performance of a stream
prefetcher that is capable of detecting both ascending and
descending streams with non-unit strides. To detect streams,
the prefetcher monitors the addresses of all L1 cache misses.
The data address of each cache miss is put into the miss
history table of a fixed size. The entries are put into this
table in FIFO order. Whenever a stream prefetcher observes
an L1 cache miss, it searches the miss history table to find
the miss address that is the closest, i.e., it computes the
minimum difference between the current miss address and
all previous miss addresses in the history table. After it de-
termines this minimum delta, it checks the table again to
see if this delta repeats twice. If such a match is found, the
stream prefetcher engine allocates a new stream.

To allocate a new stream, the prefetcher needs to have
an available stream entry in the stream table. The number
of stream entries of a prefetcher determines how many ac-
tive streams a prefetcher can handle at the same time. The
stream prefetcher in this study uses an LRU replacement
policy when allocating new entries. After the stream is al-
located a stream table entry, the stream prefetcher starts
issuing prefetches. In this paper, we refer to the number
of prefetches issued after stream allocation as the prefetch
distance. All prefetches are delivered directly into the cache
and are tagged. If the processor consumes prefetched data,
the stream prefetcher is notified of this fact. Upon receiving
such a notification, the stream prefetcher looks up its stream
table to see which stream entry the consumed address be-

Table 1: Simulated processor parameters

Out-of-order exe- | 4-wide fetch/issue/commit, 128-entry

cution ROB, 64-entry LSQ, 64 reservation
stations, speculative scheduling, squash
recovery

Functional units | 4 Int ALUs (1), 2 FP ALUs (2), 2 Int
(latency) Mul/Div units (3/20), 2 FP Mul/Div
units (4/12), 2 memory ports, 1 cycle ad-
dress generation for memory references
Branch prediction | Bimodal/gshare hybrid, 8k entries each,
meta-predictor 8k entries, 16 RAS, 2k-
entry 4-way BTB, 11 cycles minimum
misprediction penalty, fetch stops at 1st
taken branch

Memory system | 64kB 2-way 64B line IL1 (2), 64kB 2-way
(latency) 64B line DL1 (2), 1 MB 4-way 64B line
L2 (20), main memory (400), memory bus
operates at 1/4 CPU clock frequency

longs to. If it finds a match, it increments the corresponding
stream address by the stream’s stride and issues one new
prefetch in order to keep up with the data consumption of
the processor.

We use a stream prefetcher that is capable of maintain-
ing different prefetch distances for different levels of caches.
This technique was derived from the stream prefetcher used
in IBM’s POWER 4 processor [18].

Our stream prefetcher can be characterized by three main
parameters: the length of the miss history table, the number
of stream entries, and the prefetch distance. In Section 4
we characterize how each of these parameters influences the
performance of the stream prefetcher.

3.2 Simulation M ethodology

We evaluate stream prefetching using an extended ver-
sion of the SimpleScalar v4.0 simulator [11]. The baseline
processor is a four-issue dynamic superscalar microprocessor
similar to the Alpha 21264 (Table 1).

We used all integer and floating-point programs from the
SPECcpu2000 benchmark suite with the exception of the
four Fortran-90 programs. We excluded these programs be-
cause of the lack of a compiler. All programs are run with
the SPEC-provided reference inputs. The C programs were
compiled with Compaq’s C compiler V6.3 025 using “-O3
-arch host -non_shared” plus feedback optimization. The
C++ and Fortran 77 programs were compiled with g++/g77
V3.3 using “-O3 -static”. We used the SimPoint toolset [15]
to identify representative simulation points. Each bench-
mark is simulated for 500 million instructions after fast-
forwarding past the number of instructions determined by
SimPoint.

4. EXPERIMENTAL RESULTS
4.1 Prefetch Distance

In our first sensitivity study we vary the prefetching dis-
tance while keeping the number of stream buffers and the
miss history parameters fixed. We chose to use 16 stream
buffers and a history length of 16 misses because further in-
creasing these parameters does not provide significant bene-
fits as will be shown in the following subsections. Since our
stream prefetcher can use different prefetch distances for the
L1 and L2 caches, we perform two experiments to find the
optimal distances for the two cache levels.

229.5
80

-10

eon
gap r
gee
9zip
mcf -
vpr

bzip2
crafty |

1
4 xXxxx1
70 8
60 16 m—
perf L1 o~—x
__ 50 .
2
o 40 5
3 0 N
3 30 H
Q.
"
20 H N —=
N
10 H K ——
ol I g]
o]
12
@
Q

perlomk
twolf
vortex
gmean

120
110 N
100
9
80
70 N
60
50
40 -
30 -
20
10

speedup (%)

%

-10

art

ammp
applu |
apsi
mesa
mgrid
sixtrack -
swim
wupwise
gmean

Figure 1: Sensitivity to the L1 cache prefetch distance

4552

150

100

speedup (%)

50

o
bzip2 @ ‘

vpr

£ 65 & 8 &8 ¢ 8 € B 3 3
T 8 &5 5 8§ E 2 E g & o
3] s T = 9 £
e o > S

o

1191
800 1

700 —

600] N

500
400

speedup (%)

300 1

200 {

100

ammp H
applu H
apsi
art
equake H
mesa
mgrid H
sixtrack
swim
wupwise

Figure 2: Sensitivity to the L2 cache prefetch distance

To investigate the impact of the prefetch distance on the
L1 data cache performance, we simulate the baseline with
a perfect L2 cache. Figure 1 shows speedup numbers for
different prefetch distances. Even though we simulated all
distances between 1 and 16, Figure 1 only shows selected
parameters to highlight the general trend. The last bar for
each benchmark represents the speedup with a perfect L1
cache, i.e., the case when the L1 cache always hits. This
gives us an upper bound on the benefit attainable with pre-
fetching.

On average, increasing the prefetch distance initially im-
proves the performance. As the prefetch distance is in-
creased from one to four, the average speedup for the integer
programs increases from 4% to 5% and for the floating-point
programs from 10% to 14%. After a certain point the neg-
ative effects of cache pollution cause slowdowns, and fur-
ther increasing the prefetch distance does not provide any
significant benefit for the integer benchmarks and results
in a performance degradation for the floating-point bench-
marks (the average speedup drops from 14% to 12%). In
case of two benchmarks, twolf and apsi, higher prefetching
distances hurt performance relative to the baseline without
prefetching, which is mostly due to pollution.

Based on the results from Figure 1, it looks like the opti-
mal prefetch distance for the L1 cache is four since this value
yields the best performance with minimal pollution for our

benchmark suite. Therefore, in all further experiments we
fix the L1 prefetch distance to four for all programs.

Next, we investigate the performance benefit of varying
the prefetching distance for the L2 cache from 4 to 32. The
results are shown in Figure 2.

The best average speedup for the integer programs is
achieved at a prefetching distance of 16. Further increas-
ing the distance results in additional pollution, which is es-
pecially prominent in gap and twolf. However, the average
speedup for the floating-point programs monotonically in-
creases with the prefetch distance. A slight degradation is
observed only for ammp. Even though larger prefetch dis-
tances result in significant pollution for both integer and
floating-point programs, the prefetches hide so much of the
memory access latency that they outweigh the negative ef-
fects of the pollution in almost all programs.

Another interesting fact to note is that the prefetching
distance has a big impact on the performance benefit of
the stream prefetcher. For example, changing the prefetch
distance from 4 to 32 raises the speedup due to stream pre-
fetching from 84% to 144% in case of the floating-point pro-
grams. Individual applications experience even more dras-
tic improvements. Increasing the prefetch distance in equake
improves the speedup from 190% to 565%, swim experiences
an increase from 300% to 600% and shows a performance
very close to that with a perfect cache. While the integer

@ No prefetching @ Due to reduced execution time 0 Due to prefetching

memory bus occupancy (%)
w

4 6 8 10 12 16 24 32

stream prefetch distance

@ No prefetching @ Due to reduced execution time 0 Due to prefetching

memory bus occupancy (%)

stream prefetch distance

Figure 3: Memory bus utilization as a function of L2 cache prefetch distance

200 1 stream —
2 streams XXXx3
4 streams ExEEzER
8 streams m——m

150 16 streams ©===X1

32 streams zzzz

100

speedup (%)

50

0@ 1] ke [TENY] m

I I I I I I I I I I I I I
A > £ o Q a %v 5 X = x = c
2 £ o g 9§ g § E 2 ¢ ¢ g
N ® o o ° 5 S &8 2 €]
Q o g = = O £

o B > 5

aQ

700

600

500

400

300

speedup (%)

200

100

ammp
applu

apsi r
mesa
mgrid

(]
X
©
3
o
(5]

sixtrack
swim
gmean

®
2
3
a
=)
s

Figure 4: Sensitivity to the number of supported simultaneous streams

programs show less dramatic sensitivity to the prefetch dis-
tance, gcc, mcf and parser benefit greatly from an increased
prefetch distance as well.

In general, the IPC improvements provided by our stream
prefetcher correspond to the results in another recently pub-
lished study involving stream prefetching [7]. While the
absolute numbers for the performance improvements differ
slightly, the trend for each program is similar.

Figure 3 shows the utilization of the main memory bus for
various stream prefetch distances, averaged over the SPECint
and SPECfp applications. The increase in bus utilization
due to prefetching is divided into two parts: the increase
caused by the reduced execution time and the increase caused
by redundant prefetch traffic. Owverall, the figure shows
that the increase in bus utilization from 4.1% to 5.2% is
quite tolerable for integer programs. On the other hand,
bandwidth demands rise from 22% to 38.2% with increasing
prefetch distances for the floating-point programs. Never-
theless, most of the increase comes from the faster execu-
tion. In the most aggressive configuration with a prefetch
distance of 32, only 0.74% of the bus utilization is directly
attributable to useless prefetching. In case of the floating-
point programs, 3.77% of the total 38.2% bus utilization
stems from redundant prefetching.

4.2 Number of Simultaneous Streams

In this subsection we investigate the sensitivity of the
stream prefetcher to the number of streams that it can track
simultaneously. We vary the number of streams supported
by the prefetcher from 1 to 32 and measure the IPC im-

provement for each value. For all studies in this subsection,
the prefetch distance for the L1 cache is set to 4, the prefetch
distance for the L2 cache is 16, and the miss address history
contains up to 16 last miss addresses.

The results are presented in Figure 4. For most inte-
ger and floating-point programs, increasing the number of
concurrently supported streams beyond 16 provides little
or no benefit. In general, some programs experience a rel-
atively sharp increase in performance when the number of
streams is increased from 1 to 8. Equake is the only program
that shows a significant performance improvement when the
number of supported streams is increased from 8 to 16.

Figure 4 shows that the SPECcpu2000 benchmark pro-
grams rarely exhibit more than 8 active streams at the same
time. Therefore, to cover all possible cases it is important
to provide a stream prefetcher with the capability to track
at least 8 independent streams. Increasing the number of
supported independent streams beyond 8 will not make a
stream prefetcher more aggressive.

4.3 MissHistory Length

The last parameter of the stream prefetcher that we in-
vestigate is the length of the miss history. To measure the
sensitivity of the stream prefetcher to this parameter, we
vary the history length from 2 to 64 and measure the IPC
improvement for each value. For all studies in this subsec-
tion the prefetch distance for the L1 cache is set to 4, the
prefetch distance for the L2 cache is 16, and the stream
prefetcher can track up to 16 simultaneous streams.

The results are presented in Figure 5. To achieve the

4 entries ——1
8 entries XXXX1
16 entries B
32 entries m—
64 entries =<1

200

150

100

speedup (%)

50

o
bzip2 @

crafty |
eon
gap r
gce
9zip [
mcf

gmean @

twolf g
vortex
vpr r %

parser
perlbmk |

700

Figure 5: Sensitivity to the length of the miss history

maximum performance benefit, integer programs require at
least 8 last miss addresses to be tracked by the stream pre-
fetcher. However, a history of 4 entries already provides
most of the benefit. The floating-point programs are more
demanding and require a history length of at least 16 miss
addresses. Increasing the history length from 4 to 16 boosts
the speedup from 68.2% to 130.7% for the floating-point pro-
grams. Therefore, a history length of at least 16 is required
for reaping most of the benefit provided by the stream pre-
fetcher.

4.4 Case Study

The previous subsections showed that the stream prefe-
tcher performance is highly dependent on the optimal con-
figuration of its parameters. In this section we show that, to
make a fair comparison with other prefetching techniques, it
is important to choose the stream prefetcher with the best
parameters.

As a case in point, we investigate the performance of pre-
fetching based on runahead execution relative to stream pre-
fetching. The concept of runahead execution was first pro-
posed by Dundas and Mudge [2] for in-order processors and
further extended by Mutlu et al. [13] to perform prefetching
for out-of-order architectures. The runahead architecture
“nullifies” and retires all memory operations that miss in
the L2 cache and remain unresolved at the time they reach
the ROB head. It starts by taking a checkpoint of the archi-
tectural state. Then it retires the missing load and the pro-
cessor enters runahead mode. In this mode the instructions
proceed largely normally except for two major differences.
First, the instructions that depend on the result of the load
that was nullified do not execute but are nullified as well.
They commit an invalid value and retire as soon as they
reach the head of the ROB. Second, store instructions exe-
cuted in runahead mode do not overwrite data in memory.
When the original nullified memory operation completes, the
processor rolls back to the checkpoint and resumes normal
execution. All register values produced in runahead mode
are discarded.

We implemented a version of runahead execution to study
its performance advantage over stream prefetching. Note
that runahead execution is added on top of the stream prefe-
tcher, i.e., we measure the performance benefit of using both
a stream prefetcher and runahead execution over a baseline
that uses only a stream prefetcher. We implemented the ver-

600
500
9
£ 400
Qo
=]
el
& 300
Q.
2]
200
100 _ |
o —
> =
S © g £ £ E] §_ %
X
< op = FP
o
3
@ 151
o
(7))
(0]
g 10 ~
© .\k,/\‘.
e 5
©
0
2 4 8 16 32

prefetch distance

Figure 6: Average speedup of runahead execution
over stream prefetcher with different prefetch dis-
tances

sion of runahead execution that does not buffer intermediate
memory state produced in runahead mode [13] and do not
employ load-value prediction to assist runahead execution
[10].

For this study, we fixed the number of stream prefetch
buffers and the miss history to 16. We varied the prefetch
distance of the stream prefetcher from 2 to 32 and measured
the IPC for each configuration with and without runahead
execution. Figure 6 presents the geometric-mean speedups
of runahead execution over stream prefetching for integer
and floating-point programs as the parameters of the base-
line stream prefetcher are changed.

The data in Figure 6 demonstrate that the relative per-
formance benefit of runahead execution is highly dependent
on the parameters of the baseline stream prefetcher. As
the prefetch distance of the stream prefetcher is increased,
the average speedup of the integer benchmarks obtained by
runahead execution drops from 7.6% to 5.4%. The floating-
point programs exhibit a much more drastic drop from 24.6%
to 9%. The average geometric-mean speedup for the entire
SPECcpu2000 suite decreases from 13.7% to 7%, i.e., by a
factor of two. While the performance increase obtained by
runahead execution is quite good even with the most aggres-
sive configuration of the stream prefetcher, this case study
points out that the use of a non-optimally configured stream
prefetcher can result in an unfair comparison of the stream
prefetcher relative to other prefetching techniques.

The main reason for the decreasing performance gains
with the increasing stream prefetch distance is the following.
When a short prefetch distance is used, the stream prefe-
tcher can hide only a fraction of the miss latency. Therefore,
when the runahead processor issues loads that are already
being prefetched by the stream prefetcher, they still take a
long time. As a result, the processor enters runahead mode
even though the requested data is already being prefetched.
While in runahead mode, the processor keeps issuing mem-
ory requests that belong to the streams identified by the
stream prefetcher during normal execution of the processor.
The stream prefetcher observes that the prefetched data is
being used and advances the prefetching front, which re-
sults in an increased prefetching distance while in runahead
mode. Therefore, much of the benefit comes from the fact
that runahead execution indirectly increases the prefetch
distance of the stream prefetcher.

As we increase the prefetch distance, the stream prefetches
hide more and more latency and the processor enters runa-
head mode less often and for shorter periods of time. There-
fore, the benefit of runahead execution due to the advanc-
ing of the prefetching front while in runahead mode de-
creases. Since floating-point programs are more sensitive
to the prefetch distance, the performance drop for them is
quite significant. Figure 2 demonstrates that integer pro-
grams are less sensitive to the prefetch distance, which is
why the benefit of runahead execution decreases more grad-
ually.

5. CONCLUSION

This paper provides a detailed analysis of how the pa-
rameters of hardware stream prefetchers affect the memory
system performance in SPECcpu2000 programs. We experi-
ment with different parameters of the stream prefetcher and
demonstrate that the same prefetching mechanism can de-
liver drastically different performance benefits depending on
the configuration used. For example, increasing the prefetch
distance from 4 to 32 almost doubles the performance ben-
efit delivered by the stream prefetcher in floating-point pro-
grams. Therefore, we argue that parameter optimizations
are imperative when comparing a stream prefetcher with
other prefetching techniques. To emphasize the importance
of parameter optimization, we investigate the performance
of hardware prefetching based on runahead execution rela-
tive to stream prefetching and show that choosing a non-
optimal stream prefetcher as a baseline significantly dis-
torts the results of such a comparison. When a stream
prefetcher with sub-optimal parameters is used, runahead
execution provides 13% speedup over stream prefetching.
When the parameters of the stream prefetcher are adjusted
to achieve the maximum speedup for the given benchmark
suite and processor architecture, the average speedup pro-
vided by runahead execution drops to 7%.

6. REFERENCES

[1] F. Dahlgren, M. Dubois, and P. Stenstrm. Sequential
hardware prefetching in shared-memory
multiprocessors. IEEE Trans. Parallel Distrib. Syst.,
6(7):733-746, 1995.

[2] J. Dundas and T. Mudge. Improving data cache
performance by pre-executing instructions under a

cache miss. In Proceedings of the 11th international
conference on Supercomputing, pages 68-75, 1997.

[3] R. J. Eickemeyer and S. Vassiliadis. A load instruction
unit for pipelined processors. IBM Journal of Research
and Development”, 37(4):547-564, July 1993.

[4] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic.
Memory-system design considerations for
dynamically-scheduled processors. In Proceedings of
the 24th Annual International Symposium on
Computer Architecture, pages 133—143, 1997.

[5] K. I. Farkas, N. P. Jouppi, and P. Chow. How useful
are non-blocking loads, stream buffers and speculative
execution in multiple issue processors? In Proceedings
of the 1st IEEE Symposium on High-Performance
Computer Architecture, page 78, 1995.

[6] J. W. C. Fu, J. H. Patel, and B. L. Janssens. Stride
directed prefetching in scalar processors. In
Proceedings of the 25th annual international
symposium on Microarchitecture, pages 102-110, 1992.

[7] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and
S. G. Abraham. Effective stream-based and
execution-based data prefetching. In ICS ’04:
Proceedings of the 18th annual international
conference on Supercomputing, pages 1-11, 2004.

[8] N. P. Jouppi. Improving direct-mapped cache
performance by the addition of a small
fully-associative cache and prefetch buffers. In
Proceedings of the 17th annual international
symposium on Computer Architecture, pages 364-373,
1990.

[9] S. Kalogeropulos, M. Rajagopalan, V. Rao, Y. Song,
and P. Tirumalai. Processor aware anticipatory
prefetching in loops. In Proceedings of the tenth
international symposium on High Performance
Computer Architecture, pages 106—117, 2004.

[10] N. Kirman, M. Kirman, M. Chaudhuri, and J. F.
Martinez. Checkpointed early load retirement. In
Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, pages
16-27, 2005.

[11] E. Larson, S. Chatterjee, and T. Austin. Mase: a
novel infrastructure for detailed microarchitectural
modeling. In Proceedings of the The Second
International Symposium on Performance Analysis of
Systems and Software, pages 1-9, 2001.

[12] T. C. Mowry, M. S. Lam, and A. Gupta. Design and
evaluation of a compiler algorithm for prefetching. In
Proceedings of the fifth international conference on
Architectural support for programming languages and
operating systems, pages 62-73, 1992.

[13] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt.
Runahead execution: An alternative to very large
instruction windows for out-of-order processors. In
Proceedings of the The Ninth International Symposium
on High-Performance Computer Architecture, page
129, 2003.

[14] S. Palacharla and R. E. Kessler. Evaluating stream
buffers as a secondary cache replacement. In
Proceedings of the 21st annual international
symposium on Computer architecture, pages 24-33,
1994.

[15] T. Sherwood, E. Perelman, G. Hamerly, and

[16]

[17]

18]

[19]

B. Calder. Automatically characterizing large scale
program behavior. In Proceedings of the 10th
international conference on Architectural support for
programming languages and operating systems, pages
45-57, 2002.

T. Sherwood, S. Sair, and B. Calder.
Predictor-directed stream buffers. In Proceedings of
the 33rd annual ACM/IEEE international symposium
on Microarchitecture, pages 42-53, 2000.

V. Srinivasan, E. S. Davidson, and G. S. Tyson. A
prefetch taxonomy. IEEE Trans. Comput.,
53(2):126-140, 2004.

J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Le, and
B. Sinharoy. Power4 system microarchitecture. IBM
Journal of Research and Development, 46(1):5-26,
2002.

C. Zhang and S. A. McKee. Hardware-only stream
prefetching and dynamic access ordering. In
Proceedings of the 14th international conference on
Supercomputing, pages 167175, 2000.

