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Abstract We numerically model the human brain
dynamics in realistic 2D cross-sections during trau-

matic scenarios corresponding to the Head Injury

Criterion’s critical value HIC36=1000. Our simu-

lations are based on the Kelvin-Voigt Partial Dif-

ferential Equations that treat the brain tissue as a

viscoelastic solid and on our nonlinear generaliza-

tion of these linear PDEs that treats the tissue as

an incompressible, viscoelastic fluid. To better vi-

sualize and study the brain motion, we have devel-

oped curved-vector-field plots and movies, which al-

low the simultaneous analysis of velocity fields with

a wide range of magnitudes (as appear in turbulent

flows) as well as the corresponding trajectories of

brain-matter parcels. The discovered complex brain

tissue oscillations shed new light on the mechanisms

of Closed Head Injuries. Our results may help es-

tablish a universal brain injury tolerance criterion.
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1 Introduction

Traumatic Brain Injury (TBI) is one of the
most dreadful human ailments. TBI is not
restricted to automotive accident victims but
also affects bicyclists, skiers, and even people
who just fall onto hard surfaces or ride roller
coasters. In vivo animal TBI experiments are
controversial, costly, and difficult to perform.
Also, due to the differences in size, geometry,
and physical properties between a human and
an animal brain, it is difficult to directly apply
the results obtained from animal experiments

to humans, even when merely establishing gen-
eral human brain injury tolerance criteria.

Computer simulations enable consistent uti-
lization of data obtained from medical research
and experiments involving live animals, human
cadavers as well as animal and human brain
tissue. They also allow accounting for individ-
ual differences between people of various ages
(including infants and children) and ethnic ori-
gins. Indeed, a variety of real accident scenar-
ios and laboratory experimental settings, with
different geometric and material configurations
of the human or animal skull-brain system, can
be numerically simulated (recreated) to vali-
date a general TBI model against all types of
data. Computational TBI models developed
over the last fifteen years confirm the validity
of this approach, cf. [1] and references therein.

To model the mechanisms of Diffuse Axonal
Injury (DAI) that are unexplained by other
TBI models, we have generalized the well-
established Closed Head Injury (CHI) model
that is based on the linear Kelvin-Voigt PDEs
by introducing the following nonlinear PDEs
describing an incompressible, viscoelastic fluid
(the human brain contains circa 80% water):

Dv
Dt=−∇p̃+P(c2u+ νv), DuDt=v, ∇·v = 0 (1).
Here D/Dt≡∂/∂t+(v·∇) denotes the mater-
ial derivative with the velocity vector v(x,t),
u(x,t)≡x(x0,t)-x0 is the Lagrangian displace-
ment vector of a material parcel labeled by its
initial position x0, p̃ is the sum of the den-
sity normalized pressure and the hydrostatic
compression of solids, whereas c and ν are



constants describing, respectively, the brain’s
shear-wave phase velocity and viscosity. The
Kelvin-Voigt equations are a linearized form of
(1) where v·∇ and p̃ equal zero, cf. [2]
In what follows, the linear Kelvin-Voigt

PDEs and our nonlinear generalization (1) of
these PDEs are referred to as L and NL sys-
tem/model, respectively. As it is done in the L
and many other CHI models, in our NL model
the severity/localizations of brain injuries are
attributed to the distribution of the strain field
created in the brain tissue by the shear waves.

2 Numerical Method

Our NL system is more complex than the
Navier-Stokes equations and the realistic brain
geometry imposes complex boundary condi-
tions. Thus, obtaining numerical solutions
requires the use of sophisticated methods.
To benefit from established results, we have
adapted the finite-difference code EULAG,
which was developed at the National Center
for Atmospheric Research in Boulder, CO, to
study atmospheric and stellar phenomena [3].

The physical properties of the human brain
imply that the velocity of the shear waves in
the white matter equals 0.8 -1.0m/s, whereas
in the gray matter it is up to four times
larger, cf. [4] and the references therein. Thus,
the shortest shear waves that can propagate
in the gray matter are longer than 5·10−3m
and the shortest possible shear waves in the
white matter are several times longer [2].
To properly model such waves and maintain
good numerical stability, we use a grid resolu-
tion 5·10−4m≤∆x≤ 2·10−3m and a time step
10−5s≤∆t≤ 10−4s (depending on the trau-
matic scenario and whether the L or the NL
system is used). This amounts to up to 16·104
calculation nodes for a 2D brain cross-section
and up to 5·104 calculation time steps.
CAT scans and MRIs provide geometrical

details of brain substructures below 10−3m,
which suffices for the accuracy required by the
dispersion relations. We use cubic spline in-
terpolations of data from medical sources to

replicate the geometry of 2D skull-brain cross-
sections. Cubic splines result in differentiable
curves that pass exactly through the given data
points, produce natural looking, smooth 2D
objects, and can be computed efficiently (in
linear time with respect to the number of data
points in the contours of the substructures).

Our simulations imply that 5·10−3m varia-
tions in the brain shape do not affect the solu-
tions of either PDE system in a noticeable way.
It is rather global geometrical and topological
properties that impact the results [5, 6]. Thus,
there is no need to overemphasize the geomet-
rical accuracy of the skull-brain facsimile. This
approach is also characteristic for other com-
putational models of brain injuries. For exam-
ple, the finite-element model SIMon, developed
over the last decade and continuously improved
by the National Highway Traffic Safety Admin-
istration (NHTSA), includes only circa 5·103
nodes and 4·103 elements within the brain [1].

3 Curved-Vector-Field Plots

Studying brain dynamics requires a good rep-
resentation of the temporal evolution of the ve-
locity vector field within the brain. The com-
mercially available software packages we have
tested cannot depict this evolution with suf-
ficient detail. As a remedy, we have devel-
oped curved-vector-field (CVF) plots, which
can readily be converted into MPEG movies.
In comparison to typical vector plots, CVF
plots use shaded lines instead of arrows to indi-
cate the direction of the vectors. This approach
allows to display many more vectors in the
same plot without cluttering it and thus bet-
ter portrays fields with highly varying magni-
tudes and directions. Moreover, CVF plots uti-
lize curved instead of straight vectors to more
clearly visualize the trajectories of the brain
parcels, especially in turbulent fields. As a con-
sequence, our plots make important subtleties
obvious and thus enable a better understand-
ing of possible CHI mechanisms.

To construct CVF plots, we start the vec-
tors in the grid points whose integer coor-



dinates (i, j) lie inside of the brain cross-
section and satisfy imodn=0, jmodn=0,
and (i+j)modnmod2=0, where n controls
the density of the plot. In other words, we
select every nth row and column from the grid
and then alternately drop the even and odd
points from the selected rows (or columns). Al-
ternating between even and odd points results
in a visually more appealing plot. The points
that remain become the origins of the curved
vectors, which are drawn as follows.

First, the current position (x, y) is set to the
origin. Next we repeat the following steps m
times, where m is the number of straight-line
segments used to approximate each curved vec-
tor. We pick the four points in the grid that
are closest to the current position. Using simu-
lation data from these four points, we compute
bi-linear interpolations to obtain results for the
current position (x, y). The interpolated re-
sults are then scaled by a user-provided con-
stant factor to stretch (or shrink) all vectors to
a visually pleasing length.

Then we add the scaled values to the current
position, yielding a new position, and draw a
straight-line segment from the current to the
new position. The first segment is the dark-
est and each consecutive segment is somewhat
lighter. This gradual shading indicates the di-
rection of the vector. Finally, the new position
becomes the current position. We repeat the
above steps until m segments have been plot-
ted. This algorithm is applied to each vector.
Once all the curved vectors have been drawn,
we add an outline of the brain contour to com-
plete the CVF plot.

4 Simulation Setup

The analytic solutions of the L system for
impulsively rotated, idealized (cylindrical and
spherical) skull shapes reveal simple oscilla-
tions of the brain matter with sufficiently large
strain values to rupture veins or damage neu-
rons. These solutions have been used to predict
the occurrences of subdural hematoma and to
create a Diffuse Axonal Injury criterion [7, 8],

but they are insufficient for determining even
general localization of injuries within the brain.

Our simulations of the brain dynamics
within 2D cross-sections after an impulsive
skull movement showed that realistic brain
shapes and physical properties lead to compli-
cated oscillations that could explain the gen-
eral localization of injuries [5, 6, 9, 10]. How-
ever, since these simulations use rectangularly
shaped accelerations occurring within one time
step ∆t≤10−4s, it is difficult to compare their
results with experimental brain injury criteria.
Indeed, the NHTSA assesses brain injuries oc-
curring as a result of translational accelerations
by means of the Head Injury Criterion [11]:

HIC1000(t2−t1)=max
1

(t2−t1)
t2
t1
a(t)dt

2.5·(t2−t1),
where a(t) is the head’s translational accelera-
tion in g’s and (to get reliable predictions) the
length T=t2-t1 of the time intervals [t1, t2]–
over which the maximum is calculated–is as-
sumed to be in the range 10−3s≤T ≤ 10−1s.
Thus, to model the 2D brain dynamics that

results from a traumatic translation (assumed
to be from left to right), we reduce the initial
constant skull velocity v0=α(T/2)

2 using the
triangularly shaped scalar deceleration:

a(t) = −αt for 0 ≤ t ≤ T/2,
a(t) = αt− αT for T/2 < t < T , (2)

a(t) = 0 for T ≤ t
with α=65400m/s3 and T=36·10−3s leading to
v0=21.2m/s and HIC36=1000, i.e., the HIC
value associated with severe brain injuries [11].

To properly compare all results, we assume
the transfer of power from the skull to the
brain in our rotational decelerations to be the
same as in the translational decelerations de-
scribed above. Thus, for a cross-section with
‘radius’ r whose ‘center’ is distanced from the
axis of rotation by R, we use the initial clock-
wise angular velocity ω0=v0/

√
r2 +R2 with

the same v0 as above and the angular deceler-
ation dω(t)/dt=a(t)/

√
r2 +R2 with a(t) given

by (2). Consequently, the largest initial tan-
gential velocity v (e.g., at the top of the head)
is equal to v0(r+R)/

√
r2 +R2, and v assumes

the maximum value of
√
2v0 if R=r, i.e., for a

rotation about the skull’s base.



5 Results

To investigate the extent to which the fea-
tures of the solutions–and hence the localiza-
tion and severity of potential brain injuries–
depend on the traumatic motion’s type and the
brain’s geometry/topology, we conducted sim-
ulations involving sagittal brain cross-sections
as well as horizontal brain cross-sections with
and without the falx cerebri. When modeling
rotational decelerations of the skull, we posi-
tion the axis at the brain’s ‘center’, the skull’s
base, the neck, the abdomen, etc.
Our simulations with both PDE systems

show that just after the skull deceleration be-
gins, the brain matter ‘attempts’ to maintain
its initial velocity (as expected). However, the
incompressibility condition ∇·v=0 in (1) does
not allow the creation of any void between
the brain and the skull. Therefore, this initial
brain matter movement transforms into a rota-
tional motion with respect to the skull (regard-
less of whether the skull is slowed down by a
rotational or translational deceleration). Since
the brain tissue is elastic, the rotational motion
within the brain leads to oscillations relative
to the decelerating skull, which are damped by
the brain’s viscosity. The specific character of
these complicated oscillations depends on the
geometry and topology of the cross-section, the
type of motion, and the PDE system used.
Fig. 1 depicts the L system’s velocity field

evolution in a sagittal brain cross-section
whose initial rotation about its center is de-
celerated. After a short initial surge of cir-
cular clockwise motion (due to the diminish-
ing skull velocity), the brain matter bounces
back and then forth. The noncircular bound-
ary quickly distorts this initial oscillation and
a multi-vortex pattern arises shortly after a(t)
assumes its extremum at t=0.018s (top). 0.01s
later, two vortices emerge (middle) with di-
minishing velocities (shorter curved vectors),
and after the skull stops at t=0.036s the
boundary-following pattern is restored (bot-
tom). Multi-vortex oscillations continue in
the resting skull for tens of milliseconds with
smaller and smaller velocities and amplitudes.

Figure 1:
The L system’s velocity field in a sagittal
cross-section at t=0.02s, 0.03s, and 0.04s,
resp., from top to bottom; central rotation.

If the sagittal cross-section is translated in-
stead of rotated, the first oscillatory vortex be-
gins to form only at t=0.015s, and for t≥0.03s
the brain matter motion evolves into a multi-
vortex oscillation, Fig. 2. For a fixed t, the os-
cillatory patterns from Fig. 2 gradually ‘tran-
sition’ to the corresponding patterns in Fig. 1
as we move the axis of rotation closer to the
cross-section’s ‘center’ (i.e., as we decrease R).

The introduction of nonlinearity leads to
turbulence that distorts (especially for larger
R’s) the oscillatory patterns appearing in the
L case. Fig. 3 depicts theNL system’s velocity
field in the translated (top panels) and rotated



(bottom panels) sagittal cross-section. Again,
when radius R is varied, transitional patterns
arise that ‘link’ the top and bottom patterns.

Figure 2:
The L system’s velocity field in a sagittal

cross-section at t=0.02s (top) and
at t=0.04s (bottom); translation.

Comparing central rotations of sagittal and
(more symmetric) horizontal cross-sections en-
ables us to gauge to which extent the domain’s
shape and topology impact the solutions of
each system. Fig. 4 shows the L system’s ve-
locity field in a rotated horizontal cross-section
without the falx cerebri. In this case, the
boundary-following pattern of oscillations is
not disturbed essentially during the decelera-
tion (Fig. 4, left). However, when the skull
comes to rest, a layer of vortices forms near
the skull that then ‘moves’ towards the center
(Fig. 4, right). Similar ‘elliptic’ oscillatory pat-
terns appear also in the NL case with minor
turbulent perturbations near the skull.

Contrary to the sagittal cross-section, the
translation of a horizontal cross-section with-
out the falx cerebri based on the L system leads
to symmetric oscillatory patterns after skull
rests, cf. Fig. 5 (left) and Fig. 2 (bottom). Non-

linearity violates this symmetry due to a turbu-
lent flow that allows to determine the direction
of the skull’s motion, Fig. 5, right.

Figure 3:
The NL system’s velocity field in a sagittal
cross-section at t=0.02s (top and third)
and at t=0.04s (second and bottom);

translation (top two); rotation (bottom two).



Figure 4:
The L system’s velocity field in a horizontal
cross-section without falx cerebri at t=0.02s
(left) and at t=0.04s (right); central rotation.

Figure 5:
Velocity fields in a horizontal cross-section
without falx cerebri at t=0.04s; L system
(left) and NL system (right); translation.

Figs. 6 and 7 depict, respectively, the L and
NL systems’ velocity fields in a centrally ro-
tated horizontal cross-section separated by the
falx cerebri. In the L case, the falx cerebri
modifies essentially the character of the so-
lution during the rotation (compare the left
panels of Figs. 4 and 6), but the skull’s ro-
tational direction still cannot be easily de-
termined. The boundary-following pattern of
brain oscillations (cf. Fig. 6, right) is restored
already before the skull rests. In the NL case,
the presence of the falx cerebri greatly impacts
the solution’s mirror symmetry (Fig. 7) and,
contrary to the case without the falx cerebri
(not shown), the turbulent flow again allows
to determine the rotational direction.
Similar to the case without the falx cerebri, a

translation of the horizontal cross-section with
the falx cerebri leads to symmetric oscillatory
patterns in the L case and to asymmetric pat-

Figure 6:
The L system’s velocity field in a horizontal
cross-section with falx cerebri at t=0.02s (left)
and at t=0.04s (right); central rotation.

Figure 7:
The NL system’s velocity field in a horizontal
cross-section with falx cerebri at t=0.02s (left)
and at t=0.04s (right); central rotation.

Figure 8:
Velocity fields in a horizontal cross-section
with falx cerebri at t=0.04s; L system

(left) and NL system (right); translation.

terns in the NL case, although the violation of
symmetry is mitigated by the presence of the
falx cerebri, compare both right Figs. 8 and 5.

More detailed information is available at
http://www.csl.cornell.edu/˜burtscher/CHI-
research/ in form of MPEG movies.



6 Conclusions

The Head Injury Criterion’s critical values are
well established for translational head decelera-
tions [11], but it is not clear how to apply them
in the case of traumatic rotations. Our results
validate the correctness of our approach, which
uses the transfer of an equal amount of power
from the skull to the brain as a common de-
nominator, thus allowing to properly compare
the consequences of arbitrary traumatic head
motions. Indeed, our results show that un-
der this assumption, the translational solutions
‘transition’ into central rotational solutions.
The observed brain oscillations create com-

plex multi-vortex patterns whose form depends
on the PDEs used and the type of motion, in-
cluding the position of the rotational axis (e.g.,
brain center, neck, or infinity—translation).
Since the brain matter movement near vortices
usually leads to high values of strain, the loca-
tions of the vortices represent potential sites for
brain injuries. Consequently, our results imply
that it is rather unrealistic to expect that any
CHI model can predict the exact localization of
brain injuries without very precise information
about the head’s motion.
The general features of the oscillations in-

duced by triangularly shaped head decelera-
tions are similar to those appearing after im-
pulsive motions [5, 6]. Hence, the known fact
that the specific shape of a translational de-
celeration associated with a given HIC value is
not a decisive factor for causing a severe brain
injury may also be valid for rotational deceler-
ations. Thus, our results indicate that a uni-
versal Brain Injury Criterion for arbitrary head
motions (similar to the HIC) can be derived.
Our discovery that complicated brain mat-

ter oscillations tend to continue after rapid
head decelerations implies that the brain might
sustain traumatic damage not only during the
head motion but also when the head already
rests. Consequently, a repetitive head motion
(appearing, e.g., when boxing or shaking ba-
bies) can lead to a severe brain injury due to
resonance effects even if each individual head
movement is ‘non-traumatic’.
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