
Performance and Energy Modeling for Cooperative Hybrid Computing

Rong Ge and Xizhou Feng
Dept. of Mathematics, Statistics and Computer Science

Marquette University
Milwaukee, WI

{rong.ge,xizhou.feng}@marquette.edu

Martin Burtscher and Ziliang Zong
Department of Computer Science

Texas State University
San Marcos, TX

{burtscher, ziliang}@txstate.edu

Abstract—Accelerator-based heterogeneous systems can pro-
vide high performance and energy efficiency, both of which
are key design goals in high performance computing. To fully
realize the potential of heterogeneous architectures, software
must optimally exploit the hosts’ and accelerators’ processing
and power-saving capabilities. Yet, previous studies mainly
focus on using hosts and accelerators to boost application
performance. Power-saving features to improve the energy
efficiency of parallel programs, such as Dynamic Voltage and
Frequency Scaling (DVFS), remain largely unexplored.

Recognizing that energy efficiency is a different objective
than performance and should therefore be independently
pursued, we study how to judiciously distribute computation
between hosts and accelerators for energy optimization. We
further explore energy-saving scheduling in combination with
computation distribution for even larger gains. Moreover, we
present PEACH, an analytical model for Performance and
Energy Aware Cooperative Hybrid computing. With just a few
system- and application-dependent parameters, PEACH accu-
rately captures the performance and energy impact of com-
putation distribution and energy-saving scheduling to quickly
identify the optimal coupled strategy for achieving the best
performance or the lowest energy consumption. PEACH thus
eliminates the need for extensive profiling and measurement.
Experimental results from two GPU-accelerated heterogeneous
systems show that PEACH predicts the performance and energy
of the studied codes with less than 3% error and successfully
identifies the optimal strategy for a given objective.

Keywords-Energy-Efficient Computing, Heterogeneous Com-
puting, Performance and Energy Modeling

I. INTRODUCTION

To overcome the performance and power limitations of
conventional general-purpose microprocessors, many high-
performance systems employ accelerator-based heteroge-
neous architectures. On the most recent TOP500 list, four of
the top ten supercomputers include either Xeon Phi or GPU
accelerators. Of these heterogeneous systems, each node
integrates at least two types of computational engines—
multi-core-based host processing units and many-core-based
accelerating units—that can work collaboratively to increase
computational performance and energy efficiency.

Adapting parallel computation models to heterogeneous
architectures presents many challenges, one of which is
how to orchestrate computations between host processing

units and accelerating units. Many heterogeneous applica-
tions use an offload computation model, which breaks the
program execution into phases and offloads highly parallel
and compute-intensive phases to accelerators. While this
model is effective for certain codes, it suffers from two main
drawbacks. First, data transfers between hosts and accelera-
tors incur time overhead, which may offset the performance
gain from using accelerators. Second, host processing units
may be left idle or underutilized during the off-loading phase
but still consume a significant amount of power.

The cooperative hybrid computation model employs all
processing units in the hosts and accelerators to concurrently
execute compute-intensive phases. It has better resource uti-
lization and may deliver higher performance by aggregating
the processing capabilities of all available cores and by
reducing data transfers [15, 16].

While improving performance is important, maximizing
energy efficiency is also critical. Power is a key constraint at
many levels in high-performance computing (HPC) systems.
Improving energy efficiency not only reduces energy cost but
also allows for greater performance given the same power
budget. Previous studies neither sufficiently address the
energy-efficiency aspect nor fully exploit the power-aware
capabilities available on the latest heterogeneous systems,
e.g., those with DVFS-capable Nvidia K20 GPUs.

In this paper, we present models and methods for
performance- and energy-efficient heterogeneous computing.
Specifically, we focus on GPU-accelerated systems and
describe PEACH—a model for Performance and Energy
Aware Cooperative Hybrid computing. PEACH explores
two strategies: computation distribution that splits the appli-
cation workload between the hosts and the accelerators, and
energy-saving scheduling that adapts the host and accelerator
speeds to the demand of the workload. These two strategies
can be used individually or collectively. PEACH provides
analytical models that capture the dependencies between
performance measures and hardware/software parameters.

We evaluate the strategies and models on three bench-
marks and two power-aware heterogeneous systems. Both
systems use Intel Sandy Bridge processors as host process-
ing units. One system is accelerated with an Nvidia Tesla
C2075 GPU and the other with a Tesla K20 GPU. We

show that, for compute-intensive applications such as matrix
multiplication, the energy-optimal computation distribution
is different from the performance-optimal computation dis-
tribution when the default CPU and GPU speeds are used;
the former saves 25% energy with a 22% performance degra-
dation compared to the latter, which delivers the maximum
performance among all possible configurations. Coupling
energy-saving scheduling with computation distribution can
improve energy efficiency. For example, the energy-optimal
coupled strategy can save 33% energy with only a 13% per-
formance reduction compared to the strategy that delivers the
maximum performance. Our main findings are as follows.
• Intelligently distributing computation over both host and

accelerator processing units can achieve better perfor-
mance and/or energy efficiency than CPU-only or GPU-
only execution for compute-intensive applications.

• Computation distributions that are optimized for applica-
tion performance differ from those optimized for energy
efficiency. For matrix multiplication on one of our sys-
tems, the performance-optimal computation distribution
is [22% CPU : 78% GPU] whereas the energy-optimal
distribution is [0% CPU : 100% GPU] when the host and
accelerator run at their default speeds.

• Coupling energy-saving scheduling with computation dis-
tribution can further improve performance and energy
efficiency. For instance, the energy-optimal coupled strat-
egy runs 9% faster and saves 8% more energy than its
counterpart that uses computation distribution only.

• The PEACH model is easy to use and accurately captures
the performance and energy effects of computation distri-
bution and energy-saving scheduling. The prediction error
is within 3% on our benchmarks.

• With just a few system- and application-dependent param-
eters, PEACH quickly identifies the best individual and
coupled strategies for optimizing performance or energy
without the need for extensive measurement.

• The PEACH models and the experimental results indicate
that the performance and energy-efficiency gains are plat-
form and benchmark dependent, suggesting that efficient
designs require system- and program-specific adaptation.
This paper is organized as follows. Sections II and III

present the machine abstraction and the PEACH models.
Section IV illustrates model usages. Section V introduces
the experimental platforms. Sections VI and VII present the
model evaluations and applications. Section VIII discusses
related work. Section IX draws conclusions.

II. MODEL ABSTRACTION

A. Hardware Abstraction

Many modern accelerator-based heterogeneous systems
can be abstracted as power-aware cooperative hybrid com-
puters. Such machines typically possess a tree-like hier-
archical structure, where a non-leaf component comprises

Figure 1: A heterogeneous system with a CPU-based host
and a GPU-based accelerator. The CPU and GPU cores can
operate at multiple frequencies.

multiple lower-level components. Components at certain
levels are power scalable, meaning that they support multiple
performance/power states through features like DVFS.

This abstraction applies to many heterogeneous systems,
including those accelerated with GPUs or Xeon Phis. For
practical reasons, we concentrate on GPUs in this paper. Fig-
ure 1 shows an example of such a system, which consists of
a host with multiple multi-core CPUs and a GPU accelerator
with many processing cores. To minimize complexity, our
model entities are at the node level, consist of a GPU and a
host, and disregard the cache hierarchy. If, for algorithmic or
workload reasons, a computation does not use all available
cores on either the host or the accelerator, we discount that
entity’s effective computing capacity correspondingly. We
assume that DVFS is only available at the host and GPU
level such that all CPU cores and all GPU cores run at the
same frequency as their siblings.

B. Workload Abstraction

We use the Phased Hierarchical Task Graph (PHTG) [3]
to model programs running on a GPU-based heterogeneous
system. In this model, program execution is divided into
phases where each phase comprises multiple nested parallel
tasks. We assume that the same workload can run on GPUs
and CPUs and that tasks within phases with sufficient con-
currency will be distributed across the host and accelerator.

As both the PHGT program abstraction and the machine
abstraction use a similar hierarchical structure, the task of
mapping a workload to a heterogeneous system is greatly
simplified. With these two abstractions, we can formulate
the problem of performance- and energy-aware cooperative
hybrid computing as follows:

Given a workload W , an accelerator-based heterogeneous
machine M , and a user-specified efficiency metric η, find a
tuple (fC , fG, α) that maximizes η.

Here, α denotes the portion of the workload that is
distributed to the accelerator, fC is the CPU speed, fG is
the GPU speed, and the efficiency metric η can either be
performance or energy efficiency or a combination thereof.

III. THE PEACH MODEL

The PEACH model captures the performance, energy, and
efficiency effects of computation distribution, CPU DVFS,
and GPU DVFS for cooperative hybrid computation. For
quick reference, we list the model parameters in Table I.

A. Modeling Base Performance

We consider execution phases that comprise a sufficiently
large number of subtasks that can be executed in parallel.
Such an execution phase can be either a distinct phase or a
combination of multiple consecutive distinct phases. Let W
be the total number of subtasks to be executed. We partition
the subtasks into two groups: group G, which contains the
fraction α of the subtasks, and group C, which contains
the remaining subtasks. Group G is assigned to the GPU
accelerators and group C to the host CPUs. This process
creates the following computation distribution:

W =WC +WG (1)
WG = α ·W (2)
WC = (1− α) ·W (3)

Here, α denotes the portion of the workload that is dis-
tributed to the GPUs and 0 ≤ α ≤ 1, and WG and WC

denote the amount of workload distributed to GPUs and
CPUs, respectively.

For a given workload W , we use the compute rate R to
summarize the combined computational capability provided
by the host CPUs and the accelerator GPUs. R describes
the number of subtasks of workload W that the host and
the accelerator complete in one second. It is a function
of the hardware configuration and workload characteristics.
Note that different workloads may define their units of
computation (i.e., subtasks) differently. While R can vary
with the type of workload, it is relatively constant for a fixed
type of workload as long as there is sufficient computation
to saturate the processing units.

Let R, RC , and RG be the compute rates of the hybrid
system, the CPUs, and the GPUs. Let T , TC , and TG be
the execution times of the hybrid system, the CPUs, and the
GPUs to complete their assigned workload portions. Thus,

TC =WC/RC (4)
TG =WG/RG (5)

T = max{TC , TG + TOH} (6)

We note two main points for Eq. (6). First, offloading
tasks onto the accelerator incurs an overhead time (TOH).
TOH includes the time to transfer data and to launch the
kernel. If TOH � TG, ignoring TOH does not affect the
model’s accuracy. Second, when distributing the workload
across CPUs and GPUs, the overall execution time is the
longer of the CPU execution time and the sum of GPU
execution time and the offloading overhead.

Using Eqs. (1)-(6), we can calculate the compute rate of
cooperative hybrid computing

R = W
T = 1

max(
(1−α)
RC

, αRG
+
TOH
W)

(7)

Eq. (7) can be simplified by ignoring TOH when TOH � TG

R = W
T = 1

max(
(1−α)
RC

, αRG
)

(8)

B. Modeling Base Energy

We break down the system power into the sum of the
power of three components as follows.

P =
∑

i∈(C,G,M)

Pi (9)

C represents the CPU, G the GPU, and M the host memory
as well as other parts of the host.

Each component power Pi can be further broken down
into a base power P0i and a dynamic power Pdi, where
the former is independent of the workload and the latter
is due to the execution of the workload W . Because each
component’s base power is workload independent and fixed
for a given speed of the processing units, the individual base
powers can be merged into a single system base power

P0 =
∑

i∈(C,G,M)

P0i (10)

As shown in Figure 2, during application execution power
is consumed in four possible ways : (1) the system consumes
base power P0 over the entire execution time T , (2) the CPU
consumes dynamic power PdC during the CPU execution
time TC , (3) the GPU consumes dynamic power PdG during
the GPU execution time TG, and (4) the CPU draws power
POH in addition to P0C for hosting the GPU execution if
the GPU portion takes longer than the CPU portion, in other
words, if TG > TC . The system energy is the sum of these
four components.

E = T ·P0+TC ·PdC+TG ·PdG+(TG−TC) ·POH (11)

Since all variables in Eq. (11) can be directly measured or
derived, the system energy can be computed using Eq. (11).

C. Modeling Energy Efficiency

We adopt the typical approach used in energy-efficiency
studies and define the energy efficiency, denoted by η, as the
workload to energy ratio, i.e., WE with a unit of OPs/joule, or,
equivalently, the compute rate to power ratio Ravg

Pavg
expressed

in GFLOPS/watt or OPs/watt.
In PEACH, the effective energy efficiency η of the hybrid

system can be derived from Eqs. 4 and 11 as follows.

η = W
E =
1

P0·max(1−α
RC

, αRG
)+

(1−α)PdC
RC

+
αPdG
RG

+POH ·max (α
RG
− 1−α
RC

,0)
(12)

Table I: Parameters used in the PEACH models
Parameter Description Affiliation Notation Affected by

W Workload

α % of W on accelerators Host CPUs 1− α
Accelerators α

N Concurrency Host CPUs NC

Accelerators NG

f Frequency Host CPUs fC
Accelerators fG

R Compute rate Host CPUs RC W , fC , NC

Accelerators RG W , fG, NG

P0 Base power
Host CPUs P0C fC , NC

Host memory + other P0M
Accelerator device P0G fG, NG

Pd Activity power
Host PdC W , fC , NC

Host memory + other PdM W , fC , NC

Accelerator device PdG W , fG, NG

Figure 2: Power consumption during application execution
if TOH is negligible.

For simplicity, Eq. 12 assumes the offloading time over-
head TOH to be negligible compared to TG. Note that
we include TOH in our case studies for workloads and
distributions where it is comparable to TG. Eq. 12 shows
that the system-level energy efficiency is determined by
multiple factors, including the computation distribution α,
the application performance and energy characteristics on
CPUs and GPUs, and the system/component base power.

We define the CPU energy efficiency ηC and the GPU
energy efficiency ηG similarly. These metrics apply to the
respective component and exclude the base power, which
is already included in the system-wide base power. Thus,
ηC = RC

PdC
for CPUs and ηG = RG

PdG
for GPUs.

D. Integrating DVFS into the Model

DVFS is an effective power saving technology. DVFS-
capable components support a set of performance/power
states, each with an associated frequency/voltage pair.

Higher performance states normally run at higher frequen-
cies and have higher compute rates but draw more power.

DVFS directly affects the PEACH model parameters.
Specifically, under CPU DVFS, the model parameters RC ,
P0C , and PdC become functions of the CPU frequency.
The same applies to DVFS-capable GPUs such as the Tesla
K20. For example, the K20c supports six power/performance
states and can freely switch between them during execution.
With GPU DVFS, the model parameters RG, P0G, and PdG
become functions of the GPU frequency.

By modeling parameters such as the computing rate and
the power as functions of the CPU or GPU frequency, the
performance, energy, and energy efficiency in PEACH be-
come functions of α, fC , and fG. The formulas remain as
shown above except that parameters like RC , RG, PdC , and
PdG change depending on the chosen device frequency.

IV. MODEL USAGE

A. Identifying the Optimal Workload Distribution

We first focus on situations where the CPU and GPU run
at their default speeds without any energy saving scheduling.
In this case, the PEACH models can be employed to identify
the optimal computation distribution for a user-selected
metric, e.g., performance, energy, energy efficiency, or a
combination thereof. Once the distribution α is determined,
the performance and energy efficiency measures can be com-
puted directly. This is a significant extension over previous
cooperative hybrid computing studies.

1) Finding the Best-Performance Distribution: With
GPU-accelerated cooperative hybrid computing, the best
performance is achieved when the CPU and GPU executions
fully overlap, in other words, TC = TG or (1−α)·W

RC
= α·W

RG
.

Thus, the best-performance distribution αperf is

αperf =
RG

RC +RG
(13)

Using the αperf distribution, the application reaches its
highest performance R = RC +RG, finishes in the shortest

time W
RC+RG

, and yields a system energy efficiency of

η =
RC +RG

P0 + PdC + PdG
(14)

2) Finding the Best-Energy Distribution: For a given
workload, the least-energy distribution αeff is the same as
the most energy-efficient distribution. αeff can be computed
as the minimum of the following energy function.

min
αeff∈[0,100]

P0 ·max(1−αRC
, α
RG

) + (1−α)·PdC
RC

+

α·PdG
RG

+ POH ·max(α
RG
− 1−α

RC
, 0) (15)

We stress that αperf and αeff are not necessarily equal.
If they are different, the best-performance distribution con-
sumes more power and energy than the best-energy distri-
bution for the same amount of work.

B. Identifying the Best Coupled Frequency and Distribution

The CPUs and GPUs of power-aware heterogeneous sys-
tems can run at multiple speeds. If there are LC CPU speeds
and LG GPU speeds available, then there are a total of
LC ·LG possible (fC , fG) pairs. For each pair, there exists a
best-performance distribution and a best-energy distribution.

We can use PEACH to identify the best coupled frequency
and distribution, denoted by the tuple (f∗C , f∗G, α∗), either
to maximize application performance or to maximize energy
efficiency, as outlined in the following procedure.

1) For each valid pair (fC , fG), use PEACH to find
Rmax(fC , fG) and the corresponding (fC , fG, αperf).

2) Find the maximum value out of all Rmax(fC , fG) and
report the corresponding (f∗C , f

∗
G, α

∗
perf).

3) For each valid pair (fC , fG), use PEACH to find
ηmax(fC , fG) and the corresponding (fC , fG, αeff).

4) Find the maximum value out of all ηmax(fC , fG) and
report the corresponding (f∗C , f

∗
G, α

∗
eff).

V. EXPERIMENTAL PLATFORM AND ENVIRONMENT

A. Experimental Platform

All experiments are conducted on the two GPU-
accelerated heterogeneous systems described in Table II.
Both systems use dual eight-core Xeon Sandy Bridge E5-
2670 processors on the hosts. System I is accelerated with
a Tesla K20c Kepler-based GPU and System II with a Tesla
C2075 Fermi-based GPU. Though each E5-2670 core sup-
ports two threads, we disabled this hyperthreading feature
to simplify the DVFS control and the performance analysis.

The CPU cores support 16 DVFS states, ranging from
1.2 GHz to 2.6 GHz in 0.1 GHz increments and, addition-
ally, 2.601 GHz. The nominal frequency is 2.6 GHz. The
2.601 GHz state represents TurboBoost mode with an ac-
tual frequency of up to 3.3 GHz. The K20c’s cores and
memory are also DVFS capable. Table III summarizes the
available states. The default state is 705 MHz core speed and
2600 MHz memory speed. Note that the core and memory

Table II: Experimental platforms. System I: a 16-core host
+ a K20 GPU; System II: a 16-core host + a C2075 GPU.

Host K20 C2075
Architecture Intel E5-2670 Nvidia GK110 Nvidia C2075

#Cores 16 2496 448
Default Freq. 2.6 GHz 705 MHz 1.15 GHz

DVFS Yes Yes No
Mem. Size 32 GB 5 GB 6 GB

Threading API OpenMP CUDA CUDA
Peak Perf. 332.8 GFLOPS 1.17 TFLOPS 515 GFLOPS
Mem. BW 51.2 GB/s 208 GB/s 144 GB/s
Compiler gcc 4.4.6 nvcc 5.5 nvcc 5.5

OS & Driver CentOS 6.1 Driver 331.20 Driver 331.20

Table III: K20c supported memory/core frequency pairs
Core freq. (MHz) 758 705 666 640 614 324
Mem. freq. (MHz) 2600 2600 2600 2600 2600 324

speeds must be set together. DVFS is not supported by the
C2075 card. The cpufreq interface is used to perform
CPU DVFS scheduling, and the nvidia-smi utility is
used to perform GPU DVFS scheduling.

B. Benchmark Selection

We use the three benchmarks described in Table IV for our
experimental evaluation. They can all distribute the computa-
tion to GPUs and CPUs according to a user-specified distri-
bution ratio. In each program, the CPU portion is parallelized
with OpenMP, and the GPU portion is based on CUDA
SDK code or other published implementations. For example,
MatrixMultiply uses the OpenBLAS implementation [2] on
the CPU and a CUDA implementation on the GPU. The
TSP code stems from the ILCS Framework [4].

C. Performance, Power, and Energy Profiling

We directly collect all performance and power data. Per-
formance results, including the execution time and derived
computation rates like GFLOPS and the task completion
rate, are obtained by instrumenting the programs. Power
data are collected using the eTune power-performance pro-
filing framework [7]. Multiple streams of power samples
are recorded, including the power consumed by the entire
system, the two CPU sockets, the two memory controllers,
and the GPU card. eTune provides scripts to control the
profiling, i.e., start, stop, annotation, and logging. These
power data are synchronized with the application execution
and with each other via timestamps.

Specifically, we sampled power streams from the fol-
lowing sources. System power data are sampled by two
external WattsUp power meters that are plugged in between
the computer power supplies and a power outlet. The CPU
power data stem from embedded power sensors on the Sandy
Bridge processors and are gathered via the Running Average
Power Limit (RAPL) interface [10]. GPU power data come
from the embedded power sensor on the K20c card via
Nvidia’s System Management Interface (nvidia-smi). In
this study, we use a sampling interval length of one second.

Table IV: Applications and Benchmarks under Study
Benchmark Description HPC/HTC Characterization Origin

MatrixMultiply Dense matrix multiplication HPC Floating-point, compute-intensive CUDA SDK [1]
TSP Traveling salesman problem HTC Integer, compute-intensive ILCS [4]

MatrixTranspose Dense matrix transpose HPC Double precision floating-point, memory-intensive CUDA SDK

To boost the accuracy, we repeat all computations multiple
times such that each program takes several minutes to run.

VI. MODEL VALIDATION AND RESULTS

We validate the PEACH base performance and energy
models on several benchmarks and system architectures.
First, we focus on the performance and energy effects of the
computation distribution by fixing the CPU and GPU speeds
at their default values. MatrixMultiply serves as benchmark
in this section. Unless stated otherwise, the matrix size is
12800 × 12800, which saturates the K20c GPU [8].

A. Parameter Measurement

In PEACH, the base performance models require the
parameters RC , RG, and TOH . The energy models require
the additional parameters P0C , P0G, P0M , PdC , PdG, and
POH . In all experiments, we transfer data to/from the GPU
once and execute MatrixMultiply on the CPUs and GPUs
several times to increase the running time for improved
measurement accuracy and to minimize the effects of the
off-loading overhead TOH . When running the CPUs and
GPUs at fixed speeds, P0C , P0G, and P0M are system-
dependent parameters, i.e., they are constant for a given
system. RC , RG, PdC , PdG, and POH are dependent on
the workload and the system. All of these parameters can
be obtained or derived from the collected measurement data.
For instance, Table V shows the measured model parameters
for MatrixMultiply on our two hybrid systems.

There are several noteworthy observations to be made
from these measurements. First, the base power consump-
tion of the K20c and the C2075 is higher than the bare
hardware installation power, which is 16 watts and 25 watts,
respectively, according to the product specifications. This is
because we measure the power of the GPU cards after they
have been initialized and readied for execution. Second, the
measured CPU and GPU compute rates are reasonably close
to peak performance. Third, the K20c has a much higher
energy efficiency than both the C2075 and the Xeon E5-
2670 processors at the component level.

B. Model Accuracy

We apply the PEACH models to predict the performance
and the energy efficiency with various computation dis-
tributions and compare them against actual measurements
in Figure 3. In general, the model’s predictions match the
measurements very well for both performance and energy
efficiency and on both systems, especially when the execu-
tion of the CPU portion takes longer than that of the GPU
portion. The prediction error is less than 3% if the hosting

Table VI: Predicted best-performance and best-energy dis-
tribution [CPU% : GPU%] for MatrixMultiply

System I System II
Pred. Meas. Pred. Meas.

Best-Performance 22 : 78 22 : 78 49 : 51 49 : 51
Best-Energy 0 : 100 0 : 100 49 : 51 49 : 51

power POH is taken into account. Ignoring the hosting
power increases the error to 15% for energy efficiency.

C. Identifying the Optimal Distributions

We use Eqs. 13 and 15 to predict the optimal computation
distributions for maximizing the performance or energy
efficiency, respectively. Table VI shows the predictions and
the actual measurements for both systems. On System I,
αperf = 78% and αeff = 100%. On system II, αperf =
αeff = 51%. On both systems and for both objectives,
PEACH predicts the correct optimal distributions.

VII. MODEL APPLICATION

In this section, we demonstrate the model usage for
identifying the best coupled strategies when employing
computation distribution and energy-saving scheduling. We
first present the performance and energy effects of CPU and
GPU DVFS technology and then show detailed results of
model applications. All results are for System I.

A. Effects of DVFS Technology

As explained in Section III-D, the PEACH parameters
are functions of the CPU speed fC and the GPU speed
fG when DVFS is used. To obtain these functions, we
run MatrixMultiply 100% on the CPU and then 100% on
the GPU. Figure 4 presents the resulting model parameters
for different CPU and GPU speeds. Several interesting
observations can be made from these experiments.
• For MatrixMultiply, the CPU compute rate RC in-

creases with the CPU speed fC close to linearly:
RC = 111 · fC(GHz) + 6.1 with a coefficient of
determination of 99.9% by linear regression.

• When the system is idle, the CPU power consumption
P0C and the remaining components’ power P0M are
constant relative to the CPU speed fC . In addition,
P0C < P0M . However, when the system executes
MatrixMultiply, the CPU and the remaining host com-
ponents draw the additional power PdC and PdM ,
respectively. The CPUs draw more active power than
the other components, that is, PdC > PdM . Statistical
linear regression analysis shows a strong linear relation-
ship between the host’s dynamic power and the CPU
speed, i.e., PdC + PdM = 124 · fC − 100.23 with a
coefficient of determination of 98%.

Table V: Measured model parameters
(a) System-dependent model parameters

Host Accelerator
P0C (W) P0M (W) P0G(W)

Sys. I 42.4 76.7 46.6
Sys. II 42.4 76.7 82.3

(b) System- and application-dependent model parameters for MatrixMultiply
Host Accelerator

RC (GFLOPS) PdC (W) RG(GFLOPS) PdG(W) POH (W)
Sys. I 293 239.4 1052.4 128.6 30
Sys. II 293 239.4 302.53 117.8 28

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

CPU Percentage (%)

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

Performance vs. Computation Distribution

Measurement
PEACH Prediction

(a) System I: 16 CPUs + K20c GPU

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5
Energy Efficiency vs. Computation Distribution

CPU Percentage (%)

E
ne

rg
y

E
ffi

ci
en

cy
 (

G
F

LO
P

S
/W

at
t)

Measurement
PEACH Prediction

(b) System I: 16 CPUs + K20c GPU

0 20 40 60 80 100
0

100

200

300

400

500

600

CPU Percentage (%)

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

Performance vs. Computation Distribution

Measurement
PEACH Prediction

(c) System II: 16 CPUs + C2075 GPU

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Energy Efficiency vs. Computation Distribution

CPU Percentage (%)

E
ne

rg
y

E
ffi

ci
en

cy
 (

G
F

LO
P

S
/W

at
t)

Measurement
PEACH Prediction

(d) System II: 16 CPUs + C2075 GPU

Figure 3: Model prediction vs. actual measurement of performance and energy efficiency on MatrixMultiply with various
computation distributions

• The GPU compute rate RG increases with the GPU
speed fG. Statistical regression analysis on four GPU
speeds excluding the highest and lowest speeds shows
RG = 1.495 · fG(MHz) − 1.78 with a perfect corre-
lation. The highest GPU speed of 758 MHz does not
always follow this function because it often draws too
much power, which causes the power management to
automatically lower the clock speed. The exception at
324 MHz is expected as this is the only setting with a
lower memory speed.

• The GPU base power P0G is constant relative to the
GPU speed fG (again with the exception of fG =
324MHz). It is 47 watts once the GPU has been ini-
tialized. The GPU active power PdG linearly increases
with fG: PdG = 0.337 · fG(MHz) − 109 with a
coefficient of determination of 99.7%.

B. Coupling Distribution with Power-Aware Scheduling
We plug the profiled model parameters presented in sec-

tion VII-A into Eqs. 8 and 12 to predict the performance and

energy efficiency of MatrixMultiply under various coupled
computation distributions and DVFS schedules. For simplic-
ity, we use a constant POH = 30 in the model even though
the overhead decreases with CPU speed from 30 watts at
2.6 GHz to 10 watts at 1.2 GHz on System I. Figure 5
shows the model predictions and measurements for three
CPU speeds and fG = 705MHz. Overall, the model pre-
dictions match almost perfectly with the measurements for
distributions with a large percentage of CPU execution. The
maximum discrepancy is within 3% and happens when the
GPU portion takes longer to execute than the CPU portion.
The model’s predicted energy efficiency also matches the
measurements well with a maximum error of 3%.

We now use the model to predict the best achievable
performance and energy efficiency on System I. Table VII
presents the results. For each combination of CPU and GPU
speed, the first row lists αperf%: (Rmax, η), and the second
row lists αeff%: (R, ηmax). The table excludes the highest
and lowest GPU speeds because the former is unstable and

1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.601
0

50

100

150

200

250

300

CPU Frequency (GHz)

R
C

(G
F

LO
P

S
)

CPU Compute Capacity vs. CPU Speed

R
C
=111*f

C
(GHz) + 6.1

(a) RC vs. fC

1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.601
0

50

100

150

200

250

300

CPU Frequency (GHz)

P
ow

er
 (

W
at

ts
)

Host and CPU Base and Activity Power

Pd

C
+Pd

M

Pd
C

P0
C

+P0
M

P0
C

(b) Host and CPU power vs. fC

324 614 640 666 705 758
0

100

200

300

400

500

600

700

800

900

1000

1100

GPU Frequency (MHz)

R
G

 (
G

F
LO

P
S

)

GPU Compute Rate vs. GPU Speed

(c) RG vs. fG

324 614 640 666 705 758
0

20

40

60

80

100

120

140

GPU Frequency (MHz)

G
P

U
 P

ow
er

 (
W

at
ts

)

GPU Base and Activity Power

Pd

G

P0
G

(d) GPU power vs. fG

Figure 4: Measured model parameters and their variations with DVFS on MatrixMultiply

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

Percentage Distributed to CPU (%)

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

Performance with Hybrid Computing + DVFS

2.6G

meas

2.6G
pred

2.0G
meas

2.0G
pred

1.2G
meas

1.2G
pred

(a) 16 CPUs + K20c GPU

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4
Energy Efficiency with Hybrid Computing + DVFS

Percentage Distributed to CPU (%)

E
ne

rg
y

E
ffi

ci
en

cy
 (

G
F

LO
P

S
/W

at
t)

2.6G

meas

2.6G
pred

2.0G
meas

2.0G
pred

1.2G
meas

1.2G
pred

(b) 16 CPUs + K20c GPU

Figure 5: The measured and predicted effect of coupled
adaptive mapping and DVFS scheduling on MatrixMultiply

the latter delivers much lower performance. There are several
interesting observations to be made from these results.

First, for a given pair of CPU and GPU speeds, the best-
performance distribution is distinct from the best-energy
distribution except for low CPU speeds. Second, energy-
efficient strategies offload a larger percentage of the com-
putation to the GPU, leading to energy savings of up to
25%. Third, for a given CPU speed, running the GPU at
a higher speed while offloading more computation results
in both better performance and better energy efficiency. In
other words, the GPU should always run at 705 MHz if
there is offloaded computation. Fourth, both performance
and energy efficiency vary with CPU speed when the GPU
runs at 705 MHz. As the CPU speed decreases, a larger
percentage of the computation must be offloaded to the GPU
to reach the best achievable performance at that CPU speed.
Note that the trend for energy efficiency is different. As the
CPU speed decreases, the best achievable energy efficiency
stays the same down to fC = 1.6GHz because 100% of the
computation is offloaded. Once fC drops to 1.4 GHz and
lower, the energy efficiency improves when running some
of the computation on the CPU.

Overall, the coupled strategy achieves the best perfor-
mance of 1,336 GFLOPS with a configuration of [22% CPU:
78% GPU] at fC = 2.6GHz and fG = 705MHz. The best
energy efficiency of 3.42 GFLOPS/Watt is achieved with a
configuration of [10% CPU: 90% GPU] at fC = 1.2GHz

and fG = 705MHz. The latter saves 32.6% energy and
runs 12.5% slower than the former.

C. Model Prediction for Other Applications

Table VIII presents the model predictions and measure-
ments for TSP, MatrixTranpose, and MatrixMultiply with a
smaller matrix size of 3200 × 3200. Overall, the predictions
match the measurements well for these applications.

We make the following observations. First, for com-
pute intensive applications such as TSP and MatrixMul-
tiply, when only using cooperative hybrid computing,
the performance-oriented computation distribution incurs a
higher increase in energy consumption than in performance
compared to the energy-oriented computation distribution.
Second, for compute intensive applications, coupling hybrid
computing and DVFS scheduling delivers better energy
efficiency and possibly better performance than hybrid com-
puting without DVFS scheduling. Third, memory intensive
applications such as MatrixTranpose differ significantly from
compute intensive applications in two aspects. (1) The GPU
execution rate RG does not change with the GPU speed
fG. (2) The ratio of the GPU memory bandwidth to the
CPU offloading bandwidth (PCI x16) is about 35:1, which
is why the overhead time TOH must be taken into account
when designing hybrid computing algorithms. As a result,
when only employing hybrid computing, both performance-
and energy-oriented strategies choose not to offload work.
Fourth, for memory intensive applications, a coupled strat-
egy can achieve higher energy efficiency and performance
than its counterpart that uses computation distribution only.

VIII. RELATED WORK

Prior research in energy-efficient homogeneous multicore
computing has primarily focused on reducing power and
saving energy with little or no performance impact. One
strategy adjusts software concurrency over the execution
and thus controls the number of participating cores and
the resulting power consumption [6, 14]. The other strategy
leverages power-aware DVFS processors and scales down
their performance states when demand is low [20, 22].

Heterogeneous computing has mainly focused on improv-
ing performance [5, 18]. By using CPUs and accelerators
together, hybrid computing can deliver higher performance
than CPU-only or GPU-only execution [23]. Nevertheless,
hybrid computing algorithms and systems do not typically
take energy efficiency into account. For example, Qilin [16]
and Merge [15] solely consider performance when distribut-
ing computation among CPU cores and accelerators.

More recently, power- and energy-aware heterogeneous
computing has begun to draw attention from researchers.
Most of the existing work in this domain attempts to
understand and model the power and energy consumption of
heterogeneous computing systems; research in GPU power
management is still sparse. Studies in [8, 11] experimentally

investigate the power and energy behavior of applications
on prototypes of GPU-accelerated systems. Other efforts
analytically model GPU power with architecture-level in-
structions [9, 13, 19], hardware performance events [17, 21],
or algorithm parameters [11].

Komoda et al [12] exploit DVFS and task mapping to
power cap the GPU accelerated systems. PEACH is different
from the empirical performance and power models in [12]
in multiple aspects. First, PEACH is a general model for
studying performance, energy, and their tradeoff and is
suitable for studies with various objectives, while theirs
is for studying the achievable performance for a given
maximum power. Second, PEACH models the compute rate
and energy consumption over execution times, while theirs
is constrained by the power cap at time instances. Third,
PEACH provides analytical formulae to directly calculate the
resultant performance and energy for given DVFS settings
and task mappings, while theirs indicates that time and
power are functions of DVFS settings and task mapping.

IX. CONCLUSIONS AND FUTURE WORK

Power-aware, cooperative hybrid computing is a new
direction for energy efficient HPC. While heterogeneous
systems provide a larger exploration space to increase per-
formance, a performance gain may demand more energy
consumption. We develop the PEACH model to quantify
the relations between hardware and software parameters and
performance/energy measures in cooperative hybrid com-
puting. Experimental results demonstrate that the PEACH
model is accurate and can guide the design of parallel
algorithms and system schedulers.

In the future, we will extend this work to include MIC-
based heterogeneous systems as well as more irregular
applications. We are also planning to build systems and
frameworks to automate the use of PEACH in performance-
and energy-aware cooperative hybrid computing.

ACKNOWLEDGEMENT

This work is supported in part by the NSF under Grants
No. CNS-1305382, CNS-1305359, CNS-1212535, DUE-
1141022, and CNS-1217231 as well as by donations from
Nvidia Corporation.

REFERENCES
[1] CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit.
[2] OpenBLAS. http://xianyi.github.io/OpenBLAS/.
[3] F. Blagojevic, X. Feng, K. W. Cameron, and D. S. Nikolopoulos.

Modeling Multi-Grain Parallelism on Heterogeneous Multi-core Pro-
cessors: A Case Study of the Cell BE. In Proc. of the 2008 Interna-
tional Conference on High-Performance Embedded Architectures and
Compilers, 2008.

[4] M. Burtscher and H. Rabeti. A Scalable Heterogeneous Parallelization
Framework for Iterative Local Searches. In 27th IEEE International
Parallel & Distributed Processing Symposium (IPDPS2013), May
2013.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing. In IEEE International Symposium on Workload Characterization
(IISWC2009), pages 44–54. IEEE, 2009.

Table VII: Predicted MatrixMultiply performance and energy efficiency on System I. Each cell has the format “α%: (R
GFLOPS, EFF GFLOPS/Watt)”. The upper row reflects the best performance and the lower row the best energy efficiency.

705 MHz 666 MHz 640 MHz 614 MHz

2.6 GHz 78: (1336, 2.58) 78: (1275, 2.56) 76: (1225, 2.47) 76: (1206, 2.48)
100: (1052, 3.23) 100: (994, 3.18) 100: (955, 3.15) 100: (916, 3.11)

2.4 GHz 80: (1316, 2.69) 80: (1243, 2.66) 78: (1225, 2.60) 78: (1175, 2.58)
100: (1052, 3.23) 100: (994, 3.18) 100: (955, 3.15) 100: (916, 3.11)

2.2 GHz 82: (1284, 2.80) 80: (1243, 2.72) 80: (1194, 2.70) 80: (1145, 2.68)
100: (1052, 3.23) 100: (994, 3.18) 100: (955, 3.15) 100: (916, 3.11)

2.0 GHz 82: (1264, 2.85) 82: (1212, 2.84) 82: (1165, 2.82) 80: (1138, 2.75)
100: (1052, 3.23) 100: (994, 3.18) 100: (955, 3.15) 100: (916, 3.11)

1.8 GHz 84: (1253, 3.00) 84: (1184, 2.96) 82: (1141, 2.88) 82: (1118, 2.89)
100: (1052, 3.23) 100: (994, 3.18) 100: (955, 3.15) 100: (916, 3.11)

1.6 GHz 86: (1224, 3.13) 86: (1156, 3.09) 84: (1137, 3.05) 84: (1091, 3.02)
100: (1052, 3.23) 100: (994, 3.18) 100: (955, 3.15) 100: (916, 3.11)

1.4 GHz 88: (1196, 3.27) 86: (1151, 3.23) 86: (1111, 3.20) 86: (1066, 3.17)
88: (1196, 3.27) 86: (1151, 3.23) 86: (1111, 3.20) 86: (1066, 3.17)

1.2 GHz 90: (1169, 3.42) 88: (1130, 3.41) 88: (1086, 3.37) 88: (1041, 3.33)
90: (1169, 3.42) 88: (1130, 3.41) 88: (1086, 3.37) 88: (1041, 3.33)

Table VIII: Model predictions for TSP, MatrixTranspose, and MatrixMultiply

Strategy Objective Application
TSP Transpose (10240x10240) MatrixMultiply (3200x3200)

(fC , fG, α%): (fC , fG, α%): (fC , fG, α%):
(Climbs/s, Climbs/watt) (GB/s, GB/s/watt) (GFLOPS, GFLOPS/watt)

Distribution
Performance Meas. (2.6, 705, 95): (50,041, 143) (2.6, 705, 0): (13.07, 0.0441) (2.6, 705, 79): (1238, 3.56)

Pred. (2.6, 705, 95): (50,137, 140) (2.6, 705, 0): (13.09, 0.0432) (2.6, 705, 79): (1332, 3.57)

Energy Meas. (2.6, 705, 100): (47,562, 170) (2.6, 705, 0): (13.07, 0.0441) (2.6, 705, 100): (1052, 2.29)
Pred. (2.6, 705, 100): (47,298, 164) (2.6, 705, 0): (13.09, 0.0432) (2.6, 705, 100): (1052, 2.29)

Distribution Performance Meas. (2.6, 705, 95): (50,041, 143) (2.5, 705, 10): (14.52, 0.0508) (2.6, 705, 79): (1238, 3.56)
Pred. (2.6, 705, 95): (50,137, 140) (2.5, 705, 10): (14.62, 0.0496) (2.6, 705, 79): (1332, 3.57)

+ DVFS Energy Meas. (1.2, 705, 100): (47,339, 184) (2.4, 324, 10): (13.44, 0.0522) (1.2, 705, 89): (1183, 3.85)
Pred. (1.2, 705, 100): (47,695, 176) (2.5, 705, 10): (14.52, 0.0518) (1.2, 705, 89): (1042, 3.83)

[6] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.
Nikolopoulos. Online power-performance adaptation of multithreaded
programs using hardware event-based prediction. In Proceedings of
the 20th annual international conference on Supercomputing, ICS ’06,
pages 157–166, New York, NY, USA, 2006. ACM.

[7] R. Ge, X. Feng, T. Wirtz, Z. Zong, and Z. Chen. eTune: A
Power Analysis Framework for Data-Intensive Computing. In The
Workshop on Power-Aware Systems and Architectures in conjunction
with International Conference on Parallel Processing, 2012.

[8] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong.
Effects of Dynamic Voltage and Frequency Scaling on a K20 GPU.
In 42nd International Conference on Parallel processing Workshops
(ICPPW), 2013.

[9] S. Hong and H. Kim. An integrated gpu power and performance
model. ACM SIGARCH Computer Architecture News, 38(3):280–289,
2010.

[10] Intel. Volume 3B: System Programming Guide, Part 2. Intel 64 and
IA-32 Architectures Software Developers Manual, June 2013.

[11] K. Kasichayanula, D. Terpstra, P. Luszczek, S. Tomov, S. Moore, and
G. D. Peterson. Power Aware Computing on GPUs. In Symposium
on Application Accelerators in High Performance Computing, pages
64–73. IEEE, 2012.

[12] T. Komoda, S. Hayashi, T. Nakada, S. Miwa, and H. Nakamura. Power
Capping of CPU-GPU Heterogeneous Systems through Coordinating
DVFS and Task Mapping. In 31st International Conference on
Computer Design, pages 349–356, Oct 2013.

[13] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi. GPUWattch: Enabling Energy Optimizations
in GPGPUs. In ISCA, volume 40, 2013.

[14] D. Li, B. de Supinski, M. Schulz, D. Nikolopoulos, and K. Cameron.
Strategies for Energy Efficient Resource Management of Hybrid
Programming Models. IEEE Transaction on Parallel and Distributed
Systems, 24(1), January 2013.

[15] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Merge:
a Programming Model for Heterogeneous Multi-Core Systems. SIG-
PLAN Not., 43(3):287–296, March 2008.

[16] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting Parallelism on
Heterogeneous Multiprocessors with Adaptive Mapping. In 42nd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-42), pages 45–55, 2009.

[17] X. Ma, M. Dong, L. Zhong, and Z. Deng. Statistical Power
Consumption Analysis and Modeling for GPU-Based Computing. In
Proceeding of ACM SOSP Workshop on Power Aware Computing and
Systems (HotPower), 2009.

[18] J. Nickolls and W. Dally. The GPU Computing Era. Micro, IEEE,
30(2):56–69, 2010.

[19] J. Pool, A. Lastra, and M. Singh. An Energy Model for Graphics
Processing Units. In IEEE International Conference on Computer
Design (ICCD), pages 409–416. IEEE, 2010.

[20] B. Rountree, D. Lownenthal, B. de Supinski, M. Schulz, V. Freeh,
and T. Bletsch. Adagio: Making DVS Practical for Complex HPC
Applications. In Proceedings of the 23rd international conference on
Supercomputing, pages 460–469. ACM, 2009.

[21] S. Song, C. Su, B. Rountree, and K. W. Cameron. A Simplified
and Accurate Model of Power-Performance Efficiency on Emergent
GPU Architectures. In 27th IEEE International Parallel & Distributed
Processing Symposium (IPDPS), 2013.

[22] Q. Wu, V. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks, M.
Martonosi, and D. W. Clark. A Dynamic Compilation Framework
for Controlling Microprocessor Energy and Performance. In the 38th
IEEE/ACM International Symposium on Microarchitecture, pages
271–282, Barcelona, Spain, 2005.

[23] C. Yang, F. Wang, Y. Du, J. Chen, J. Liu, H. Yi, and K. Lu. Adaptive
optimization for petascale heterogeneous cpu/gpu computing. In IEEE
International Conference on Cluster Computing (CLUSTER), pages
19–28, 2010.

