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Abstract

This paper proposes a new hardware technique for us-
ing one core of a CMP to prefetch data for a thread run-
ning on another core. Our approach simply executes a copy
of all non-control instructions in the prefetching core af-
ter they have executed in the primary core. On the way to
the second core, each instruction’s output is replaced by a
prediction of the likely output that the nth future instance
of this instruction will produce. Speculatively executing
the resulting instruction stream on the second core issues
load requests that the main program will probably refer-
ence in the future. Unlike previously proposed thread-based
prefetching approaches, our technique does not need any
thread spawning points, features an adjustable lookahead
distance, does not require complicated analyzers to extract
prefetching threads, is recovery-free, and necessitates no
storage for the prefetching threads. We demonstrate that
for the SPECcpu2000 benchmark suite, our mechanism sig-
nificantly increases the prefetching coverage and improves
the primary core’s performance by 10% on average over
a baseline that already includes an aggressive hardware
stream prefetcher. We further show that our approach works
well in combination with runahead execution.

1 Introduction

The cores of modern high-end microprocessors deliver
only a fraction of their theoretical peak performance. One
of the main reasons for this inefficiency is the long latency
of memory accesses. Often, load instructions that miss in
the on-chip caches reach the head of the reorder buffer be-
fore the data is received, thus stalling the processor. As a
result, the number of instructions executed per unit time is
much lower than what the CPU is capable of handling.

Prefetching techniques have been instrumental in ad-
dressing this problem. Prefetchers attempt to guess what
data the program will need in the future and fetch them
in advance of the actual program references. Correct
prefetches can thus reduce the negative effects of long mem-

ory latencies. While existing methods have proven effective
for regular applications, prefetching techniques developed
for irregular codes typically require complicated hardware
that limits the practicality of such schemes.

This paper proposes a new approach to hide the latency
of cache misses in both regular and irregular applications
using relatively modest hardware support. We call our ap-
proach future execution (FE). The design of the FE mecha-
nism was inspired by the observation that most cache misses
are cased by repeatedly executed loads with a relatively
small number of dynamic instructions between consecutive
executions of these loads. Moreover, the sequence of ex-
ecuted instructions leading up to the loads tends to remain
similar. Hence, for each executed critical load, there is a
high probability that the same load will be executed again
soon. Therefore, whenever a load instruction executes, we
issue a copy of that load on another core of the same CMP
with the address for the nth next instance to perform a
prefetch into the shared L2 cache.

One could use a value predictor to determine the likely
address each load is going to reference in the future. How-
ever, many important load addresses are not directly pre-
dictable. Fortunately, even if a missing load’s address ex-
hibits no regularity and is thus unpredictable, it is often
possible to correctly predict the input values to its dataflow
graph (backward slice) and thus to compute a prediction for
the address in question. Since the same sequence of in-
structions tends to be executed before each critical load, the
dataflow graph stays largely the same. Exploiting this prop-
erty, future execution predicts all predictable values in the
program and then speculatively computes all values that are
reachable from the predictable ones in the program dataflow
graph, which greatly increases the number of instructions
for which an accurate prediction is available.

Our mechanism uses available idle cores in a CMP to
perform the future execution. We propose to use an entire
core instead of a specialized execution engine because it
simplifies the design, allows to put idle cores to good use,
and leaves a fully functional extra core in case there are
non-speculative threads to run.



The FE mechanism works as follows. The original un-
modified program executes on the first core. As each in-
struction commits, it updates the value predictor with its
current result. Then a prediction is made to obtain the likely
value the instruction is going to produce during its nth next
execution. After that, the committed instruction is sent to
the second core along with the predicted value, where it is
injected into the dispatch stage of the pipeline. Instructions
are injected in the commit order of the first core to preserve
the program semantics. Since we assume that the same se-
quence of instructions will execute again in the future, the
second core essentially executes n “iterations” ahead of the
non-speculative program running in the first core. The exe-
cution of each instruction in the second core proceeds nor-
mally utilizing the future values. Loads are issued into the
memory hierarchy using speculative addresses and instruc-
tions commit upon reaching the head of the ROB ignoring
all exceptions. Section 3 provides more detail.

This paper makes the following main contributions.
First, future execution presents a new approach on how to
create prefetching threads in a cheap and efficient manner
without specialized instruction stream analyzers, identifica-
tion of thread spawn points or trigger instructions, or stor-
age for prefetching treads. Second, we demonstrate a sim-
ple technique to compute accurate predictions for instruc-
tions that are not directly value predictable. Third, our tech-
nique allows to adaptively change the prefetching distance
through a simple adjustment in the predictor. Fourth, unlike
some other thread-based prefetching techniques, future exe-
cution is recovery-free, meaning the results generated by the
prefetching thread do not need to be verified for correctness.
As a consequence, the prefetching thread never has to be
restarted. Fifth, the critical path in the main core is unlikely
to be affected by our mechanism and no hardware is needed
to inject pre-execution results into the main program. Sixth,
our approach has a very low thread startup cost and can in-
stantly stop or resume execution of the prefetching thread
depending on the availability of an idle thread context. Fi-
nally, FE requires no changes to the operating system or
the instruction set architecture and needs no programmer or
compiler support. As such, it can speed up legacy code as
well as new code.

The next section discusses the implementation of the
FE micro-architecture. We start by presenting a quantita-
tive analysis of the observations that inspired our design.
Then we focus on the hardware support necessary to im-
plement FE. We made an effort to minimize the complexity
and to move most of the added hardware out of the core.
Next, we show that our simplest implementation delivers
a geometric-mean speedup of 25% on SPECcpu2000 pro-
grams relative to a conventional superscalar core. Com-
pared to a baseline with an aggressive hardware stream
prefetcher, FE still provides an average speedup of 10%. Fi-

Figure 1. Execution distance in instructions
between the loads that result in an L2 cache
miss and the previous dynamic execution of
the same static loads

nally, we demonstrate that future execution is complemen-
tary to prefetching based on runahead execution and that
both approaches exhibit significant synergy when used to-
gether, bringing the geometric-mean speedup to 20%.

2 Motivation

This section presents a quantitative analysis of the com-
mon program properties that are exploited by future execu-
tion. All the results are obtained using the benchmark suite
and baseline microarchitecture described in Section 4.

One of the main program properties exploited by FE is
that most load misses occur in ‘loops’ with relatively short
iterations. In this paper, we define loop as any repeatedly
executed instruction, be that because of an actual loop, re-
cursion, function calls, or something else. Figure 1 presents
the breakdown of the distance between the load instructions
that cause an L2 cache miss and the previous execution of
the same load instruction. The bars are broken down by
distance: fewer than 100, between 100 and 1000, between
1000 and 10000, and over 10000 instructions. The taller
the bar, the more often that range of instruction distances
occurred. The data show that on average 80% of the misses
occur in loops with iterations shorter than 1000 instructions.
This observation suggests a prefetching approach in which
each load instruction triggers a prefetch of the address that
that same load is going to reference in the nth next iteration.
Since in most cases the time between the execution of a
load instruction and its next dynamic execution is relatively
short, the risk of prefetching much too early and polluting
the cache is small.

Analyzing the instructions in the dataflow graphs of the
problem loads, we found that while problem load addresses
might be hard to predict, the inputs to their dataflow graphs
often are not. Therefore, even when the miss address itself
is unpredictable, it is frequently possible to predict the input



Figure 2. Distribution of the cache miss ad-
dresses that can be correctly predicted by a
future value predictor (fvpred) and using future
execution (fexec)

values of the instructions leading up to the problem loads
and thus to compute an accurate prediction by executing
these instructions.

Figure 2 shows the breakdown of the load miss addresses
in the SPECcpu2000 programs that can potentially be pre-
dicted and prefetched by future value prediction and by fu-
ture execution. The lower portion of each bar represents the
fraction of misses that can be predicted by a stride-two-delta
(ST2D) value predictor [15]. The upper bar shows how
many of the miss addresses that are not predictable by the
ST2D predictor can be correctly obtained by predicting the
inputs of the instructions in the dataflow graphs of the miss-
ing loads and computing the addresses. The height of the
stacked bar indicates the total fraction of misses that can po-
tentially be correctly predicted. To measure the prediction
coverage of future execution, we reconstruct the dataflow
graph of each problem load whenever a cache miss occurs,
compare it to the dataflow graph of the same static load dur-
ing its previous execution, extract the part of the dataflow
graph that is the same, and then check if the values pro-
vided by the future value predictor during the previous ex-
ecution would allow to correctly compute the load address
referenced by the load instruction in the current iteration.
We limit the size of the dataflow graph that we analyze to
64 instructions.

Figure 2 illustrates that while value prediction alone is
quite effective for some applications, future execution can
significantly improve the fraction of load miss addresses
that can be correctly predicted and prefetched. Over half of
the SPECcpu2000 programs experience a significant (over
10%) increase in prediction coverage when future execution
is employed in addition to value prediction.

Figure 3a shows a code example that exhibits the pro-
gram properties discussed above. We extracted it from the
program mcf and simplified it. An array of pointers A is tra-
versed, each pointer is dereferenced and the resulting data

Figure 3. Code example

are passed to the function “foo”. Assume that the memory
data referenced by the elements of array A are not cache-
resident. Further assume that there is little or no regular-
ity in the values of the pointers stored in A. Under these
assumptions each execution of the statement data=*ptr
will cause a cache miss. As shown in Figure 3b, in machine
code this statement translates into a single load instruction
load r4, 0(r4) (highlighted in bold).

A conventional predictor will not be able to predict the
address of the problem instruction since there is no regular-
ity in the address stream. However, the address references
of instructionload r4, 0(r3) are regular because each
occurrence of this instruction loads the next consecutive el-
ement of array A. Therefore, it is possible to use a value
predictor to predict the memory addresses for this instruc-
tion, speculatively execute it, and then use the speculatively
loaded value to prefetch the data for the problem load in-
struction. Since the control flow leading to the computa-
tion of the addresses of the problem load remains the same
throughout each loop iteration (Figure 3c), a value predic-
tor can provide predictions for the next iterations of the loop
and the addresses of the problem load will be computed cor-
rectly. Therefore, sending the register-writing instructions
to the second core in commit order and future predicting
them makes it possible to compute the addresses that will
be referenced by the main program during the next itera-
tions of the loop.

3 Implementation of Future Execution

Our implementation of future execution is based on a
conventional chip multiprocessor. A high-level block dia-
gram of a two-way CMP supporting FE is shown in Fig-
ure 4. Both microprocessors in the CMP have a superscalar



Figure 4. The FE architecture

execution engine with private L1 caches. The L2 cache is
shared between the two cores. The conventional program
execution is performed on the “left” core while the future
execution is performed on the “right” core. To support FE,
we introduce a unidirectional communication link between
the cores, with a future value predictor attached to it. Both
the communication link and the predictor are not on the crit-
ical path and should not affect the performance of the first
core in a negative way. We also make slight modifications
to the execution engine to assist the future execution. The
following subsections describe the necessary hardware sup-
port and the operation of FE in greater detail.

3.1 Overview of Operation

Each register-writing instruction committed in the reg-
ular core is sent to the second core via the communica-
tion link. The data that need to be transferred to the sec-
ond core include the instruction’s decoded opcode, result
value, and a partial PC to index the value predictor. Stores,
branches, jumps, privileged instructions, and system calls
are not transmitted. If the communication link’s send buffer
is full, further committed instructions are dropped and not
transmitted to the second core. Each instruction sent from
the regular core passes through the value predictor, updates
it with the current output and requests a prediction of the
value it is likely to produce in the nth next iteration. Each
prediction is accompanied by a confidence estimation [7].

When the instructions along with their predicted outputs
reach the second core, they are inserted into the pipeline.
Since instructions are transmitted in a decoded format, they
can bypass the fetch and decode stages. Instruction dispatch
proceeds as normal - each instruction is renamed and allo-
cated a reservation station (RS) and a ROB entry if these
resources are available. Whenever the input values for the
instruction are ready, it executes, propagates the produced
result to the dependent instructions and updates the register
file.

The main difference between executing the instruction in
FE mode versus normal mode is when and how the register

values are determined to be ready. In normal mode, an in-
struction’s output is ready only after the instruction has ex-
ecuted. In FE mode, when an instruction is dispatched, the
result field of the RS and ROB entries are immediately filled
with the predicted future value and the result of this instruc-
tion is marked as ready if the confidence of the predicted
output is above the threshold. Therefore, all subsequent in-
structions that depend on a predictable instruction can in-
stantly read the corresponding input and execute. Instruc-
tions with ready results are allowed to retire without having
to execute. Note, however, that we force all loads, including
the ones with a predictable result, to execute so that they can
issue prefetches. As in normal execution mode, non-ready
FE instructions have to wait for their input values to become
available before they can execute and write their result into
the corresponding result field and forward it to the depen-
dent instructions.

By the time an instruction reaches the ROB head in nor-
mal execution mode it is guaranteed that all of its inputs
are ready. Therefore, if an instruction has not executed by
that time, it is certain that it will execute as soon as the
necessary execution resources become available. However,
in future execution mode the instruction at the head of the
ROB is not guaranteed to ever have its inputs ready. This
happens, for example, when the input values could not be
predicted with high confidence. Therefore, if an instruc-
tion reaches the head of the ROB in FE mode and its inputs
are not ready, it is forced to retire without writing the corre-
sponding result register. As a consequence, the execution of
subsequent instructions that try to read this non-ready reg-
ister will be similarly suppressed. If the instruction at the
head of the ROB is a long latency load, it is forced to retire
after a timeout period that equals the latency of an L2 cache
hit. This approach significantly improves the performance
of FE as it avoids stalling the pipeline. Forced retirement is
disabled when the core is being used in non-FE mode.

3.2 Hardware Support

The value prediction module resides between the two
CMP cores. We use a relatively simple, PC-indexed stride-
two-delta predictor [15] with 4,096 entries. The predictor
estimates the confidence of each prediction it makes using
3-bit saturating up-down counters. The confidence is incre-
mented by one if the predicted value was correct and decre-
mented by four if the predicted value was wrong. The par-
ticular organization of the value predictor is not essential
to our mechanism and a more powerful predictor (e.g., [3])
may lead to higher performance.

Since we model a two-way CMP with private L1 caches,
we need a mechanism to keep the data in the private L1
caches of the two cores consistent. In this work, we rely on
an invalidation-based cache coherency protocol to maintain



consistency. Therefore, whenever the main program exe-
cutes a store instruction, the corresponding cache block in
the private cache of the future core is invalidated. Since
store instructions are not sent to the future core, future exe-
cution never incurs any invalidations.

4 Evaluation Methodology

We evaluate future execution using an extended version
of the SimpleScalar v4.0 simulator [6]. The baseline is a
two-way CMP consisting of two identical four-issue dy-
namic superscalar cores that are similar to the Alpha 21264
(Table 1). In all modeled configurations we assume that one
of the cores in the CMP is idle and can be used for future
execution. We also simulate a configuration with an ag-
gressive hardware stream prefetcher between the shared L2
cache and main memory [11]. The stream prefetcher tracks
the history of the last 16 miss addresses, detects arbitrary-
sized strides, and applies a stream filtering technique by
only allocating a stream after a particular stride has been
observed twice. It can simultaneously track 16 independent
streams, and prefetch up to 8 strides ahead of the data con-
sumption of the processor. Our implementation of the future
execution mechanism employs a stride-two-delta (ST2D)
value predictor that predicts values 4 iterations ahead. Pre-
dicting four iterations ahead does not require extra time in
case of the ST2D predictor. We simply modified the predic-
tor hardware to add the predicted stride four times, which
is achieved by a rewiring that shifts the predicted stride by
two bits. The communication link between the two cores
can buffer up to 40 instructions, has the latency of 5 cycles,
and provides communication bandwidth that corresponds to
the commit width (4 instructions/cycle).

Table 1. Simulated processor parameters

Processor
Fetch/issue/commit width 4/4/4
I-window/ROB/LSQ size 64/128/64
Int/FP registers 184
LdSt/Int/FP units 2/4/2
Execution latencies similar to Alpha 21264
Branch predictor 16K-entry bimodal/gshare hybrid
RAS entries 16

Memory Subsystem
Cache sizes 64KB IL1, 64KB DL1, 1MB L2
Cache associativity 2-way L1, 4-way L2
Cache latencies 2 cyc L1, 20 cyc L2
Cache line sizes 64B L1, 64B L2
MSHRs 64 L1, 128 L2
Main memory latency minimum 400 cycles
Hardware stream prefetcher between L2 and main memory, 16 streams

max. prefetch distance: 8 strides

Future Execution Hardware Support
Future value predictor 4K-entry ST2D, 3bc conf. estimator
Communication link latency 5 cycles
Communication link bandwidth 4 instructions/cycle
Communication link buffer size 40 instructions

Table 2. Benchmark suite details (for the sim-
ulated interval of 500M instructions)

App. NoPref
IPC

loads
(M)

L1 miss
rate (%)

L2 miss
rate (%)

Perf L2
speedup (%)

bzip2 1.27 142.16 1.63 19.02 45.57
crafty 1.73 156.37 0.85 1.51 2.92
eon 1.60 148.66 0.13 0.29 0.14
gap 1.11 127.02 0.37 35.03 53.17
gcc 0.98 179.25 2.58 9.57 56.90
gzip 1.61 99.62 5.23 0.71 2.39
mcf 0.04 209.74 25.41 73.32 1312.29

parser 0.76 121.98 2.47 20.65 97.38
perlbmk 1.38 157.11 0.27 11.57 3.71

twolf 0.53 142.56 4.99 14.57 125.24
vortex 1.52 129.11 0.83 14.48 51.03

vpr 0.54 164.96 3.39 17.50 107.34
ammp 0.69 134.07 4.36 30.65 135.23
applu 0.96 113.81 2.11 66.26 167.04
apsi 1.52 123.52 2.71 63.48 40.97
art 0.29 156.61 19.97 56.32 500.32

equake 0.26 235.05 7.44 54.04 552.11
mesa 1.84 129.52 0.34 28.00 19.49
mgrid 0.89 183.11 2.42 47.81 193.14

sixtrack 2.23 96.81 0.23 72.33 15.82
swim 0.41 123.09 9.04 59.74 513.41

wupwise 1.27 115.01 1.08 72.67 97.80

We use all integer and floating-point programs from the
SPECcpu2000 benchmark suite [4] for this study with the
exception of the four Fortran 90 programs for which we
have no compiler. The programs are run with the SPEC-
provided reference inputs. If multiple reference inputs
are given, we simulate the corresponding programs with
up to the first three inputs and average the results from
the different runs. The C programs were compiled with
Compaq’s C compiler V6.3-025 using “–O3 –arch host
–non shared” plus feedback optimization. The C++ and
Fortran 77 programs were compiled with g++/g77 V3.3 us-
ing “–O3 –static”. We used the SimPoint toolset [16] to
identify representative simulation points. Each program is
simulated for 500 million instructions after fast-forwarding
past the number of instructions determined by SimPoint.

Table 2 provides information about the benchmarks
used. The cache miss rates shown are local. Out of the
22 programs used in this study, four integer programs are
not memory-bound since they obtain less than 5% speedup
with a perfect L2 cache. The perfect-cache speedup for the
rest of the programs varies greatly and reaches up to 1312%
for mcf. This large speedup is explained by an exceptionally
large number of L1 misses and a very high L2 cache miss
rate that reaches 73%.

5 Experimental Results

In this section, we experimentally determine the effec-
tiveness of our proposed mechanism. In Section 5.1, we



Figure 5. Execution speedup

measure the performance of prefetching based on future ex-
ecution and compare its speedups with that of aggressive
stream prefetching. In Section 5.2, we take a closer look at
prefetching itself and gain additional insight by measuring
the prefetching accuracy and coverage as well as the time-
liness of prefetches. In Section 5.3 we compare our future
execution technique to prefetching based on runahead exe-
cution and show that the two techniques are complementary
to each other.

5.1 Execution Time Speedup

In this section, we measure the performance impact
of our prefetching technique compared to a stream-based
hardware prefetcher. The base machine for this experi-
ment is described in Table 1. It represents an aggressive
superscalar processor without hardware prefetching. We
model three configurations: the baseline with prefetching
based on future execution (fexec), the baseline with an ag-
gressive hardware stream prefetcher between the shared
L2 cache and main memory [11] (spref ), and the base-
line with stream prefetching as well as future execution
(spref+fexec). Figure 5 presents speedups for individual
programs as well as the geometric mean over the inte-
ger and the floating-point programs (integer programs are
shown in the left panel, floating-point programs in the right
panel). Note that the scale of the y-axis for SPECint and
SPECfp programs is different. The percentages on top of
the bars are the speedups of future execution combined with
stream prefetching (spref+fexec) over stream prefetching
alone (spref ).

The results show that the hardware stream prefetcher
used in our study is very effective, attaining significant
speedups for the majority of the programs, with a peak of
387% for swim and 152% for mcf. The average speedup
over the SPECint programs is 14.8%, while the SPECfp ap-
plications experience an average speedup of 66.5%. Note

that we tuned the parameters of the stream prefetcher to
maximize the prefetching timeliness and to minimize cache
pollution on our benchmark suite. We use the same param-
eters on all programs.

When the model with only future execution is compared
to the model with only stream prefetching, future execution
outperforms stream prefetching on four programs, while
stream prefetching is better on eleven. The remaining seven
programs show about the same performance in both mod-
els. As the following section will show, in many cases
the stream prefetcher can prefetch fewer load misses than
future execution, but it provides timelier prefetching and
hence larger performance improvements. The timeliness of
the prefetches issued by future execution can be improved
by adjusting the prediction distance of the future value pre-
dictor, but we use the same prediction distance throughout
this paper to make the results comparable. Nevertheless, the
fexec model provides significant speedup (over 5%) for 12
programs, with an average speedup of 15% for the integer
and 46.4% for the floating-point programs, with a maximum
of 233% on swim.

The model with the best performance is the one that com-
bines the stream prefetcher and future execution. On aver-
age, this model has a 50% higher IPC than the model with-
out prefetching. Moreover, this model has a 10% higher IPC
than the baseline with stream prefetching. Out of the 22 pro-
grams used in our study, 14 significantly benefit (over 4.7%
improvement) from future execution when it is added to the
baseline that already includes a hardware stream prefetcher.
If we look at the behavior of the integer and floating-point
programs separately, adding future execution to the base-
line with a stream prefetcher increases the performance of
SPECint and SPECfp by 4.9% and 17.1%, respectively.
This indicates that future execution and stream prefetching
interact favorably and complement each other by prefetch-
ing different classes of load misses.



Figure 6. Prefetch coverage

Figure 7. Prefetch accuracy

Overall, the results in this section demonstrate that future
execution is quite effective on a wide range of programs
and works well alone and in combination with a stream
prefetcher.

5.2 Analysis of Prefetching Activity

This section provides insight into the performance of
prefetching based on FE by taking a closer look at the
prefetching activity. We begin by presenting the prefetch
coverages obtained by different prefetching techniques. We
define the prefetch coverage as the ratio of the total number
of useful prefetches (i.e., the prefetches that reduce the la-
tency of the cache missing memory operations) to the total
number of misses originally incurred by the application.

Figure 6 shows the prefetch coverages for different
prefetch schemes, illustrating significant coverage, espe-
cially for SPECfp. On roughly half of the programs the
coverage achieved by future execution is higher than that
achieved by the stream prefetcher. The other half favors
stream prefetching. This result is somewhat surprising be-
cause future execution employs a more accurate form of
value prediction than the stream prefetcher does. Hence,
one would expect the coverage of future execution to be at
least as high as that of a good stream prefetcher. This co-
nundrum is explained by the following observation. The
value predictor that assists the future execution makes pre-

dictions based on the local history of values produced by a
particular static instruction, while the stream prefetcher ob-
serves only the global history of values. Therefore, the two
techniques exploit different kinds of patterns, akin to local
and global branch predictors, and in different applications
different types of patterns dominate.

When stream prefetching is combined with future exe-
cution, the two techniques demonstrate significant synergy.
In twelve programs (bzip2, gcc, mcf, parser, vortex, ammp,
apsi, equake, mesa, mgrid, sixtrack, and wupwise) the cov-
erage is at least 5% higher than when either technique is
used alone. Overall, future execution increases the prefetch-
ing coverage from 31% to 47% on the integer and from 62%
to 80% on the floating-point programs.

Next, we analyze the accuracy of our prefetching scheme
by comparing the number of useful prefetches issued by
the two prefetching mechanisms to the total number of
prefetches issued. Figure 7 illustrates that the vast major-
ity of the prefetches issued are useful in both the SPECint
and the SPECfp programs with an average accuracy of over
70% for both techniques. There are a few interesting cases
where stream prefetching has a much higher accuracy than
future execution. They occur in the integer programs crafty,
gap, and twolf. In all three cases useless prefetches occur
in loops where many loads depend on the values of a loop-
carried dependency passed through memory that is not pre-
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Figure 8. Timeliness of the prefetches

served by future execution. This results in computing the
wrong addresses for load instructions and the fetching of
useless data. However, even though the accuracy of the
stream prefetcher is higher in those cases, the correspond-
ing coverage is quite low, meaning that the higher accuracy
does not translate into improved performance.

Finally, we investigate the prefetch timeliness of the
different schemes. The prefetch timeliness indicates how
much of the memory latency is hidden by the prefetches.
The results are presented in Figure 8. For each program,
the upper bar corresponds to the fexec model, the middle
bar to the spref model, and the lowest bar represents the
spref+fexec model. Each bar is broken down into five seg-
ments corresponding to the fraction of the miss latency hid-
den by the prefetches: less than 100 cycles (darkest seg-
ment), between 100 and 200 cycles, between 200 and 300
cycles, between 300 and 400 cycles, and over 400 cycles
(lightest segment). Therefore, the lightest segment repre-
sents the fraction of prefetches that hide the full memory
latency.

Both future execution and stream prefetching are quite
effective at hiding the memory access latency. In case of fu-
ture execution, 65% of the prefetches in SPECint and 55%
of the prefetches in SPECfp are completely timely, fully
eliminating the associated memory latency. For both the
integer and the floating-point programs, only 25% of the
prefetches hide less than 100 cycles of latency (one quarter
of the memory latency). The timeliness of future execu-
tion prefetches can be improved by adjusting the prediction
distance of the future value predictor. For example, increas-
ing the prediction distance from 4 to 8 (results not shown)
increases the number of completely timely prefetches for
most of the programs with a low prefetch timeliness by at
least 15%.

Overall, this section demonstrates that prefetching based
on future execution is quite accurate, significantly improves
the prefetching coverage over stream prefetching, and pro-
vides timely prefetches, which may be further improved by
dynamically varying the prediction distance.

5.3 Comparison with Runahead Execution

The previous subsections showed that prefetching based
on future execution is quite effective and provides signifi-
cant speedups over the baseline with an aggressive stream
prefetcher. In this section we compare our mechanism to
runahead execution, another recently proposed execution-
based prefetching technique.

The concept of runahead execution was first proposed
for in-order processors [2] and further extended to perform
prefetching for out-of-order architectures [10]. The runa-
head architecture “nullifies” and retires all memory opera-
tions that miss in the L2 cache and remain unresolved at the
time they get to the ROB head. It starts by taking a check-
point of the architectural state. Then it retires the miss-
ing load and the processor enters runahead mode. In this
mode the instructions proceed largely normally except for
two major differences. First, the instructions that depend
on the result of the load that was “nullified” do not exe-
cute but are nullified as well. They commit an invalid value
and retire as soon as they reach the head of the ROB. Sec-
ond, store instructions executed in runahead mode do not
overwrite data in memory. When the original “nullified”
memory operation completes, the processor rolls back to
the checkpoint and resumes normal execution. All register
values produced in runahead mode are discarded.

We implemented a version of runahead execution sim-
ilar to the one described by Mutlu et al. [10]. Runahead
execution prefetches data into the L1 cache. To make a fair



Figure 9. Comparison with runahead execution

comparison, we changed our implementation of future ex-
ecution so that it also prefetches into the L1 cache. To do
so, we modified the L2 cache controller to deliver the cache
blocks requested by the L1 cache of the future core to the
private L1 caches of both cores.

Figure 9 shows the execution speedup of different tech-
niques relative to the spref baseline. Overall, more applica-
tions benefit from future execution than from runahead ex-
ecution, but the geometric-mean speedups provided by the
two techniques when they are applied separately are about
the same. On average, both techniques provide a speedup
of 5% on SPECint and around 19% on SPECfp.

When both techniques are employed together, their cu-
mulative effect is quite impressive. The average speedups
rise to 10% and 35% for the integer and the floating-point
programs, respectively. The interaction between future ex-
ecution and runahead execution is especially favorable with
mcf, ammp, applu, art, equake, mgrid, and wupwise, where
the speedups are from 6% to 70% higher than when either
of the techniques is used alone. There is one case where
adding runahead execution on top of future execution re-
sults in a lower speedup than when future execution is used
alone (gap). We suspect this is caused by the corruption of
the value prediction tables while the processor is in runa-
head mode, which causes the FE mechanism to issue incor-
rect prefetches when the processor exits runahead.

6 Related Work

Hardware prefetching techniques based on outcome pre-
diction typically use various kinds of value predictors (e.g.,
[7, 11, 15]) and/or pattern predictors to dynamically predict
which memory addresses to prefetch from. Unlike previous
approaches, FE employs value prediction only to provide
initial predictions. These initial predictions are then used
to compute all values reachable from the predictable nodes

in the program dataflow graph to obtain predictions for oth-
erwise unpredictable values. We demonstrate that our ap-
proach significantly improves the prediction coverage rela-
tive to conventional value prediction.

Similar to future execution, Zhou and Conte [22] used
value prediction to speculatively compute unpredictable
values of instructions currently held in the instruction win-
dow and speculatively issue load instructions. However, our
mechanism provides better latency tolerance due to the use
of future prediction and delivers a higher prediction cover-
age since the speculation scope is not limited by the number
of instructions in the instruction window.

Thread-based prefetching techniques [9,13,14] typically
use additional execution pipelines or idle thread contexts
in a multithreaded processor to execute helper threads that
perform dynamic prefetching for the main thread. Helper
threads can be constructed statically or dynamically by spe-
cialized hardware structures. If a static approach is used,
the prefetching threads are constructed manually [23] or
are generated by the compiler [8]. Future execution is a
hardware-only approach and does not rely on a program-
mer or on compiler assistance. Nevertheless, we believe
our approach and software-controlled helper threads to be
complementary.

If helper threads are constructed dynamically, a special-
ized hardware analyzer extracts execution slices from the
dynamic instruction stream at run-time, identifies trigger in-
structions to spawn the helper threads, and stores the ex-
tracted threads in a special table. Examples of this ap-
proach include slice-processors [9] and dynamic specula-
tive precomputation [1]. Even though future execution is
also a hardware mechanism, it needs essentially no special-
ized hardware to create the prefetching thread, it does not
require any storage for prefetching threads, and it works
without thread triggers. The only storage structure nec-
essary for future execution is the prediction table, which
is modest in complexity and size and can, in fact, be



shared with other performance-enhancing mechanisms such
as predictor-directed stream buffers [17] or checkpointed
early load retirement [5].

Many thread-based software and hardware techniques
propose to use the register results produced by the specula-
tive helper threads. Examples include the multiscalar archi-
tecture [18], threaded multiple path execution [20], thread-
level data speculation [19], speculative data-driven multi-
threading [14], and slipstream processors [12]. Even though
the idea to reuse already computed results sounds appeal-
ing, it introduces additional hardware complexity and in-
creases the design and verification costs. The results pro-
duced by future execution are used solely for prefetching,
which eliminates the need for any mechanism to integrate
the results in the original thread. As a consequence, there is
no need to verify the results produced by the future execu-
tion, making our mechanism completely recovery-free.

Runahead execution is another form of prefetching based
on speculative execution [2], [10]. In runahead processors,
the processor state is checkpointed when a long-latency
load stalls the head of the ROB, the load is allowed to retire
and the processor continues to execute speculatively. When
the data is finally received from memory, the processor rolls
back and restarts execution from the load. Future execution
does not need to experience a cache miss to start prefetch-
ing, requires no checkpointing support or any other recov-
ery mechanism and, as we demonstrate is this paper, works
well in combination with runahead execution.

Similar to FE, the dual-core execution paradigm (DCE)
[21] proposed by Zhou utilizes idles cores of a CMP to
speed up single-threaded programs. Instead of using the
idle core for prefetching, DCE uses it to extend the effec-
tive instruction window size of a single core by distributing
the state of a single thread over the two cores. The main dif-
ference between FE and DCE is that the former technique
tries to eliminate cache misses while the latter improves the
ability to tolerate them.

7 Conclusion

This paper presents future execution (FE), a simple tech-
nique to hide the latency of cache misses in both regular
and irregular applications using moderate hardware and no
OS, ISA, programmer, or compiler support. FE harnesses
the power of a second core in a CMP to prefetch data for
a thread running on a different core of the same chip. It
dynamically creates a prefetching thread by sending a copy
of all committed, register-writing instructions to the second
core. The innovation is that on the way to the second core,
a future value predictor replaces each instruction’s result in
the prefetching thread with the result the instruction is likely
to produce during its nth next execution. Future execution
then leverages the second core’s execution capabilities to

compute the prefetch addresses that could not be predicted
with high confidence, which we found to greatly increase
the prefetching coverage. FE requires only simple hardware
and small chip area additions. Unlike previously proposed
approaches, future execution does not need any thread trig-
gers, features an adjustable lookahead distance, does not
use complicated analyzers to extract prefetching threads, re-
quires no storage for prefetching threads, is recovery free,
and works on legacy code as well as new code. Overall,
FE delivers a geometric-mean speedup of 10% over a base-
line with an aggressive stream prefetcher for SPECcpu2000
applications. Furthermore, future execution is complemen-
tary to runahead execution and the combination of these two
techniques raises the average speedup to 20%.
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