

Delphi: Prediction-Based Page Prefetching to Improve
the Performance of Shared Virtual Memory Systems

Evan Speight and Martin Burtscher
School of Electrical and Computer Engineering

Computer Systems Laboratory, Cornell University, Ithaca, NY 14853
{espeight,burtscher}@csl.cornell.edu

Abstract
Software distributed shared memory (SDSM)

systems traditionally exhibit poor performance
on applications with significant fine-grain or
false sharing. Techniques such as relaxed-
consistency models and multiple -writers proto-
cols improve the performance of SDSM systems
significantly, but their performance still lags
that of hardware shared memory implementa-
tions. This paper describes Delphi, a system
that borrows techniques from microarchitectural
research on value prediction and applies them
to software distributed shared memory. We run
a small software predictor on each node in the
Delphi system to predict which virtual pages
will be needed in the future. We use the predic-
tions to prefetch pages in order to reduce the
number of accesses to invalid data and thereby
reduce expensive network accesses. Experimen-
tal results show that Delphi is able to reduce the
number of read misses to virtual pages by up to
62% on a set of well-known scientific bench-
marks with minimal runtime overhead in extra
processing and memory requirements. This
translates into a 14% reduction in execution
time over a comparable base system that does
not employ prediction techniques.

Keywords: prediction, prefetching, software

DSM

1. Introduction
Recent improvements in commodity general-
purpose networks and processors have made
networks of multiprocessor PC workstations an
inexpensive alternative to large monolithic mul-
tiprocessor systems. However, applications for
such distributed systems are difficult to develop

due to the need to explicitly send and receive
data between machines. By providing an ab-
straction of globally shared memory on top of
the physically distributed memories present on
networked workstations, it is possible to com-
bine the programming advantages of shared
memory and the cost advantages of distributed
memory. These distributed shared memory
(DSM), or shared virtual memory, runtime sys-
tems transparently intercept user accesses to re-
mote memory and translate them into messages
appropriate to the underlying communication
media. The programmer is thus given the illu-
sion of a large global address space encompass-
ing all available memory, which eliminates the
task of explicitly moving data between processes
located on separate machines.

Both hardware DSM systems (e.g., Alewife
[2], DASH [13], FLASH [12]) and software
DSM systems (e.g., Ivy [14] , Munin [5], and
Brazos [16]) have been implemented. Recent
increases in PC performance, the exceptionally
low cost of PCs relative to that of workstations,
and the introduction of advanced PC operating
systems combine to make networks of PCs an
attractive alternative for large scientific compu-
tations.

Software DSM systems use the page-based
memory protection hardware and the low-level
message passing facilities of the host operating
system to implement the necessary shared mem-
ory abstractions. The large size of the unit of
sharing (a virtual page) and the high latency as-
sociated with accessing remote memory chal-
lenge the performance potential of software
DSM systems. A variety of techniques have
been developed over the last decade to address
these issues [7, 10, 11]. This paper examines
the use of prediction techniques borrowed from

the value-prediction domain, a promising new
research area in computer architecture. Value
predictors predict the result of instructions be-
fore the CPU can compute them, which speeds
up program execution [15]. We have imple-
mented one of these predictors in software and
adapted it to predict page faults to increase the
accuracy of prefetching multiple shared pages
together. We show that a predictor requiring a
minimal amount of runtime overhead, both in
terms of memory usage and execution time, can
reduce the number of network accesses by up to
56%, and the overall runtime by 14% on a set of
well-known, shared memory parallel bench-
marks.

The rest of this paper is organized as follows.
Section 2 discusses the prediction scheme we
have implemented in the Delphi system to pre-
fetch virtual pages. Section 3 describes our ex-
perimental setup and the applications used in our
evaluations. Section 4 presents performance
results for several scientific applications. We
conclude and discuss future work in Section 5.

2. Delphi Implementation
This section provides a brief overview of the

baseline coherence protocol used in the Delphi
system, as well as the prediction techniques em-
ployed to reduce the number of page faults and
network operations.

2.1. Overview
Delphi uses a home-based protocol for main-

taining consistency between shared memory
processes in the cluster. Initially, groups of ten
virtual pages are assigned the same home node
in a round-robin fashion. During the execution
of an application, if a single process is the only
writer for a given page, the home designation is
migrated to that writing process in order to re-
duce the number of network updates that must
be propagated to the home node. Similar to other
software DSM systems, modifications to virtual
pages are tracked through the process of twin-
ning and diffing [5]. When a page is first modi-
fied by a process, a copy of the page (known as
a twin) is created. When changes to the page
must be propagated to other nodes in the system
in order to maintain coherence, a runlength en-
coding of the changes is created by conducting a

word-by-word comparison of the twin with the
current page. This encoding is referred to as a
diff, and is simply a compact representation of
the changes to shared data.

In home-based systems such as Delphi, a
global synchronization event such as a barrier
causes all modified pages to be invalidated and
diffs to be made to track the page changes prior
to the invalidation. In Delphi, each page’s diff
is eagerly flushed to the correct home node at a
synchronization point. Subsequently, when a
process faults on an invalid page, the home node
is contacted by the faulting process, and the re-
quest is satisfied with a single response consist-
ing of the entire page from the home node. In
the current Delphi system, the page will always
be up-to-date at the home node, resulting in a
tradeoff of longer synchronization times for
faster individual page-fault response time.

2.2. Prediction in Delphi

Several studies have examined the perform-
ance impact on software DSM systems of dy-
namically altering the virtual page size in order
to improve performance. By aggregating pages
that are sequential in virtual memory into page
groups [3], data is implicitly prefetched, which
may result in fewer page faults and less network
overhead. The downside of this approach is that
it may lead to an increase in false sharing, as a
larger unit of coherence increases the chance
that multiple writers will attempt to modify dif-
ferent portions of the same, larger page. The
adaptive protocol presented in [3] attempts to
reduce this effect by dynamically changing the
page size to compensate for the prefetching vs.
false-sharing contention.

The Adaptive++ system [6] relies on two
modes of operating to predict which pages to
prefetch, referred to as repeated-page mode and
repeated-stride mode. Separate lists are main-
tained of pages likely to be referenced in the
future based on observed access patterns. In
addition to using a less-general prediction algo-
rithm than that used in Delphi, the Adaptive++
system does not update pages with prefetched
data until a process faults on the page. Finally,
the Adaptive++ system has been integrated into
the TreadMarks software DSM system [11], a
distributed-page based system, while Delphi has

been added to a home-based software DSM sys-
tem. This makes direct comparisons between the
performance of the two approaches difficult.

The approach taken in Delphi differs in sev-
eral aspects from previous efforts. First, stan-
dard, validated prediction techniques are used to
predict which pages will likely be accessed next
based on the history of previous accesses. Sec-
ond, due to the extremely low runtime overhead
associated with our prediction technique, Delphi
can predict and aggregate pages based on sev-
eral independent streams of references, improv-
ing prediction accuracy. Finally, Delphi’s
home-based protocol allows prefetched updates
to be applied at requesting nodes in an over-
lapped manner while application computation
continues.

We investigated several different value pre-
dictors and configurations and found the third-
order differential finite context method predictor
[9] to yield the highest accuracy over a large
range of predictor sizes. This predictor continu-
ously monitors all misses to virtual, shared
pages. For any three consecutive page misses, it
records the page number of the next miss in a
hash table. During a prediction, a table lookup
determines which page miss followed the last
time the predictor encountered the same three
most recent misses.

When a process faults on a virtual page, the
predictor responsible for predicting the next
page access will return the values of the next N
predicted pages the process will access that
share the same home node as the page incurring
the fault. We maintain a separate predictor for
each home node to improve the prediction accu-
racy. The faulting node requests these (up-to) N
pages from the home node, which responds with
not only the necessary page, but also all other
predicted pages. In this way, Delphi seeks to
avoid faulting and the resulting network ac-
cesses for the pages that will likely be accessed
in the near future. Additionally, computation is
allowed to proceed as soon as the request page
has been delivered, overlapping computation
with the processing of the prefetched pages.

2.3. Predictor Operation
The third-order differential finite context

method (DFCM) predictor consists of two lev-

els. The first level retains the page numbers of
the three most recent misses. However, only the
most recent page number is stored as an absolute
value. The remaining values are the differences
(strides) between consecutive page numbers.
The number of strides determines the order of
the predictor. We use a third-order DFCM since
it yields good results. However, other orders
work equally well.

The strides stored in the first level are com-
bined to form an index into the second level,
which is essentially a hash table. Whenever a
page miss occurs, the difference (stride) between
the previous and the current miss is stored in this
table so it can later be retrieved when the same
sequence of three preceding misses is encoun-
tered. Since the retrieved value is a stride, it
needs to be added to the stored most recent page
miss number to yield the actual prediction.

Our DFCM predictor uses the select-fold-
shift-xor function [9] to compute the index into
the hash table. The following example shows
how to compute this function for the three stride
values st1, st2, and st3 for a 4096-entry hash
table. The symbol “⊕” represents XOR and the
subscripts refer to bit positions.

hash(st) = st63..60 ⊕ st59..50 ⊕ st49..40 ⊕ st39..30 ⊕

st29..20 ⊕ st19..10 ⊕ st9..0

index(st1, st2, st3) = hash(st1) ⊕ hash(st2)<<1
⊕ hash(st3)<<2

Each of the three values is broken down into

n-bit chunks. If the last chunk is shorter than n
bits, it is zero padded to n bits. The chunks are
then XORed to yield an n-bit hash value. The
hashes of the three values are shifted by zero,
one, or two bits, respectively, and then XORed
again to form an (n+2)-bit index. Hence, for a
hash table with size entries, n = 1+log2(size)–
order. In the above example, n = 10.

During a prediction, an index is computed us-
ing the three strides from the DFCM’s first level
to access the hash table, which provides the pre-
dicted stride. During updates, the same index
calculation is performed, the corresponding
hash-table entry is overwritten with the new
stride, and the new stride is shifted into the pre-
dictor’s first level.

3. Experimental Setup
The experiments presented in this section

were carried out on a cluster of 8 Dell Power-
Edge 1500 rack-mounted servers running Win-
dows 2000, Advanced Server Edition. Each
machine contains dual 866 MHz Pentium III
processors, 1 GByte of RAM, and is intercon-
nected with the cLAN system area network.
The cLAN GNN1000 NIC provides a user-level
network that complies with the Virtual Interface
Architecture specification [1] for system area
networks. The applications used for the initial
prediction results include four shared memory
parallel benchmarks chosen to represent the ob-
served behavior of our prediction scheme across
applications with different access patterns. Two
applications are taken from the NAS parallel
benchmark suite [4] : 3DFFT, a 3-D fast-Fourier
transform partial differential equation bench-
mark; and MG, a 3-D mult igrid solver. We also
examine results for Ilink [8], a genetic -linkage
package used to trace genes through family his-
tories; and Gaussian Elimination with back-
substitution.

0

10

20

30

40

50

60

70

3DFFT Gauss Ilink MG

%
 R

ed
u

ct
io

n

1 Page
2 Pages
4 Pages
8 Pages

Figure 1. Reduction in Miss Rate for Varying Predictor

Window Sizes. Predictor Size = 16 Kbytes.

4. Results
We first present results comparing the

performance of Delphi with a fixed-size
predictor to the baseline SDSM system. For the
following results, we use a predictor with 212
entries and vary the number of pages that we
prefetch from the home node (referred to as the
prediction window) on a faulting page access.
For these experiments, we use prediction win-
dows of 1, 2, 4, and 8 pages.

4.1. Results with a Fixed Predictor Size
Figures 1 through 5 show the results for dif-

ferent performance parameters for the four ap-
plications studied. Figure 1 depicts the percent-
age reduction in the number of misses experi-
enced by each application for the 4 prediction
window sizes listed above. 3DFFT, Ilink, and
MG all experience a large reduction in the num-
ber of misses when the Delphi predictor is used.
When only 1 page is predicted, the percentage of
reduction in these applications is 36%, 34%, and
35%, respectively. As we increase the predic-
tion window, the number of read misses is fur-
ther reduced as more and more shared pages are
prefetched and used before being invalidated.
Figure 2 shows the percentage of these predicted
pages that are actually used by the application
before they are next invalidated, indicating the
effectiveness of our prediction scheme. 3DFFT,
Ilink, and MG all use a very high percentage of
the predicted pages. Rates for a single -page
prediction window are near or above 80% for
these three applications. As the predictor is
asked to “look further into the future” and more
pages are predicted on each fault, the percentage
of useful prefetched pages goes down for several
reasons. First, the predictor’s accuracy goes
down with each additional page predicted. Sec-
ond, no information regarding page invalidations
that may occur between the time a page is pre-
fetched and when that page is invalidated is
taken into account, meaning that many pages are
prefetched but not used until after a global syn-
chronization event that invalidates the page, re-
sulting in a wasted prefetch.

0

20

40

60

80

100

3DFFT Gauss Ilink MG

%
 U

se
d

1 Page
2 Pages
4 Pages
8 Pages

Figure 2. Percentage of Prefetched Pages Used.

Predictor Size = 16 Kbytes.

Gauss is an example of an application for
which the prediction scheme employed in Del-
phi basically does not reduce the number of
misses, as shown in Figure 1. Regardless of the
prediction window size used, the number of
misses experienced by Gauss remains relatively
constant. Figure 2 shows that le ss than 10% of
the pages predicted and prefetched are used by
Gauss.

Figure 3 shows the reduction in the number
of network send operations for each application
for the four prediction window sizes examined.
Again, 3DFFT, Ilink, and MG show a large re-
duction in the number of network accesses re-
quired for program completion, as piggybacking
predicted pages on “normal” page fault mes-
sages eliminates subsequent network requests
that would have occurred for the prefetched
pages. The network access count goes down
with an increasing prediction window size,
showing that even though Figure 2 indicates that
the percentage of predicted pages goes down
with an increased window size, enough of the
predicted pages are being used to reduce the
overall number of network send operations.

0

10

20

30

40

50

60

3DFFT Gauss Ilink MG

%
 R

ed
u

ct
io

n

1 Page
2 Pages
4 Pages
8 Pages

Figure 3. Reduction in the Number of Network
Send Operations. Predictor Size = 16 Kbytes.

Figure 4 shows the total number of bytes sent

across the network. Unsurprisingly, when the
prediction window grows, the number of bytes
sent also increases as more and more pages are
prefetched on each program page fault. Figures
3 and 4, when taken together, show that if ac-
cessing the network (e.g., the fixed costs such as
protocol overhead) is dominant over the variable
costs (e.g., the wire time of a network send op-
eration), the prediction scheme in Delphi should

benefit performance substantially. Again, due to
the ineffectiveness of the Delphi predictor on
Gauss, Figure 3 shows almost no reduction in
the number of network accesses over the base-
line case for this application, and Figure 4 shows
a modest increase in network traffic.

Finally, Figure 5 shows the percentage reduc-
tion in execution time for the four applications
studied. 3DFFT, Ilink, and MG show reductions
in execution time for 1, 2, and 4 page prediction
window sizes, with 3DFFT showing the largest
performance improvement of 13.5% when a 1-
page prediction window is used.

0
5

10
15
20
25
30
35
40

3DFFT Gauss Ilink MG

%
 In

cr
ea

se

1 Page
2 Pages
4 Pages
8 Pages

Figure 4. Increase in Bytes Sent Across

the Network. Predictor Size = 16 Kbytes.

As the prediction window increases, the per-

formance is determined by two competing fac-
tors: the increase in network utilization as shown
in Figure 4, and the reduction in the number of
misses as shown in Figure 1. In the case of MG,
a prediction windows size of 8 pages causes the
increase in network bytes sent to overcome the
gains achieved by prefetching 8 pages on each
page fault. 3DFFT and Ilink show similar trends
with increasing prediction window sizes, but to
lesser degrees. Gauss, as expected from the data
presented in Figures 1 through 4, shows only a
small performance change between the predicted
and the baseline case.

The performance of Gauss is poor because
the predictor often cannot find pages that are
likely to miss in the near future and that have the
same home node as the currently missing page.
Moreover, the majority of the pages the predic-
tor manages to prefetch end up being invalidated
before they are used.

-4
-2
0
2
4
6
8

10
12
14

3DFFT Gauss Ilink MG

%
 R

ed
u

ct
io

n

1 Page
2 Pages
4 Pages
8 Pages

Figure 5. Re duction in Execution Time.

Predictor Size = 16 Kbytes.

4.2. Results with Varying Predictor Size
The results in the preceding section main-

tained a constant predictor size of 212 entries,
where each entry is 4 bytes in size. We have 1
predictor per remote node running in each in-
stance of the SDSM system, bringing the total
predictor size to 212*4*(num_nodes-1) = 112
Kbytes for 8 nodes. Each baseline SDSM run-
time system consumes on the order of 88
Mbytes, meaning that the predictor structure
overhead is a negligible 0.1% overhead with the
predictor size used in Section 4.1. In this sec-
tion, we examine the effect of keeping the pre-
diction window constant at a value of 2, and
varying the predictor size from 256 bytes up to
64 Mbytes. Figure 6 shows that for 3DFFT, Il-
ink, and MG, the reduction in the miss rate for
these applications is mostly insensitive to the
size of the predictor. Gauss, on the other hand,
shows a marked reduction in the effectiveness of
the predictor as the size grows. This counterin-
tuitive result is due to constructive aliasing in
the small predictor tables that is eliminated as
the table size increases. As a result, fewer use-
ful pages are prefetched with the larger predic-
tors, explaining Gauss’ lower performance.

5. Conclusions
We have presented the Delphi software DSM

system that incorporates prediction techniques
borrowed from microarchitecture research in
value prediction to intelligently guide prefetch-
ing decisions.

0

10

20

30

40

50

60

0.1 10 1000 100000
Predictor Size (KBytes)

%
 M

is
s

R
ed

u
ct

io
n

3DFFT Gauss
Ilink MG

Figure 6. Reduction in Misses with Varying

Predictor Sizes. Prediction Window = 2 pages.

By incorporating into Delphi a group of
predictors that consume negligible processing
and memory resources relative to the overall
DSM runtime system, we have shown that miss
rate reductions of up to 62% can be achieved
with a concomitant improvement in overall
execution time. We are currently investigating
several ways to further improve the performance
of the Delphi system. First, we plan to make use
of the use of remote DMA operations available
in the VI Architecture for prefetched pages to
reduce the processing overhead associated with
prefetched pages. Second, we are extending the
work presented here to adaptively adjust the
predictor size and prediction window dynami-
cally during runtime to better adjust to a range
of applications. Finally, we are working on ag-
gregating predicted requests from multiple home
processes to address problems such as those
shown in Gauss, in which pages referenced in
the near-future either do not reside on the same
home node as the page currently needed, or are
invalidated before being used by the computa-
tion threads.

References
[1] Virtual Interface Architecture Specification

1.0. 1997.
[2] A. Agarwal, R. Bianchini, D. Chaiken, and

K. L. Johnson. The MIT Alewife Machine:
Architecture and Performance. In Proceed-
ings of the International Symposium on
Computer Architecture, pp. 2-13, May
1995.

[3] C. Amza, A. Cox, K. Rajamany, and W.
Zwaenepoel. Tradeoffs Between False
Sharing and Aggregation in Software Dis-
tributed Shared Memory. In Proceedings of
the Proceedings of the 6th ACM SIGPLAN
Symposium on Principles and Practices of
Parallel Programming, June 1997.

[4] D. Bailey, J. Barton, T. Lasinski, and H.
Simon. The NAS Parallel Benchmarks.
NASA Ames RNR-91-002, August 1991.

[5] J. K. Bennett, J. B. Carter, and W. Zwae-
nepoel. Munin: Distributed Shared Mem-
ory Based on Type-Specific Memory Co-
herence. In Proceedings of the 1990 Con-
ference on the Principles and Practice of
Parallel Programming, pp. pages 168-176,
March 1990.

[6] R. Bianchini, R. Pinto, and C. L. Amorim.
Data Prefetching for Software DSMs. In
Proceedings of the International Confer-
ence on Supercomputing, pp. 385-392, July
1998.

[7] J. B. Carter, J. K. Bennett, and W. Zwae-
nepoel. Techniques for Reducing Consis-
tency-Related Communication in Distrib-
uted Shared Memory Systems. Transac-
tions on Computer Systems, vol. 13, pp.
205-243, 1995.

[8] S. Dwarkadas, R. W. C. Jr., P. Keleher, A.
A. Schaffer, A. L. Cox, and W. Zwaene-
poel. Parallelization of General Linkage
Analysis Problems. Human Heridity, vol.
44, pp. 127-141, 1994.

[9] B. Goeman, H. Vandierendonck, and K.
Bosschere. Differential FCM: Increasing
Value Prediction Accuracy by Improving
Table Usage Efficiency. In Proceedings of
the 7th International Symposium on High
Performance Computer Architecture, Janu-
ary 2001.

[10] L. Iftode, C. Dubnicki, E. W. Felton, and
K. Li. Improving Release-Consistent
Shared Virtual Memory using Automatic
Update. In Proceedings of the 2nd IEEE
Symposium on High-Performance Com-
puter Architecture, pp. 14-25, February
1996.

[11] P. Keleher, S. Dwarkadas, A. Cox, and W.
Zwaenepoel. TreadMarks: Distributed
Shared Memory on Standard Workstations
and Operating Systems. In Proceedings of
the 1994 Winter Usenix Conference, pp.
pages 115-131, January 1994.

[12] J. Kuskin, D. Ofelt, M. Heinrich, J.
Heinlein, R. Simoni, K. Gharachorloo, J.
Chapin, D. Nakahira, J. Baxter, M.
Horowitz, A. Gupta, M. Rosenblum, and J.
Hennessy. The Stanford FLASH Mult i-
processor. In Proceedings of the 21st An-
nual International Symposium on Com-
puter Architecture, pp. 302-313, April
1994.

[13] D. Lenoski, J. Laudon, K. Gharachorloo,
W. Weber, A. Gupta, J. Hennessy, M.
Horowitz, and M. S. Lam. The Stanford
DASH Multiprocessor. IEEE Computer,
vol. 25, pp. 63-79, 1992.

[14] K. Li. Shared Virtual Memory on Loosely
Coupled Multiprocessors. Ph.D. Thesis,
Yale University, 1986.

[15] M. H. Lipasti, C. B. Wilkerson, and J. P.
Shen. Value Locality and Load Value Pre-
diction. In Proceedings of the 7th Interna-
tional Conference on Architectural Support
for Programming Languages and Operat-
ing Systems, pp. 138-147, October 1996.

[16] E. Speight and J. K. Bennett. Brazos: A
Third Generation DSM System. In Pro-
ceedings of the First USENIX Windows NT
Workshop, pp. pages 95-106, August 1997.

