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Abstract 
Software distributed shared memory (SDSM) 

systems traditionally exhibit poor performance 
on applications with significant fine-grain or 
false sharing.  Techniques such as relaxed-
consistency models and multiple -writers proto-
cols improve the performance of SDSM systems 
significantly, but their performance still lags 
that of hardware shared memory implementa-
tions.  This paper describes Delphi, a system 
that borrows techniques from microarchitectural 
research on value prediction and applies them 
to software distributed shared memory.  We run 
a small software predictor on each node in the 
Delphi system to predict which virtual pages 
will be needed in the future.  We use the predic-
tions to prefetch pages in order to reduce the 
number of accesses to invalid data and thereby 
reduce expensive network accesses.  Experimen-
tal results show that Delphi is able to reduce the 
number of read misses to virtual pages by up to 
62% on a set of well-known scientific bench-
marks with minimal runtime overhead in extra 
processing and memory requirements.  This 
translates into a 14% reduction in execution 
time over a comparable base system that does 
not employ prediction techniques. 
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1. Introduction 
Recent improvements in commodity general-
purpose networks and processors have made 
networks of multiprocessor PC workstations an 
inexpensive alternative to large monolithic mul-
tiprocessor systems.  However, applications for 
such distributed systems are difficult to develop  

 
due to the need to explicitly send and receive 
data between machines.  By providing an ab-
straction of globally shared memory on top of 
the physically distributed memories present on 
networked workstations, it is possible to com-
bine the programming advantages of shared 
memory and the cost advantages of distributed 
memory.  These distributed shared memory 
(DSM), or shared virtual memory, runtime sys-
tems transparently intercept user accesses to re-
mote memory and translate them into messages 
appropriate to the underlying communication 
media.  The programmer is thus given the illu-
sion of a large global address space encompass-
ing all available memory, which eliminates the 
task of explicitly moving data between processes 
located on separate machines.  

Both hardware DSM systems (e.g., Alewife 
[2], DASH [13], FLASH [12]) and software 
DSM systems (e.g., Ivy [14] , Munin [5], and 
Brazos [16]) have been implemented.  Recent 
increases in PC performance, the exceptionally 
low cost of PCs relative to that of workstations, 
and the introduction of advanced PC operating 
systems combine to make networks of PCs an 
attractive alternative for large scientific  compu-
tations.   

Software DSM systems use the page-based 
memory protection hardware and the low-level 
message passing facilities of the host operating 
system to implement the necessary shared mem-
ory abstractions.  The large size of the unit of 
sharing (a virtual page) and the high latency as-
sociated with accessing remote memory chal-
lenge the performance potential of software 
DSM systems.  A variety of techniques have 
been developed over the last decade to address 
these issues [7, 10, 11].   This paper examines 
the use of prediction techniques borrowed from 



  
 

the value-prediction domain, a promising new 
research area in computer architecture.  Value 
predictors predict the result of instructions be-
fore the CPU can compute them, which speeds 
up program execution [15].  We have imple-
mented one of these predictors in software and 
adapted it to predict page faults to increase the 
accuracy of prefetching multiple shared pages 
together.  We show that a predictor requiring a 
minimal amount of runtime overhead, both in 
terms of memory usage and execution time, can 
reduce the number of network accesses by up to 
56%, and the overall runtime by 14% on a set of 
well-known, shared memory parallel bench-
marks. 

The rest of this paper is organized as follows.  
Section 2 discusses the prediction scheme we 
have implemented in the Delphi system to pre-
fetch virtual pages.  Section 3 describes our ex-
perimental setup and the applications used in our 
evaluations.  Section 4 presents performance 
results for several scientific applications.  We 
conclude and discuss future work in Section 5. 

2. Delphi Implementation 
This section provides a brief overview of the 

baseline coherence protocol used in the Delphi 
system, as well as the prediction techniques em-
ployed to reduce the number of page faults and 
network operations.  

2.1. Overview 
Delphi uses a home-based protocol for main-

taining consistency between shared memory 
processes in the cluster.  Initially, groups of ten 
virtual pages are assigned the same home node 
in a round-robin fashion.  During the execution 
of an application, if a single process is the only 
writer for a given page, the home designation is 
migrated to that writing process in order to re-
duce the number of network updates that must 
be propagated to the home node. Similar to other 
software DSM systems, modifications to virtual 
pages are tracked through the process of twin-
ning and diffing [5].  When a page is first modi-
fied by a process, a copy of the page (known as 
a twin) is created.  When changes to the page 
must be propagated to other nodes in the system 
in order to maintain coherence, a runlength en-
coding of the changes is created by conducting a 

word-by-word comparison of the twin with the 
current page.  This encoding is referred to as a 
diff, and is simply a compact representation of 
the changes to shared data.   

In home-based systems such as Delphi, a 
global synchronization event such as a barrier 
causes all modified pages to be invalidated and 
diffs to be made to track the page changes prior 
to the invalidation.  In Delphi, each page’s diff 
is eagerly flushed to the correct home node at a 
synchronization point.  Subsequently, when a 
process faults on an invalid page, the home node 
is contacted by the faulting process, and the re-
quest is satisfied with a single response consist-
ing of the entire page from the home node. In 
the current Delphi system, the page will always 
be up-to-date at the home node, resulting in a 
tradeoff of longer synchronization times for 
faster individual page-fault response time.  

2.2. Prediction in Delphi 

Several studies have examined the perform-
ance impact on software DSM systems of dy-
namically altering the virtual page size in order 
to improve performance.  By aggregating pages 
that are sequential in virtual memory into page 
groups [3], data is implicitly prefetched, which 
may result in fewer page faults and less network 
overhead.  The downside of this approach is that 
it may lead to an increase in false sharing, as a 
larger unit of coherence increases the chance 
that multiple writers will attempt to modify dif-
ferent portions of the same, larger page.  The 
adaptive protocol presented in [3]  attempts to 
reduce this effect by dynamically changing the 
page size to compensate for the prefetching vs. 
false-sharing contention. 

The Adaptive++ system [6] relies on two 
modes of operating to predict which pages to 
prefetch, referred to as repeated-page mode and 
repeated-stride mode.  Separate lists are main-
tained of pages likely to be referenced in the 
future based on observed access patterns.  In 
addition to using a less-general prediction algo-
rithm than that used in Delphi, the Adaptive++ 
system does not update pages with prefetched 
data until a process faults on the page.  Finally, 
the Adaptive++ system has been integrated into 
the TreadMarks software DSM system [11], a 
distributed-page based system, while Delphi has 



  
 

been added to a home-based software DSM sys-
tem. This makes direct comparisons between the 
performance of the two approaches difficult.  

The approach taken in Delphi differs in sev-
eral aspects from previous efforts.  First, stan-
dard, validated prediction techniques are used to 
predict which pages will likely be accessed next 
based on the history of previous accesses.  Sec-
ond, due to the extremely low runtime overhead 
associated with our prediction technique, Delphi 
can predict and aggregate pages based on sev-
eral independent streams of references, improv-
ing prediction accuracy.  Finally, Delphi’s 
home-based protocol allows prefetched updates 
to be applied at requesting nodes in an over-
lapped manner while application computation 
continues. 

We investigated several different value pre-
dictors and configurations and found the third-
order differential finite context method predictor 
[9] to yield the highest accuracy over a large 
range of predictor sizes.  This predictor continu-
ously monitors all misses to virtual, shared 
pages.  For any three consecutive page misses, it 
records the page number of the next miss in a 
hash table.  During a prediction, a table lookup 
determines which page miss followed the last 
time the predictor encountered the same three 
most recent misses. 

When a process faults on a virtual page, the 
predictor responsible for predicting the next 
page access will return the values of the next N 
predicted pages the process will access that 
share the same home node as the page incurring 
the fault.  We maintain a separate predictor for 
each home node to improve the prediction accu-
racy.  The faulting node requests these (up-to) N 
pages from the home node, which responds with 
not only the necessary page, but also all other 
predicted pages.  In this way, Delphi seeks to 
avoid faulting and the resulting network ac-
cesses for the pages that will likely be accessed 
in the near future.  Additionally, computation is 
allowed to proceed as soon as the request page 
has been delivered, overlapping computation 
with the processing of the prefetched pages. 

2.3. Predictor Operation 
The third-order differential finite context 

method (DFCM) predictor consists of two lev-

els.  The first level retains the page numbers of 
the three most recent misses.  However, only the 
most recent page number is stored as an absolute 
value.  The remaining values are the differences 
(strides) between consecutive page numbers.  
The number of strides determines the order of 
the predictor.  We use a third-order DFCM since 
it yields good results.  However, other orders 
work equally well. 

The strides stored in the first level are com-
bined to form an index into the second level, 
which is essentially a hash table.  Whenever a 
page miss occurs, the difference (stride) between 
the previous and the current miss is stored in this 
table so it can later be retrieved when the same 
sequence of three preceding misses is encoun-
tered.  Since the retrieved value is a stride, it 
needs to be added to the stored most recent page 
miss number to yield the actual prediction. 

Our DFCM predictor uses the select-fold-
shift-xor function [9] to compute the index into 
the hash table.  The following example shows 
how to compute this function for the three stride 
values st1, st2, and st3 for a 4096-entry hash 
table.  The symbol “⊕” represents XOR and the 
subscripts refer to bit positions. 

 
hash(st) = st63..60 ⊕ st59..50 ⊕ st49..40 ⊕ st39..30 ⊕ 

st29..20 ⊕ st19..10 ⊕ st9..0 
 

index(st1, st2, st3) = hash(st1) ⊕ hash(st2)<<1 
⊕ hash(st3)<<2 

 
Each of the three values is broken down into 

n-bit chunks.  If the last chunk is shorter than n 
bits, it is zero padded to n bits.  The chunks are 
then XORed to yield an n-bit hash value.  The 
hashes of the three values are shifted by zero, 
one, or two bits, respectively, and then XORed 
again to form an (n+2)-bit index.  Hence, for a 
hash table with size entries, n = 1+log2(size)–
order.  In the above example, n = 10. 

During a prediction, an index is computed us-
ing the three strides from the DFCM’s first level 
to access the hash table, which provides the pre-
dicted stride.  During updates, the same index 
calculation is performed, the corresponding 
hash-table entry is overwritten with the new 
stride, and the new stride is shifted into the pre-
dictor’s first level. 



  
 

3. Experimental Setup 
The experiments presented in this section 

were carried out on a cluster of 8 Dell Power-
Edge 1500 rack-mounted servers running Win-
dows 2000, Advanced Server Edition.  Each 
machine contains dual 866 MHz Pentium III 
processors, 1 GByte of RAM, and is intercon-
nected with the cLAN system area network.  
The cLAN GNN1000 NIC provides a user-level 
network that complies with the Virtual Interface 
Architecture specification [1] for system area 
networks.  The applications used for the initial 
prediction results include four shared memory 
parallel benchmarks chosen to represent the ob-
served behavior of our prediction scheme across 
applications with different access patterns.  Two 
applications are taken from the NAS parallel 
benchmark suite [4] :  3DFFT, a 3-D fast-Fourier 
transform partial differential equation bench-
mark; and MG, a 3-D mult igrid solver.  We also 
examine results for Ilink [8], a genetic -linkage 
package used to trace genes through family his-
tories; and Gaussian Elimination with back-
substitution.  
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Figure 1. Reduction in Miss Rate for Varying Predictor  

Window Sizes. Predictor Size = 16 Kbytes. 

4. Results 
We first present results comparing the 

performance of Delphi with a fixed-size 
predictor to the baseline SDSM system.  For the 
following results, we use a predictor with 212 
entries and vary the number of pages that we 
prefetch from the home node (referred to as the 
prediction window) on a faulting page access.  
For these experiments, we use prediction win-
dows of 1, 2, 4, and 8 pages. 

4.1. Results with a Fixed Predictor Size  
Figures 1 through 5 show the results for dif-

ferent performance parameters for the four ap-
plications studied.  Figure 1 depicts the percent-
age reduction in the number of misses experi-
enced by each application for the 4 prediction 
window sizes listed above.  3DFFT, Ilink, and 
MG all experience a large reduction in the num-
ber of misses when the Delphi predictor is used.  
When only 1 page is predicted, the percentage of 
reduction in these applications is 36%, 34%, and 
35%, respectively.  As we increase the predic-
tion window, the number of read misses is fur-
ther reduced as more and more shared pages are 
prefetched and used before being invalidated.  
Figure 2 shows the percentage of these predicted 
pages that are actually used by the application 
before they are next invalidated, indicating the 
effectiveness of our prediction scheme.  3DFFT, 
Ilink, and MG all use a very high percentage of 
the predicted pages.  Rates for a single -page 
prediction window are near or above 80% for 
these three applications.  As the predictor is 
asked to “look further into the future” and more 
pages are predicted on each fault, the percentage 
of useful prefetched pages goes down for several 
reasons.  First, the predictor’s accuracy goes 
down with each additional page predicted.  Sec-
ond, no information regarding page invalidations 
that may occur between the time a page is pre-
fetched and when that page is invalidated is 
taken into account, meaning that many pages are 
prefetched but not used until after a global syn-
chronization event that invalidates the page, re-
sulting in a wasted prefetch.  
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Figure 2. Percentage of Prefetched Pages Used.   

Predictor Size = 16 Kbytes. 
 



  
 

Gauss is an example of an application for 
which the prediction scheme employed in Del-
phi basically does not reduce the number of  
misses, as shown in Figure 1.  Regardless of the 
prediction window size used, the number of 
misses experienced by Gauss remains relatively 
constant.  Figure 2 shows that le ss than 10% of 
the pages predicted and prefetched are used by 
Gauss.   

Figure 3 shows the reduction in the number 
of network send operations for each application 
for the four prediction window sizes examined.  
Again, 3DFFT, Ilink, and MG show a large re-
duction in the number of network accesses re-
quired for program completion, as piggybacking 
predicted pages on “normal” page fault mes-
sages eliminates subsequent network requests 
that would have occurred for the prefetched 
pages.  The network access count goes down 
with an increasing prediction window size, 
showing that even though Figure 2 indicates that 
the percentage of predicted pages goes down 
with an increased window size, enough of the 
predicted pages are being used to reduce the 
overall number of network send operations. 

0

10

20

30

40

50

60

3DFFT Gauss Ilink MG

%
 R

ed
u

ct
io

n

1 Page
2 Pages
4 Pages
8 Pages

 
Figure 3. Reduction in the Number of Network  
Send Operations.  Predictor Size = 16 Kbytes. 

 
Figure 4 shows the total number of bytes sent 

across the network.  Unsurprisingly, when the 
prediction window grows, the number of bytes 
sent also increases as more and more pages are 
prefetched on each program page fault.  Figures 
3 and 4, when taken together, show that if ac-
cessing the network (e.g., the fixed costs such as 
protocol overhead) is dominant over the variable 
costs (e.g., the wire time of a network send op-
eration), the prediction scheme in Delphi should 

benefit performance substantially.  Again, due to 
the ineffectiveness of the Delphi predictor on 
Gauss, Figure 3 shows almost no reduction in 
the number of network accesses over the base-
line case for this application, and Figure 4 shows 
a modest increase in network traffic.  

Finally, Figure 5 shows the percentage reduc-
tion in execution time for the four applications 
studied. 3DFFT, Ilink, and MG show reductions 
in execution time for 1, 2, and 4 page prediction 
window sizes, with 3DFFT showing the largest 
performance improvement of 13.5% when a 1-
page prediction window is used.   
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Figure 4. Increase in Bytes Sent Across  

the Network.  Predictor Size = 16 Kbytes. 
 
As the prediction window increases, the per-

formance is determined by two competing fac-
tors: the increase in network utilization as shown 
in Figure 4, and the reduction in the number of 
misses as shown in Figure 1.  In the case of MG, 
a prediction windows size of 8 pages causes the 
increase in network bytes sent to overcome the 
gains achieved by prefetching 8 pages on each 
page fault.  3DFFT and Ilink show similar trends 
with increasing prediction window sizes, but to 
lesser degrees. Gauss, as expected from the data 
presented in Figures 1 through 4, shows only a 
small performance change between the predicted 
and the baseline case.  

The performance of Gauss is poor because 
the predictor often cannot find pages that are 
likely to miss in the near future and that have the 
same home node as the currently missing page.  
Moreover, the majority of the pages the predic-
tor manages to prefetch end up being invalidated 
before they are used. 
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Figure 5. Re duction in Execution Time.  

Predictor Size = 16 Kbytes. 

4.2. Results with Varying Predictor Size  
The results in the preceding section main-

tained a constant predictor size of 212 entries, 
where each entry is 4 bytes in size.  We have 1 
predictor per remote node running in each in-
stance of the SDSM system, bringing the total 
predictor size to 212*4*(num_nodes-1) = 112 
Kbytes for 8 nodes.  Each baseline SDSM run-
time system consumes on the order of 88 
Mbytes, meaning that the predictor structure 
overhead is a negligible 0.1% overhead with the 
predictor size used in Section 4.1.  In this sec-
tion, we examine the effect of keeping the pre-
diction window constant at a value of 2, and 
varying the predictor size from 256 bytes up to 
64 Mbytes.  Figure 6 shows that for 3DFFT, Il-
ink, and MG, the reduction in the miss rate for 
these applications is mostly insensitive to the 
size of the predictor.  Gauss, on the other hand, 
shows a marked reduction in the effectiveness of 
the predictor as the size grows.  This counterin-
tuitive result is due to constructive aliasing in 
the small predictor tables that is eliminated as 
the table size increases.  As a result, fewer use-
ful pages are prefetched with the larger predic-
tors, explaining Gauss’ lower performance. 

5. Conclusions 
We have presented the Delphi software DSM 

system that incorporates prediction techniques 
borrowed from microarchitecture research in 
value prediction to intelligently guide prefetch-
ing decisions.   
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Figure 6. Reduction in Misses with Varying  

Predictor Sizes.  Prediction Window = 2 pages. 
 

By incorporating into Delphi a group of 
predictors that consume negligible processing 
and memory resources relative to the overall 
DSM runtime system, we have shown that miss 
rate reductions of up to 62% can be achieved 
with a concomitant improvement in overall 
execution time.  We are currently investigating 
several ways to further improve the performance 
of the Delphi system.  First, we plan to make use 
of the use of remote DMA operations available 
in the VI Architecture for prefetched pages to 
reduce the processing overhead associated with 
prefetched pages.  Second, we are extending the 
work presented here to adaptively adjust the 
predictor size and prediction window dynami-
cally during runtime to better adjust to a range 
of applications.  Finally, we are working on ag-
gregating predicted requests from multiple home 
processes to address problems such as those 
shown in Gauss, in which pages referenced in 
the near-future either do not reside on the same 
home node as the page currently needed, or are 
invalidated before being used by the computa-
tion threads.   
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