

Reducing Communication Time through Message
Prefetching

Jian Ke and Martin Burtscher
Computer Systems Laboratory

School of Electrical & Computer Engineering
Cornell University, Ithaca, NY 14853

{ jke, burtscher} @csl.cornell.edu

Evan Speight
Novel System Architectures
IBM Austin Research Lab

Austin, TX 78758
speight@us.ibm.com

Abstract – The latency of large messages often leads
to poor performance of parallel applications. In this
paper, we investigate a novel latency reduction tech-
nique where message receivers prefetch messages
from senders before the matching sends are called.
When the send is finally called, only the parts of the
message that have changed since the prefetch need to
be transmitted, resulting in a smaller message. Our
message prefetching technique initiates communica-
tion while the sender is still in the computation phase
and thus overlaps computation with communication to
hide part of the message latency. We implement and
evaluate our technique in the context of an MPI run-
time library. The results show that the execution speed
of five MPI applications improves by up to 24% when
message prefetching is enabled.

Keywords: MPI, message prefetching, page protec-
tion, page version, latency reduction

1.0 Introduction

Utilizing clusters of workstations with high-
speed interconnection networks for parallel com-
putation can deliver supercomputing performance
on a broad range of applications at a fraction of
the cost of specialized hardware.

To enable portability between the wide variety
of cluster architectures, while at the same time
taking advantage of the specifics of the underly-
ing network protocol and hardware, several mes-
sage-passing libraries have been designed. The
Message Passing Interface (MPI) standard [6] is
one of the most widely used of these libraries.
MPI provides a rich set of operations for point-

to-point communication, collective communica-
tion, and synchronization operations.

The basic MPI receive operation has the fol-
lowing syntax: MPI_Recv (buf, count, dtype,
source, tag, comm, status), where buf specifies
the receive buffer, count is the number of ele-
ments to be received, dtype is the data type,
source specifies the message sender and (tag,
comm) are used to match a send operation with a
corresponding receive operation. The status re-
turns a success or error code as well as the source
and tag of the received message if the receiver
specifies a wildcard source/tag.

The MPI_Recv call blocks until a matching
message has completely arrived. The MPI stan-
dard also includes a non-blocking receive opera-
tion, MPI_Irecv, which returns immediately
whether or not a message has been received. Ap-
plications later call MPI_Wait to wait for mes-
sage completion. This allows useful computation
to be inserted between the MPI_Irecv and
MPI_Wait calls, providing the opportunity to
hide part of the message latency by overlapping
the communication with necessary computation.

We introduce a mechanism that allows mes-
sage contents to be prefetched from sending
processes by receive operations, even before the
send operation has been posted. Figure 1 visually
compares our message prefetching approach with
a conventional receive, where the vertical pattern
represents the computation phase, the horizontal
pattern represents the communication phase and
the grid pattern depicts overlapped communica-
tion and computation phases. When the receiver
blocks either inside MPI_Recv or MPI_Wait, our
message prefetching implementation predicts the

data buffer that will be sent by the next send op-
eration, and prefetches a portion of the data from
the sender even before a matching MPI_Send is
called. When the matching MPI_Send is finally
called, a shorter message can be sent since part of
the message data has already been delivered to
the receiver. Hence, our message prefetching
technique has the potential to hide some of the
message latency and to improve the performance
of communication-intensive parallel applications.

 MPI_Recv/
 MPI_Wait

Receiver

MPI_Send

Sender

 Return

(a) Normal Case

 MPI_Recv/
 MPI_Wait

Receiver

MPI_Send

Sender

 Return

Prefetch

(b) Message Prefetching

Time

Time
Saved

Figure 1. Messaging step comparison

We have implemented this message prefetch-
ing technique in our pfMPI runtime library. Ap-
plications linked with this library may see per-
formance benefits without recompilation. pfMPI
currently supports forty commonly-used MPI
functions, enough to cover the vast majority of
MPI applications.

Previous work has investigated various tech-
niques to improve the performance of MPI librar-
ies. TMPI [8] and TOMPI [1] deliver fast mes-
saging between processes co-located on the same
node via shared memory semantics that are hid-
den from the application programmer. Other MPI
implementations [5, 7] exploit user-level net-
works such as VIA [2] or InfiniBand [4] to dras-
tically decrease the overhead of sending mes-
sages, thus reducing small-message latency.
There has also been research on improving the
efficiency of collective communication opera-
tions [9, 10]. Prior work by the authors employs
message compression to increase the effective
network bandwidth and thus improve the overall
application performance and scalability [11].

Prefetching has previously been studied for re-
ducing data access latency in memory hierarchies
[14, 16], web pages [15], and distributed shared
memory systems [17, 18]. To our knowledge, this
paper is the first to present a viable runtime pre-

fetching technique for message-passing environ-
ments.

The rest of this paper is organized as follows.
Section 2 introduces our pfMPI library and de-
scribes the implementation of message prefetch-
ing. Section 3 presents the experimental evalua-
tion methodology. Section 4 discusses results
obtained with our library on a supercomputer
cluster at the Cornell Theory Center. Section 5
presents conclusions and avenues for future
work.

2.0 Implementation

2.1 The pfMPI Library

We have implemented a commonly used subset
of forty MPI functions in our pfMPI library, cov-
ering most point-to-point communications, col-
lective communications, and communicator crea-
tion APIs in the MPI specification [6]. The
library is written in C and provides an interface
for linking with FORTRAN applications. pfMPI
utilizes TCP as the underlying network protocol
and creates one TCP connection between every
two communicating MPI processes. Each process
creates a message thread to handle sending to and
receiving from all communication channels, as
well as handling all prefetching requests and re-
plies.

2.2 Message Prefetching Implementation

When a receiver blocks on an MPI_Recv call, our
library attempts to prefetch some message data
before the matching send is called so that less
data needs to be transferred once the matching
MPI_Send is finally executed. If partial message
data has already started to arrive, no prefetch is
requested.

The message communication time can be mod-
eled as l0 + l1*n, where l0 is the message startup
time, l1 is the per byte transfer time and n is the
message length. Prefetching reduces the l1*n
term. For small messages, l0 dominates and
prefetching does not help much. Therefore, a pre-
fetch is requested only if the message size is lar-

ger than a predefined threshold (4 kB in our im-
plementation).

A prefetch request consists of a virtual address
and size record that predicts the matching send
buffer in the sender process. The prediction is
learned from previous sends for each receive. To
facilitate the prediction, the send buffer’s virtual
address is included in every normal MPI mes-
sage. When a receive completes, the information
of the receive and the matching send is logged in
a hash table (the prefetch prediction table) so that
a send buffer prediction can be made later for
prefetch requests. The hash table key entry is
<receiveBufferAddress, receiveTag, receive-
Source> and the value entry is <sendBufferAd-
dress, sendSize, count>, where ‘count’ is the
number of times the same sendBufferAddress and
sendSize have been observed. We make a send
buffer prediction only when the count is larger
than two to suppress unreliable predictions.

When a message thread receives a prefetch re-
quest, it does not simply return the specified
buffer data in full. Rather, it first tries to guess
how much data is already complete and sends
only the completed portion. The current imple-
mentation utilizes virtual page protection to esti-
mate the amount of completed data. We use a
hash table to maintain a page version number for
every page whose protection was ever changed.

When a page’s protection is changed to Re-
adOnly, a subsequent write to that page triggers a
page access exception and the exception handler
increases the page version number and changes
the page protection back to ReadWrite. At the
end of each normal MPI_Send, the middle and
the last page of the send buffer are set to Re-
adOnly and both pages’ versions are recorded in
the lastSendVersion hash table. If the current
page version of both the middle and the last page
of the send buffer are different from the versions
at the last send (as is determined by looking up
the lastSendVersion hash table), the entire send
buffer is pre-sent. If only the middle page version
has changed, only data up to that page is pre-sent.
Otherwise, nothing is pre-sent. The lastSendVer-
sion hash table key is <sendBufferAddress, send-
BufferSize, sendDestination>, and the value entry
is <middlePageVersion, lastPageVersion>.

For MPI_Send to work correctly without hav-
ing to resend all of the pre-sent data, we need to
know which, if any, of the pre-sent pages have

been modified by the application since the time
of the pre-send. We do this by keeping an array
of version numbers of the pre-sent pages. Pages
that have not been modified since the pre-send
are left out of the “normal” MPI_Send message,
thus making it shorter and reducing the transfer
time.

The prefetched data is directly written into the
receive buffer that originated the prefetch unless
some of the requested message has already ar-
rived (late prefetch). When a prefetch is late, the
sender will usually notice this event (the current
page version is equal to the lastSendVersion) and
drop the prefetch request unless the sender fills
the send buffer again (e.g., in the next iteration).
In this scenario, the next MPI_Send could use the
pre-sent data requested for a previous send.
Therefore, the prefetched data is buffered at the
receiver if the prefetch is late. In all cases, the
prefetched data is kept at the receiver until an
MPI_Send message that exploits the pre-sent data
arrives or a new prefetch request reaches the
sender, guaranteeing that no further MPI_Send
will use the buffered prefetch data. The pre-sent
data is used by only one MPI_Send to match the
one-time use guarantee from the receiver.

In our sample applications, messages are sent
from the source buffers directly to facilitate mes-
sage prefetching. For applications that first pack
the message data into an intermediate buffer be-
fore sending, the prefetch requests will most
likely find the buffer is not filled with new data
and hence the prefetch request will be dropped,
limiting the potential of starting sends early. A
possible solution is to pack the message as it is
generated in the computation phase instead of
packing the entire message right before the mes-
sage send.

3.0 Evaluation Methods

3.1 System

We performed all measurements on the Velocity+
cluster at the Cornell Theory Center [3]. This
cluster consists of 64 dual-processor nodes with
733 MHz Intel Pentium III processors, 256 kB
L2 cache per processor and 2 GB RAM per node.
The operating system is Microsoft Windows

2000 Advanced Server. The network is 100Mbps
Ethernet, interconnected by 3Com 3300 24-port
switches.

3.2 Applications

We evaluate the performance of message pre-
fetching on five representative scientific applica-
tions: PES, M3, N-body, FT, and IS.

PES is an iterative 2-D Poisson solver. Each
process is assigned an equal number of contigu-
ous rows. In each iteration, every process updates
its assigned rows, sends the first and last row to
its top and bottom neighbors, respectively, and
receives from them two ghost rows that are
needed for updating the first and last row in the
next iteration. We fix the two corner elements
(0,0), (N-1, N-1) to 1.0 and the other two corner
elements (0, N-1), (N-1, 0) to 0.0 as boundary
conditions.

M3 is a matrix-matrix-multiplication applica-
tion. In each iteration, a master process generates
a random matrix A i (emulating a data collection
process), distributes slices of the matrix to slave
processes for computation, and then gathers the
results from all slave processes. The slave proc-
esses store a transposed transform matrix B,
which is broadcast once from the master process
to all slaves when the computation starts. Each
slave process first receives matrix A ip, which is
part of matrix A i, then computes matrix Cip =
A ip*B and sends Cip to the master. Note that this
parallelization scheme is by no means the most
efficient algorithm for multiplying matrices.

N-Body simulates the movement of particles
under pair-wise forces between them. All parti-
cles are evenly distributed among the available
processes for the force computations and the po-
sition updates. After updating the states of all as-
signed particles, each process sends its updated
particle information to all other processes for the
force computation in next time step.

FT and IS are the Fourier Transform and Inte-
ger Sort programs from the NAS NPB bench-
mark [12, 13]. The remaining NAS NPB bench-
marks are left out due to the message packing
effect discussed at the end of Section 2.2.

The communication patterns of the five appli-
cations for four-process runs are shown in Figure
2. The circles represent processes and the lines

represent the communication between processes;
each PES process only communicates with at
most two neighboring processes; each M3 slave
process communicates with the master process;
and each N-Body, FT and IS process communi-
cates with every other process. The pseudo code
for PES, M3 and N-Body is given in Appendix I.

(a) PES (c) N-Body, FT, IS (b) M3

Figure 2. Communication patterns

Table 1 lists the problem size for each applica-
tion. The number before the comma is the matrix
size for PES, M3 and FT and the number of par-
ticles or integers for N-Body and IS; the number
after the comma is the number of iterations or
simulation time steps.

Table 1. Problem sizes

Program Problem Size
PES 5120 X 5120, 2000
M3 1024 X 1024, 400

N-Body 10240, 200
FT 512 X 512 X 512, 20
IS 134217728, 10

4.0 Results

We run the five applications with 8, 16, 32, and
64 processes and one process per node. The run-
times are obtained with two MPI libraries, the
baseline version of our pfMPI library in which
message prefetching is disabled and the same li-
brary but with message prefetching turned on.
The average runtimes are listed in Table 2. FT
and IS scale only to 16 processes, so the runtimes
for 64 processes were not collected.

The speedups over the baseline library are
plotted in Figure 3 for the five applications. Each
group of bars shows results for runs with 8, 16,
32, and 64 processes. We see that the speedups
usually increase as the number of processes in-
creases. This is due to the increasing communica-

tion-to-computation ratio as the number of proc-
esses increases, i.e., the same percentage of
communication time reduction corresponds to a
larger percentage of the runtime reduction.

Table 2. Runtime in seconds

Appl. MPI Lib. 8 16 32 64
Baseline 737 387 207.5 117.0
Prefetch 735 385 204.1 114.0
Baseline 1491 1142 793 738
Prefetch 1339 939 675 593
Baseline 944 551 483 336
Prefetch 950 554 447 312
Baseline 2451 1378 1475 --
Prefetch 2382 1296 1305 --
Baseline 130.7 91.0 143.9 --
Prefetch 133.0 81.2 127.0 --

IS

PES

M3

N-Body

FT

The PES process communicates with only two
neighbors and its communication-to-computation
ratio is the lowest of all applications. This ex-
plains why its speedup is relatively small.

-5%

0%

5%

10%

15%

20%

25%

PES M3 N-Body FT IS

sp
ee

du
p

ov
er

 b
as

el
in

e

8
16
32
64

Figure 3. Speedups due to message prefetching

M3 has a communication-to-computation ratio
that is larger than PES’ but smaller than that of
the other three applications. When the first slave
process finishes the current iteration, it sends the
result to the master process (the MPI_Gather call
in the pseudo code), and then proceeds to wait for
the next iteration (the MPI_Scatter call in the
pseudo code). This wait triggers a message-
prefetching request to the master process whose
prefetch request handler pre-sends the data while
the application thread waits to gather the results
from all the slave processes.

N-Body, FT and IS have a message count per
communication phase that is proportional to the
square of the number of total processes, i.e., eve-
ryone sends and receives from every other proc-
ess. Thus, the message prefetching interactions
are much more complex. Overall, message pre-
fetching delivers a runtime improvement of 6%
to 12% in most cases. The slowdowns due to
message prefetching in smaller runs are 0.5% for
N-Body’s 8- and 16-process runs and 1.7% for
IS’ 8-process run, which is much smaller than the
performance improvement of 8.1% for N-Body’s
32-process run and 12.1% for IS’ 16-process run.

5.0 Conclusions and Future Work

In this paper, we present and evaluate a message
prefetching technique for message-passing sys-
tems. Our MPI library starts the communication
early, i.e., before MPI_Send is called, thus over-
lapping the computation with useful communica-
tion to hide some of the message latency. The
performance improvement depends on the com-
munication-to-computation ratio, the load balanc-
ing, and the communication pattern of the appli-
cation. Measurements with our library show
speedups between 2.6% and 24% on five applica-
tions running on a cluster with 64 nodes.

In future work, we plan to add heuristics to
stop sending prefetches for receives that tend to
prefetch late or where the pre-sent send buffer is
written by the sender again before the MPI_Send.

6.0 Acknowledgements

This work was supported in part by the National
Science Foundation under Grant No. 0125987.
This research was conducted using the resources
of the Cornell Theory Center, which receives
funding from Cornell University, New York
State, federal agencies, foundations, and corpo-
rate partners.

7.0 References

[1] E. D. Demaine, “A Threads-Only MPI Im-
plementation for the Development of Paral-
lel Programs,” International Symposium on
High Performance Computing Systems, July
1997, pp. 153-163.

[2] D. Dunning, G. Regnier, G. McApline, D.
Cameron, B. Shubert, F. Berry, A. Merritt,
E. Gronke, and C. Dodd, “The Virtual Inter-
face Architecture,” IEEE Micro,
March/April 1998, pp. 66-76.

[3] http://www.tc.cornell.edu/
[4] Infiniband Trade Association, Infiniband

Architecture Specification, Release 1.0, Oc-
tober 2000.

[5] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D.
K. Panda, “High Performance RDMA-
Based MPI Implementation over Infini-
Band,” International Conference on Super-
computing, June 2003, pp. 295-304.

[6] MPI Forum, “MPI: A Message-Passing In-
terface Standard,” The International Journal
of Supercomputer Applications and High
Performance Computing, 8(3/4):165-414,
1994.

[7] E. Speight, H. Abdel-Shafi, and J. K. Ben-
nett, “Realizing the Performance Potential
of the Virtual Interface Architecture,” Inter-
national Conference on Supercomputing,
June 1999, pp. 184-192.

[8] H. Tang and T. Yang, “Optimizing
Threaded MPI Execution on SMP Clusters,”
International Conference on Supercomput-
ing, June 2001, pp. 381-392.

[9] R. Thakur and W. Gropp, “ Improving the
Performance of Collective Operations in
MPICH,” European PVM/MPI Users'
Group Conference, September 2003, pp.
257-267.

[10] A. Karwande, X. Yuan and D. K. Lowen-
thal, “CC-MPI: A Compiled Communica-
tion Capable MPI Prototype for Ethernet
Switched Clusters,” ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel
Programming, June 2003, pp. 95-106.

[11] J. Ke, M. Burtscher, and E. Speight, “Run-
time Compression of MPI Messages to Im-
prove the Performance and Scalability of
Parallel Applications,” SC2004 High-
Performance Computing, Networking and
Storage Conference, November 2004.

[12] D. Bailey, T. Harris, W. Saphir, R. v.d.
Wijngaart, A. Woo, and M. Yarrow, “The
NAS Parallel Benchmarks 2.0,” Technical
Report NAS-95-020, NASA Ames Research
Center, 1995.

[13] T. Tabe and Q. F. Stout, “The use of the
MPI communication library in the NAS
Parallel Benchmark,” Technical Report
CSE-TR-386-99, Department of Computer
Science, University of Michigan, 1999.

[14] A. J. Smith, “Sequential Program Prefetch-
ing in Memory Hierarchies” , IEEE Com-
puter, December 1978, pp. 7-21.

[15] V. N. Padmanabhan and J. C. Mogul, “Us-
ing Predictive Prefetching to Improve World
Wide Web Latency” , ACM SIGCOMM
Computer Communication Review, July
1996, pp. 22-36.

[16] T. C. Mowry, “Tolerating Latency in Multi-
processors through Compiler-Inserted Pre-
fetching” , ACM Transactions on Computer
Systems, Vol. 16, No. 1, February 1998, pp.
55-92.

[17] R. Bianchini, R. Pinto, and C. L. Amorim,
“Data Prefetching for Software DSMs” , In-
ternational Conference on Supercomputing,
July 1998, pp. 385-392.

[18] E. Speight and M. Burtscher, “Delphi: Pre-
diction-Based Page Prefetching to Improve
the Performance of Shared Virtual Memory
Systems” , The International Conference on
Parallel and Distributed Processing Tech-
niques and Applications, June 2002, pp. 49-
55.

8.0 Appendix I

PES Pseudo Code:
MPI _Comm_r ank (MPI _COMM_WORLD, & myRank) ;
MPI _Comm_si ze (MPI _COMM_WORLD, & numPr ocesses) ;

f or (i nt i = 0; i < numI t er at i ons; i ++)
{

 / / post nonbl ocki ng r ecei ves
 i f (myRank > 0)
 r equest 1 = MPI _I r ecv (sour ce = myRank - 1) ;
 i f (myRank < numPr ocesses –1)
 r equest 2 = MPI _I r ecv (sour ce = myRank + 1) ;

 / / send t o t wo nei ghbor pr ocesses
 i f (myRank > 0)
 MPI _Send (dest = myRank – 1) ;
 i f (myRank < numPr ocesses – 1)
 MPI _Send (dest = myRank + 1) ;

 / / wai t f or t he r ecei ve compl et i on
 i f (myRank > 0) MPI _Wai t (r equest 1) ;
 i f (myRank < numPr ocesses – 1) MPI _Wai t (r equest 2) ;

 Comput e () ;
}

M3 Pseudo Code:

f or (i nt i = 0; i < numI t er at i ons; i ++)
{
 MPI _Scat t er () ; / / mast er di st r i but es wor k t o s l aves

 i f (myRank == r oot)
 Fi l l Mat r i xAWi t hNewDat a () ; / / mast er
 el se
 Comput e () ; / / s l aves

 / / mast er col l ect s r esul t s f r om sl aves
 MPI _Gat her () ;
 i f (myRank == r oot) Wr i t eResul t s () ;
}

N-Body Pseudo Code:

f or (i nt i = 0; i < numI t er at i ons; i ++)
{
 MPI _Al l gat her () ; / / exchange l ocal par t i c l es
 Updat eLocal Par t i c l es () ;
}

