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Abstract - Future computing systems, from handhelds to su-

percomputers, will undoubtedly be more parallel and heter-

ogeneous than today’s systems to provide more performance 

and energy efficiency. Thus, GPUs are increasingly being 
used to accelerate general-purpose applications, including 

applications with data-dependent, irregular control flow 

and memory access patterns. However, the growing com-

plexity, exposed memory hierarchy, incoherence, heteroge-

neity, and parallelism will make accelerator-based systems 

progressively more difficult to program. In the foreseeable 

future, the vast majority of programmers will no longer be 

able to extract additional performance or energy-savings 

from next-generation systems because the programming will 

be too difficult. Automatic performance analysis and optimi-

zation recommendation tools have the potential to avert this 

situation. They embody expert knowledge and make it avail-
able to software developers when needed. In this paper, we 

describe and evaluate such a tool. It quantifies performance 

characteristics of GPU code through profiling, employs ma-

chine learning models to estimate the suitability and benefit 

of several known source-code optimizations, ranks the opti-

mizations, and suggests the most promising ones to the user 

if the expected speedup is sufficiently high. 

1. Introduction 

There are two primary difficulties with using accelerators 

such as GPUs. First, they can only execute certain types of 

programs efficiently, in particular programs with enough 

parallelism, data reuse, and regularity in their control flow 

and memory access patterns. Second, it is harder to write ef-
fective software for accelerators than for CPUs because of 

architectural disparities such as wide parallelism, exposed 

memory hierarchies, lockstep execution, and memory access 

coalescing. Several new programming languages and exten-

sions have been proposed to hide these aspects to various 

degrees and thus make it easier to program accelerators [1]. 

We study the alternative approach of making the program-

ming and performance optimization easier for software de-

velopers who are not experts in GPU programming, specifi-

cally when it comes to complex irregular codes that are hard 

to parallelize. In particular, we describe a machine-learning-
based recommendation tool for GPU kernels that automati-

cally determines performance bottlenecks and suggests ap-

propriate source-code optimizations, if any. 

Several efficient GPU implementations of irregular algo-

rithms have been published, showing that GPUs are capable 

of accelerating rather complex codes if they are implemented 

in a GPU-friendly fashion [2, 3, 4]. However, most software 
developers have no formal education in parallel program-

ming, much less in accelerator programming, and could 

therefore greatly benefit from access to a performance/par-

allelism expert. Unfortunately, there are only relatively few 

such experts and each expert may only know a certain aspect 

or application domain. That raises the question of how to 

best deliver such expertise to programmers. 

We believe the best solution to be automatic program anal-

ysis and recommendation tools. They embody the know-

how of performance optimization experts and automatically 

determine where the bottlenecks lie and how to improve a 

given piece of code on a given system. Based on its analysis 
results, the tool recommends possible courses of action. Sec-

tion 2 describes our tool in more detail. 

Since the tool’s recommendation accuracy hinges on how 

well it predicts the expected speedup of the optimizations in 

its database if they were applied to user-provided code, we 

evaluate it by comparing its predicted speedups with the ac-

tual speedups obtained when truly incorporating the sug-

gested source-code optimizations. To make these compari-

sons possible, we wrote 64 versions each of two CUDA pro-

grams that include all possible combinations of six source-

code optimizations and use different subset of these imple-
mentations to train and test our tool. 

This paper makes the following contributions. 1) It de-

scribes how to build source-code recommendation tools that 

can automatically adapt to the underlying hardware and to 

changes in their optimization database. 2) We built such a 

tool for GPU programs and show that it delivers good rec-

ommendation accuracies on the platform and optimizations 

we tested, including on complex irregular CUDA code. 3) 

We study different scenarios to determine conditions that af-

fect the tool’s prediction accuracy. 

The rest of this paper is organized as follows. Section 2 

describes the design of our tool. Section 3 provides back-
ground information upon which the later sections are based. 

Section 4 discusses related tools and how they differ from 

our approach. Section 5 explains the experimental method-

ology. Section 6 presents the results and analyzes them. Sec-

tion 7 concludes with a summary and future work. 



2. Tool Design 

Our tool employs a three-tiered design backed by an optimi-
zation database. The first tier performs code evaluation, the 

second tier analyzes the results, and the third tier handles the 

optimization selection. The tiers communicate through a 

simple interface. This makes it possible to design each tier 

independently and to easily replace any tier. 

Tier 1 is concerned with evaluating code behavior and pro-
ducing performance data. We refer to these data as feature 

vectors. They are produced using NVIDIA’s Visual Profiler 

[5]. It can measure a large number of hardware performance 

counter events such as instruction counts, cache hits/misses 

at different levels, etc. We normalize these features by the 

cycle count to make them independent of the runtime. The 

normalized features are then combined into a feature vector. 

It should be noted that our tool does not depend on any 

particular profile information. Rather, the accuracy of the 

recommendations simply improves with better profiling 

data. This makes the tool easy to port to platforms with dif-

ferent profilers or GPUs with other performance counters. 

Before we discuss the second tier, it is important to explain 

the content of the optimization database. The database is an 

unordered set of independent entries, where each entry rep-

resents an optimization, including a description with an ex-

ample that illustrates how to apply it as well as pairs of be-

fore and after code samples that do not and do include the 

optimization, respectively. Each code sample includes one 

or more inputs to run it with. 

A key feature of this database is that each entry is inde-

pendent, making it easy to delete unwanted entries, modify 

existing entries, and add new entries. Thus, anybody can 

contribute optimizations, in particular experts from different 

domains. This makes the database very flexible, simple to 

port, and customizable to include only optimizations for a 

specific domain or hardware component. 

Tier 2 analyzes the feature vector obtained from profiling 

the user’s application to determine the most appropriate op-

timizations. Before it can do so, it must train itself on the 

before and after code samples from the database. It does this 

upon installation or when the database is modified by run-

ning the code samples through Tier 1 to obtain before and 
after feature vectors. From these vectors, it learns to recog-

nize when a given optimization is needed and how much 

benefit it can deliver on the target platform. Tier 2 employs 

the ML algorithms listed in Section 3.4 for this purpose. 

Tier 3 collects the recommendations from the second tier 

and sorts them by expected benefit. It then outputs the top 
choices if their benefit is above a preset threshold. The user 

can select how many recommendations to maximally dis-

play, whether to include the explanations and/or examples in 

the output, etc. These user-interface aspects are relatively 

straightforward and not the focus of this paper. 

3. Background 

3.1 GPU Architecture 

This subsection provides a brief overview of the architec-

tural characteristics of the Kepler-based Tesla K20c com-

pute GPU we use and explains some of the features that 

make GPUs difficult to program. GPU programs require hi-

erarchical parallelization across threads as well as across 

thread blocks of up to 1024 threads. The K20c consists of 13 

streaming multiprocessors (SMs) to which the thread blocks 

are mapped. Each SM contains 192 processing elements 

(PEs) for executing the threads. Whereas each PE can run an 

individual thread of instructions, sets of 32 PEs are tightly 
coupled and must either execute the same instruction (with 

different data) in the same cycle or wait. This is tantamount 

to a SIMD instruction that conditionally operates on 32-ele-

ment vectors. The corresponding sets of 32 coupled threads 

are called warps. Warps in which not all threads can execute 

the same instruction are subdivided by the hardware into sets 

of threads such that all threads in a set execute the same in-

struction. The individual sets are serially executed, which is 

called branch divergence, until they re-converge. To maxim-

ize performance, branch divergence has to be minimized, but 

it is typically difficult to implement programs in a manner 
such that sets of 32 threads follow the same control flow. 

The memory subsystem is also built for warp-based pro-

cessing. If the threads in a warp simultaneously access words 

in main memory that lie in the same aligned 128-byte seg-

ment, the hardware merges the 32 reads or writes into one 

coalesced memory transaction, which is as fast as accessing 
a single word. Warps accessing multiple 128-byte segments 

result in correspondingly many individual memory transac-

tions that are executed serially. Hence, uncoalesced accesses 

are slower, but it is in general hard to write programs in such 

a way that sets of 32 threads access words from the same 

128-byte segment. Part of the main memory, called constant 

memory, can only be written by the CPU. GPU accesses to 

constant memory benefit from a special cache. 

The PEs within an SM share a pool of threads called 

thread block, synchronization hardware, and a software-con-

trolled data cache called shared memory. A warp can simul-

taneously access 32 words in shared memory as long as all 

words reside in different banks or all accesses within a bank 

request the same word. Barrier synchronization between the 

threads in an SM can take as little as a couple of cycles per 

warp. The SMs operate largely independently. They can only 

communicate through global memory (main memory in 

DRAM). The SMs support special instructions such as vot-
ing, where all threads in a warp compute a combined predi-

cate (i.e., a reduction and broadcast operation), and rsqrtf, 

which quickly computes an approximation of one over 

square root. However, programmers may not be aware of 

such features, which can drastically boost the performance. 



3.2 N-body Code and Barnes-Hut Algorithm 

To obtain test cases for evaluating our tool, we created 128 

different versions of two n-body simulation codes (64 each) 

[6]. The first code, called NB, is regular and has O(n2) com-

plexity. The second code, called BH, is irregular and has O(n 
log n) complexity. Both programs simulate the time evolu-

tion of a star cluster under gravitational forces for a given 

number of time steps. However, the underlying algorithm 

(see below) and the code base of the two implementations 

are completely different. n denotes the number of stars (aka 

bodies). Both of these codes have been written in such a way 

as there is essentially no execution taking place on the CPU. 

The direct NB algorithm performs precise force calcula-

tions based on the O(n2) pairs of bodies. Since identical com-

putations have to be performed for all bodies, the implemen-

tation is very regular and maps well to GPUs. The force cal-

culations are independent and can be performed in parallel. 

In each time step, the O(n2) force calculation is followed by 

an O(n) integration where each body’s position and velocity 

are updated based on the computed force. For the values of 

n we consider, the integration represents an insignificant 

fraction of the overall execution time. 

 

 
Figure 1: Pseudo code of Barnes-Hut algorithm 

 

The Barnes-Hut (BH) algorithm approximates the forces 

acting on each body [7]. It recursively partitions the volume 

around the n bodies into successively smaller cells and rec-

ords the resulting spatial hierarchy in an octree (the 3D 

equivalent of a binary tree). Each cell summarizes infor-

mation about the bodies it contains. For cells that are suffi-

ciently far away from a given body, the BH algorithm only 

performs one force calculation with the cell instead of one 

force calculation with each body inside the cell, which low-

ers the time complexity to O(n log n). However, different 
parts of the octree have to be traversed to compute the force 

acting on different bodies, making the control flow and 

memory-access patterns quite irregular. The force calcula-

tion is by far the most time consuming operation in BH, 

which is why we only consider source-code optimizations 

that affect this kernel. We use the BH implementation from 

the LonestarGPU suite [8]. It encompasses the algorithmic 

steps shown in Figure 1, each of which is implemented using 

different CUDA kernels. Since this implementation is irreg-

ular, we believe it is a good candidate for testing our tool. 

In summary, the NB code is relatively straightforward, 

has a high arithmetic intensity, regular control flow, and ac-

cesses memory in a strided fashion. In contrast, the BH code 

is quite complex (it repeatedly builds an unbalanced octree 

and performs various traversals on it), has a low arithmetic 

intensity, performs mostly pointer-chasing memory ac-

cesses, and has data-dependent control flow. Due to its lower 

time complexity, it is faster on a K20c GPU than the NB 

code when simulating more than about 15,000 stars. 

3.3 Source-Code Optimizations 

We modified our two test programs to make it possible to 

individually include or exclude all possible combinations of 

six source-code optimizations through conditional compila-

tion, i.e., to produce 64 different versions of each programs. 

In particular, there are 32 versions of each program that do 

not and 32 that do include a particular source-code optimi-

zation. This enables us to create different subsets of these 

versions for training (providing before and after code sam-
ples), testing, and evaluating our tool. 

For NB, we study the following six optimizations: 

 CONST copies immutable kernel parameters (i.e., 

most of the parameters) into the GPU’s constant 

memory rather than passing them every time a ker-

nel is called, i.e., it lowers the calling overhead. 

 FTZ is a compiler flag that allows the GPU’s float-

ing-point ALUs to flush denormal numbers to zero, 

which results in faster computations. While strictly 

speaking not a code optimization, the same effect 

can be achieved by using appropriate intrinsic func-

tions in the source code. 

 PEEL separates the innermost loop of the force cal-

culation into two consecutive loops, one of which 

has a known iteration count and can therefore pre-

sumably be better optimized by the compiler. The 

second loop performs the remaining iterations. 

 RSQRT calls the CUDA intrinsic “rsqrtf()” to 

quickly compute one over square root instead of us-
ing the slower but slightly more precise “1.0f / 

sqrtf()” expression. 

 SHMEM employs blocking, i.e., it preloads chunks 

of data into the shared memory, operates on this 

data, and then moves on to the next chunk. This re-

duces the number of global memory accesses. 

 UNROLL uses a pragma to request unrolling of the 

innermost loop(s). Unrolling often allows the com-

piler to schedule instructions better and to eliminate 

redundancies, thus improving performance. 

For BH, we study the following six optimizations. 

 FTZ is identical to its NB counterpart. 

 RSQRT is also identical to its NB counterpart. 



 SORT approximately sorts the bodies by spatial 

distance to minimize the tree prefix that needs to be 

traversed during the force calculation. 

 VOLA copies some volatile variables into non-vol-

atile variables and uses those in code regions where 

it is known (due to lockstep execution of threads in 

a warp) that no other thread can have updated the 

value. This optimization reduces memory accesses. 

 VOTE employs thread voting instead of a shared-

memory-based code to perform reductions. 

 WARP switches from a thread- to a warp-based im-

plementation that is more efficient because it does 

not suffer from branch divergence and uses less 

memory as it records certain information per warp 

instead of per thread. 

3.4 Machine Learning Algorithms 

We utilize various subsets of the feature vectors from our 

test programs to train the Machine Learning (ML) methods 

in our tool such that they can learn how much speedup an 

optimization might provide under different conditions. The 

goal is to be able to predict by how much each of the opti-

mizations in the database will improve or hurt the perfor-

mance of a given CUDA kernel. Based on these predictions, 

the tool selects which optimizations to suggest. 

Machine learning approaches generally use data attributes 

as features to perform classification/prediction. Each data 

entry can be viewed as a point in N-dimensional space, 

where N is the number of attributes per data item. This al-

lows, for example, to place each training data point into an 

N-dimensional space so that any test data point can be clas-

sified based on “nearby” training data points. 

We examined three different ML approaches: linear and 

logistic regression, instance-based learners, and decision 

trees. Regression is concerned with modeling the relation-

ship between variables that is iteratively refined using a 

measure of error in the predictions made by the model. Re-

gression methods are important in statistics and have been 

cooped into statistical machine learning. 

The instance-based learning model is a decision problem 

with instances or examples of training data that are deemed 

important to or required by the model. Such methods typi-

cally build a database of examples and compare new data to 

the database using a similarity measure to find the best match 

and make a prediction. The focus is on the representation of 

the stored instances and the similarity measures used be-

tween instances. In our experiments we use IBK, which is an 

instance-based classifier that uses the k-nearest neighbor 

(KNN) method for classification. During training, all la-

belled instances are recorded. When invoked on a new test 
instance, the model attempts to find the k recorded instances 

that are most similar to the given test instance. Similarity is 

measured by the Euclidean distance between the feature vec-

tors of the test and training instances. The mode value of the 

label for the k nearest neighbors is used to predict the out-

come. Although we experimented with several different val-

ues of k, the results presented in this paper all use k = 10, 

which proved to be most effective. 

Decision tree methods construct a model of decisions 

made based on the values of the attributes in the data. Deci-

sions fork at each level in the tree until a leaf node is reached, 

where a prediction decision is made based on the training 
cases that reached the same leaf node. Decision trees are 

trained on data for classification and regression problems 

[9]. We employ M5P, a special type of decision-tree where 

each leaf node is a linear regression model. This model uti-

lizes the M5 technique proposed by Quinlan [10]. First, an 

induction algorithm is used to construct a standard decision 

tree. Then a multivariate regression model is constructed for 

each node in the tree. However, instead of using all features 

in the regression model, only the features that appear in the 

subtree that contains the node are used. Finally, the leaf 

nodes are replaced by the newly constructed regression mod-

els. Once this regression-based decision tree has been built, 
standard pruning and smoothing techniques are applied. 

4. Related Work 

Paradyn [11] is one of the first tools for automatic perfor-

mance analysis. It uses dynamic instrumentation to effi-
ciently obtain performance profiles of unmodified executa-

bles. KOJAK [12], Scalasca [13, 14], Vampir [15] and Vam-

pirTrace [16] are trace-based tools that support MPI, 

OpenMP, and hybrid codes. For instance, the highly scalable 

Scalasca tool employs TAU’s rich instrumentation capabili-

ties [17] and processes the trace data in parallel. It scores and 

summarizes the trace report and shows it on a GUI. 

Periscope [18] evaluates the performance while an appli-

cation is running and searches for previously specified per-

formance problems or properties. It is MPI-based and fo-

cused on efficient communication between cores/processors. 

TAU [17] is a portable tool for performance instrumentation, 
measurement, analysis, and visualization of large-scale par-

allel applications. Using the library wrapping benefit of 

TAU, TAUCuda [19] can measure GPU performance. It re-

quires no modification of the source or binary code. The re-

cently released Score-P tool [20] represents a portable infra-

structure for performance measurement tools. Each of the 

above tools utilizes a different measurement output format. 

For example, the output format Vampir is OTF and the out-

put format of Scalsca is EPILOG/CUBE. Score-P tries to in-

tegrate all of these tools into a unified measurement infra-

structure. HPCToolkit [21, 22] generates statistical profiles 

using interval timers and hardware-counter interrupts and 
evaluates both application binaries and source code. 

NVIDIA created tools such as the CUDA Performance 

Tools Interface (CUPTI) [23], Visual Profiler [24], and 

Nsight [25] that focus on GPU performance bottlenecks. 

Some tools, such as PAPI CUDA [26] and VTune Ampli-

fier XE [27], use hardware counters to measure the perfor-

mance. eeClust [28] determines relationships between the 



behavior of parallel programs and the energy consumption. 

Virtual Institute - High Productivity Supercomputing (VI-

HPS) [29] is a collaboration of several partner institutions 

for improving the quality and accelerating the development 

process of complex simulation codes in science and engi-

neering that are being designed to run on highly-parallel 

computer systems. Many well-known tools for parallel per-

formance and measurement such as TAU, Scalasca and 

Vampir are designed and created by the partners of this big 
project. They also have a couple of ongoing and completed 

projects in the field of productivity and performance to im-

prove their previous products. POINT, Score-P, SILC, 

HOPSA, PRIMA and LMAC are tools for integrating and 

improving the functionality of performance and measure-

ment tools such as TAU and Vampir. For instance, LMAC 

adds the functionality of automatically examining perfor-

mance dynamic for irregular behavior of parallel simulation 

codes to the established performance analysis tools Vampir, 

Scalasca, and Periscope. 

Machine learning methods have also been used in MILE-

POST GCC [30], a self-optimizing compiler that automati-

cally learns the best optimization heuristics based on the be-
havior of the platform. There are also model-driven auto-

tuning tools that are based on regression trees [31]. 

PerfExpert [32] is a tool that combines a simple user in-
terface with an analysis engine to detect probable core-, 

socket-, and node-level performance bottlenecks in each im-

portant procedure and loop of a CPU application. For each 

bottleneck, PerfExpert provides a concise performance as-

sessment. Unlike most of the tools described above, PerfEx-

pert suggests steps that can be taken by the programmer to 

improve performance. In particular, its AutoSCOPE 

backend provides automatic recommendations for perfor-

mance tuning, including compiler switches and optimization 

strategies with source-code examples [33]. It determines 

which suggestions to make by searching a manually anno-
tated database of optimizations for the closest matches to 

PerfExpert’s output metrics, which are derived from perfor-

mance-counter measurements. 

Our tool is most similar to that of PerfExpert/Auto-

SCOPE. We also use profiling based on hardware perfor-

mance counters and compute derived metrics that are then 

used to identify suitable optimizations to recommend. How-

ever, instead of CPU procedures, we target complex GPU 

kernels, which can be challenging to make efficient. More 

importantly, instead of hand-annotating optimizations, 

which is tedious, error prone, and not very portable, our ap-

proach automates this step using ML algorithms that are 

trained using sample codes for each optimization. This not 

only makes it easy to port our tool to other systems but also 
enables the tool to automatically adapt the recommendations 

it makes to the performance characteristics of each system. 

Moreover, it provides the ability to alter the recommendation 

database without having to worry about how this change in-

teracts with the remaining suggestions. 

5. Experimental Methodology 

We compiled the CUDA test programs using nvcc v6.0.1 with 

the -O3 -arch=sm_35 flags. Our GPU is a Kepler-based 0.7 
GHz Tesla K20c with 5 GB of main memory and 2496 

CUDA cores distributed over 13 SMXs. Each SMX has 64 

kB of fast memory that is split between the L1 data cache 

and the shared memory. The SMXs share a 1.5 MB L2 

cache. For the machine learning methods, our tool leverages 

the algorithms implemented in Weka [34]. 

For the profiling, i.e., generating the feature vectors, we 

used nvprof from the Visual Profiler v6.5. We profiled each 

of the 128 versions of BH and NB described in Section 3.3 

three times on the inputs shown in Table 1. Depending on 
the experiment, we use different subsets of the resulting fea-

ture vectors to train and test our tool. Table 2 lists the subsets 

used in each of the six experiments we performed. In exper-

iments 1 through 4, we trained and tested based on the BH 

code. In experiments 5 and 6, the tool is trained on BH/NB 

and tested on NB/BH, respectively. 

 

Table 1: Input sizes used for BH and NB 

NB BH 

Bodies Time 
steps 

Bodies Time 
steps 

50,000 2 125,000 2 

100,000 2 250,000 2 

100,000 5 250,000 5 

200,000 5 500,000 5 

- - 500,000 10 

- - 1,000,000 10 

Table 2: Experiments for evaluating the speedup predictions 

E
x
p
er

im
en

t 

T
ra

in
in

g
 d

a-

ta
se

t 

T
ra

in
in

g
  

en
tr

ie
s 

T
es

ti
n
g
  

d
at

as
et

 

T
es

ti
n
g
  

en
tr

ie
s 

T
es

ti
n
g
 i

n
-

cl
u
d
es

 t
ra

in
-

in
g
 d

at
as

et
 

T
ra

in
 a

n
d
 

te
st

 d
at

as
et

 

fr
o
m

 s
am

e 

p
ro

g
. 

in
p
u
t 

1 BH 64 BH 192 Yes Yes 

2 BH 64 BH 128 No Yes 

3 BH 128 BH 64 No Yes 

4 BH 192 BH 64 No No 

5 BH 192 NB 64 No No 

6 NB 192 BH 64 No No 

 

Since the tool sorts its recommendations by predicted 

speedup, our evaluation focuses on comparing the actual 

speedup of the tested optimizations with the predicted 

speedup. If the predicted speedup is reasonably close to the 

actual speedup, our tool is able to suggest the most useful 
optimization(s) to improve performance. 

The strategy we chose for evaluating the results after train-

ing the tool is the following. For each specific optimization, 

we removed all feature vectors from runs that included this 



optimization, which always leaves 32 feature vectors from 

runs that do not include the optimization. Testing these fea-

ture vectors on the trained tool generates six predicted 

speedups, one for each of the studied optimizations. The pre-

dicted speedups are then compared to the actual (measured) 

speedup when truly including this optimization in the code. 

The ratio of the actual speedup (AC) over the expected 

speedup (EX) shows how close the prediction is to the true 

speedup. If the predictions are accurate, the tool can use 

them to rank the optimization, i.e., suggest the most promis-

ing optimizations (if any) to the user based on the expected 

speedup. To enhance readability, we show the AC/EX ratios 

in strip charts. A strip chart plots the data along a line with 

each data point represented by a star. The predictions do not 

have to be 100% accurate for our tool to work well. As long 

as the speedups are approximately correct, the tool will rec-
ommend the correct source-code optimizations, if any. 

6. Results 

This section presents the results of the prediction accuracy 

evaluations. We investigated three different machine learn-

ing methods to predict speedups: Logistic Regression, IBK, 

and M5P. Since the results of the logistic regression are sub-

stantially inferior to those of the other two methods, we only 

present results for IBK and M5P. 

6.1 Train and Test on Same Code 

When training and testing on the same program and input, 
the predictions are expected to be accurate. Instead of show-

ing detailed strip charts for these simple experiments, we 

only compare the actual with the predicted speedup to see if 

they both show an increase or both show a decrease in per-

formance. After all, if the predicted and the actual speedup 

are greater than one, it is correct for the recommendation tool 

to predict a performance gain. Similarly, if both the pre-

dicted and the actual speedup are less than one, using that 

optimization would hurt performance and not recommend-

ing the optimization is the correct behavior. 

In experiment 1, we trained the tool based on the 64 fea-

ture vectors from a single run and input and tested all 192 

feature vectors from the three runs of the same input, includ-

ing the training data. Using the IBK method, on average over 

97% of the predictions match the actual behavior, as shown 

in Table 3. The accuracy of the predicted behavior is signif-

icantly worse for M5P (86.4%). This reduced accuracy is 

largely due to M5P’s inability to predict the behavior of 

FTZ, where it only achieves 57% accuracy. Upon further in-

vestigation we found that, in many of the test instances, FTZ 

applied by itself had very little impact on performance. Since 

M5P uses regression in the leaf nodes, even a small mispre-
diction in the speedup can result in an incorrect final out-

come (improvement vs. degradation). IBK does not suffer 

from this problem because it stores all of the training in-

stances and is therefore able to predict the speedup of the 

training data exactly. IBK only enjoys this advantage if the 

training data include the test data. Next, we show how the 

accuracy of IBK is affected when we relax this assumption. 

 

Table 3: Accuracy of negative/positive speedup predictions 

for different experiments and two ML methods 

Experiment 
Accuracy 
IBK (%) 

Accuracy M5P 
(%) 

1 97.3 86.4 

2 96.0 86.4 

3 96.3 33.3 

4 92.0 81.6 

5 83.6 33.3 

6 55.7 60.1 

 

6.1.1 Non-overlapping Training and Test Data 

In experiment 2, we trained on the 64 feature vectors of a 
single run and tested on the 128 feature vectors from the 

other two runs. Although the training data are not included 

in the testing data, we still expect high accuracy because all 

feature vectors stem from the same program running the 

same input multiple times. The IBK results (96%) are almost 

identical to experiment 1 with just a slight decrease in accu-

racy due to excluding the training data from the testing da-

taset. The results for M5P are also very similar to those of 

experiment 1. M5P uses just a few features, so excluding the 

training data does not affect its prediction accuracy much. 

6.1.2 Impact of Sample Size 

In experiment 3, we trained the tool on 128 feature vectors 

and tested on the remaining 64 (experiment 2 uses the oppo-
site approach). The expectation is that using more training 

data will improve the results. The prediction accuracies are 

comparable to the results from the previous experiments. In-

terestingly, the tested ML methods tend to underestimate the 

speedup. Nevertheless, the range of the ratios is 0.95 to 1.05 

in all cases. These results show that adding more instances 

to the training data does not have a substantial impact on 

IBK. We note, however, that there is a significant drop in the 

accuracy of M5P. This is again explained by M5P’s inability 

to accurately predict the behavior of FTZ. Although not 

shown, the accuracy of M5P is better in practice when using 
our tool with a threshold, i.e., when not recommending opti-

mizations whose predicted speedup is below the threshold. 

Obtaining about 96% prediction accuracy in the first three 

experiments is expected because training and testing on al-

most identical data (different runs of the same program and 

input) makes it easy for the tool to be accurate. In the fol-
lowing experiments, the training program input is different 

from the testing input. 

6.1.3 Sensitivity to Program Input 

In experiment 4, we trained the tool with all 192 feature vec-

tors from the three runs on one program input and tested on 

64 feature vectors each from the other program inputs. Fig-

ure 2 shows the results of the VOTE optimization with the 



IBK method. The Y axis of the chart shows the ratio of the 

Actual Speedup (AC) over the Expected Speedup (EX). The 

closer the points are to 1.0 the more accurate the predictions 

are. The X axis represents different training and testing da-

taset combinations. Actually labeling the X axis resulted in 

illegible text, so we do not show the labels, which are not 
critical to the understanding. Note, however, that the input 

sizes increase from left to right and that the charts show sets 

of multiple strips for different runs of the same input size. 

Most of the ratios in Figure 2 are around 1.0, i.e., the pre-

dicted speedups are close to the actual speedups. Unlike in 

the previous three experiments, where most of the IBK ratios 

were above 1.0, in this experiment the ratios are distributed 

evenly above and below the line. This is also true for the 

other optimizations shown in Figure 3. The few outliers in 

Figure 2 stem from test cases using the smallest inputs, 

which result in poor feature vectors that throw off IBK. 

For WARP, SORT, and VOLA shown in Figure 3, the pre-
dictions on smaller inputs are also less accurate. The plotted 

ratios are denser close to the 1.0 line for all three optimiza-

tions because of the higher accuracy with larger inputs. 

 

 

Figure 2: Ratios (AC/EX) of VOTE, Experiment 4, IBK 

 

 

 

Figure 3: Ratios (AC/EX) of WARP, SORT, and VOLA, Experiment 4, IBK 

 

Figures 4 and 5 show the IBK ratios for FTZ and 

RSQRT, respectively. The results are good for both FTZ 

and RSQRT. As shown in Table 3, the accuracy of posi-
tive/negative speedup is still 92% on average in experiment 

4 for the IBK method. Clearly, training the tool on data 

from one input and testing on data from a different input 

does not hurt the tool’s performance much. However, the 

accuracy of the prediction behavior of M5P is lower than 

IBK’s (81.6%). This difference between absolute speedup 

prediction accuracy and behavior prediction accuracy, i.e., 

only predicting whether there will be a speedup, shows that 

the ratio of the actual speedup over the predicted speedup 

can be close to 1.0 yet the predicted speedup lies on the 

“other” side of the 1.0 line than the actual speedup. Fortu-
nately, such cases are easily avoided in the recommenda-

tion tool by only suggesting optimizations that result in a 

speedup above the user-defined threshold. 

6.2 Train and Test on Different Codes 

Training the tool on a set of before and after feature vectors 

from code that is not related to the test code is the ultimate 

test of our approach (and the expected use case). In exper-

iment 5, we trained on different versions of the BH code 

and used various versions of the NB code as test cases. In 
particular, this experiment shows results when we train the 

tool on data from an irregular GPU program and test it on 

a regular GPU program. Note that only the FTZ and 

RSQRT optimizations are common to both BH and NB. 

Hence, we can only compare the predicted and actual 

speedups of these two optimizations as we do not know the 

actual speedups of the remaining four BH optimizations 

when applied to NB. 

Figures 6 and 7 show the results of experiment 5 using 

IBK. Almost half of the ratios are below the 1.0 line. The 

range of the ratios for FTZ is 0.2 to 1.7, which shows that 



the prediction accuracy of the speedup is not as close as it 

was in the previous experiments. For RSQRT, the ratios are 

spread even wider. As before, the prediction results for test 

cases with larger input sizes tend to be better. For each 

model, we tested all 64 feature vectors of each set of four 

inputs on the NB code. 

 

 

Figure 4: Ratios (AC/EX) of FTZ, Experiment 4, IBK 

 

 

Figure 5: Ratios (AC/EX) of RSQRT, Experiment 4, IBK 

 

Considering that we are training and testing on two dif-

ferent programs, the results are still good. The accuracy of 
the predictions for these two optimizations is almost 84%. 

The accuracy of the M5P method in this experiment for 

FTZ and RSQRT is only 33%. The reason for this low ac-

curacy is that M5P uses very few features for making deci-

sions. When the training and testing datasets stem from dif-

ferent programs, the possibility of accurate predictions 

based on just a few features is relatively low. 

Experiment 6 is identical to experiment 5 except we 

switched the training and testing datasets, that is, we 

trained the tool on the regular NB code and tested it on the 

irregular BH code. Interestingly, all of the predicted 

speedups for FTZ using the IBK method are lower than the 

actual speedups on the BH code as shown in Figure 8. 

RSQRT yields more accurate predictions as Figure 9 

shows. The range of the ratios is 0.78 to 1.45 and most of 

the ratios are close to 1.0. For smaller training and testing 

inputs, the tool tends to overestimate the speedups. 

 

 

Figure 6: Ratios (AC/EX) of FTZ, Experiment 5, IBK 

 

 

Figure 7: Ratios (AC/EX) of RSQRT, Experiment 5, IBK 

 

Comparing the IBK results of experiment 6 with the re-

sults from experiment 5 in Table 3, we find that more ac-

curate predictions are made when the tool is trained on ir-

regular codes and tested on regular codes, which makes 

sense as irregular codes tend to be more complex. 

In the first five experiments, the prediction accuracy of 

IBK is better than that of M5P. However, in experiment 6, 

the overall accuracy of M5P is better than that of IBK. 

Clearly, there is no ML model that is always the best for 

our tool. Apparently, M5P yields better performance be-
cause it narrows the features down to metrics that are sig-

nificant for both irregular and regular codes. However, in 

most experiments, IBK yields more accurate speedup pre-

dictions than the other methods. Hence, IBK is the ML 

method of choice for our tool. 



 

Figure 8: Ratios (AC/EX) of FTZ, Experiment 6, IBK 

 

 

Figure 9: Ratios (AC/EX) of RSQRT, Experiment 6, IBK 

7. Summary and Conclusion 

This paper describes and evaluates a tool to suggest source-

code optimizations to programmers in order to improve the 

efficiency of their GPU code, including complex irregular 

codes. The tool needs to be trained on profile data from 

different code samples that do and do not include certain 

source-code optimizations. During this training, the tool 

builds machine-learning models for each optimization in 

its database so that it can later estimate the speedup for each 

optimization when presented with profile data from other 

programs. To measure and quantify the prediction accu-

racy, we profiled differently optimized GPU codes with 
multiple inputs to gather a large set of performance data. 

The tool ranks the optimizations based on the predicted 

speedup and suggests the top optimizations to the user if 

the predicted speedup is above a preset threshold. To eval-

uate the accuracy of the predicted speedups, we compared 

them to the actual speedups obtained when truly adding the 

respective source-code optimizations. 

We performed six experiments of training models and 

predicting speedups. In the first four experiments, we 

trained and tested the tool on the BH code and obtained up 

to 97% prediction accuracy. In the remaining two experi-

ments, where we train on BH/NB and test on NB/BH, the 

tool delivers up to 82% accuracy, i.e., most of the sug-

gested source-code optimizations truly result in a speedup 

when they are implemented. 

Based on the results from Section 5, the predictions of 

our tool are more precise when training on data obtained 

with larger program inputs. This makes sense as larger in-

puts result in more profiling data and more stable-state uti-

lization of the GPU. Expectedly, training the tool with 
more data yields better predictions. 

When training on code that is different from the tested 

code, we found that training based on irregular codes and 

testing on regular codes seems to result in better predic-
tions than training on regular code and testing on irregular 

codes. This is likely a combination of two factors. First, 

regular codes are less complex, making them easier to pre-

dict in general. Second, the higher complexity of irregular 

codes probably provides more diverse training data, which 

yield better ML models for making the predictions. 

We studied three different machine learning methods. 

Our results show that there is no clear winner. However, 

IBK generally performs very well when predicting the 

likely speedup of source-code optimizations. Hence, we 

use IBK in out tool. 

We used differently optimized Barnes-Hut implementa-

tions as a representative irregular GPU code. Of course, us-

ing additional (irregular) codes for training would be bet-

ter. Also, we studied six source-code optimizations. Larger 

numbers of optimizations can and should be used to better 

test the accuracy of our approach. To verify portability, our 

study should be repeated on additional types of GPUs. For 

the machine learning phase, we investigated three different 

methods. Other types of ML methods could, of course, also 

be employed for predicting the speedups. 
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