
Increasing the Parallelism of Graph Coloring via Shortcutting

Ghadeer Alabandi
 Department of Computer Science

 Texas State University
 San Marcos, TX, USA

 gaa54@txstate.edu

Evan Powers
 Department of Computer Science

 Texas State University
 San Marcos, TX, USA

 edp30@txstate.edu

Martin Burtscher
 Department of Computer Science

 Texas State University
 San Marcos, TX, USA
 burtscher@txstate.edu

Abstract
Graph coloring is an assignment of colors to the vertices of
a graph such that no two adjacent vertices get the same
color. It is a key building block in many applications. Find-
ing a coloring with a minimal number of colors is often only
part of the problem. In addition, the solution also needs to
be computed quickly. Several parallel implementations ex-
ist, but they may suffer from low parallelism depending on
the input graph. We present an approach that increases the
parallelism without affecting the coloring quality. On 18
test graphs, our technique yields an average of 3.4 times
more parallelism. Our CUDA implementation running on a
Titan V is 2.9 times faster on average and uses as few or
fewer colors as the best GPU codes from the literature.

CCS Concepts
• Computing methodologies → Massively parallel algo-
rithms

Keywords
Graph coloring, shortcuts, parallelism, GPU computing

1 Introduction
Graph coloring refers to the assignment of colors (i.e.,
unique symbols) to the vertices of a graph such that no ad-
jacent vertices have the same color. The graph coloring
problem is the problem of coloring a graph using as few
colors as possible. More formally, a vertex coloring of an

undirected graph G = (V, E) is a mapping C from vertices to
colors such that C(i) ≠ C(j) for every edge (i, j) ∈ E.

Graph coloring is a building block in many applications
such as clustering, data mining, image capturing, image
segmentation, networking, resource allocation, process
scheduling, optimizing the calculation of sparse Jacobian
matrices [6], LU factorization [25], and parallel Gauss-
Seidel algorithms for solving non-linear equations [18].

Graph coloring is NP-hard, that is, there is no known
polynomial time algorithm that can solve it optimally [13].
However, several heuristic algorithms exist to color a graph
using few colors. These algorithms produce a valid color-
ing, i.e., guarantee that no adjacent vertices have the same
color, but they may require more colors than the optimal
algorithm, i.e., do not guarantee optimality.

In general, these heuristics provide different tradeoffs
between the coloring quality and the execution time. Typi-
cally, faster algorithms tend to require more colors. The
problem we are tackling is how to deliver a good coloring
quality at high speed. Our solution is to increase the paral-
lelism without loss in quality.

One well-known heuristic is the greedy algorithm. It as-
signs a random priority to each vertex. Then it repeatedly
selects the uncolored vertex that has the highest priority
and colors it with the best available color, i.e., the first avail-
able color that is not already assigned to one of the vertex’s
neighbors. In graph coloring, the colors are typically or-
dered (first color, second color, etc.) and the first color is
the “best” (most preferred) color.

Many parallel graph coloring algorithms [2][5][17][27]
follow the Jones-Plassmann approach [19], i.e., they are
based on the observation that any independent set of verti-
ces can be colored in parallel. The strategy used for the col-
oring depends on the application. If fewer colors are desir-
able, the algorithm needs to emphasize the coloring quality
at the cost of performance. If the application is runtime sen-
sitive, the number of colors might be compromised in favor
of a higher speed. Combining the Jones-Plassmann ap-
proach with different priority heuristics allows to select dif-
ferent points in this quality versus speed tradeoff space.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permis-
sions@acm.org.
PPoPP '20, February 22–26, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6818-6/20/02…$15.00
https://doi.org/10.1145/3332466.3374519

Several priority heuristics have been proposed for deter-
mining the order in which to color the vertices. There are
six prominent ordering heuristics for graph coloring: 1)
first-fit ordering (FF), where the vertices are colored in the
order in which they appear in the vertex set, 2) random or-
dering (R), where the vertices are colored in random order,
3) largest-degree-first ordering (LDF), where the vertices
with larger degrees are colored first, 4) smallest-degree-last
ordering (SDL), where the vertices with the smallest degree
are successively removed from the graph, the modified
graph is colored using the LDF heuristic, and finally the re-
moved vertices are re-inserted and colored, 5) saturation-
degree ordering (SD), where the vertices whose colored
neighbors have the largest number of unique colors are col-
ored first (using the vertex degree as a tie breaker), and 6)
incidence-degree ordering (ID), where the vertices with the
largest number of colored neighbors are colored first irre-
spective of the number of unique colors (using the vertex
degree as a tie breaker). Where needed, these heuristics in-
clude a tie breaker, which is often the vertex identifier. In
general, LDF tends to produce better colorings than FF and
R at the same performance level, SDL and SD tend to pro-
duce better colorings than LDF but with a large additional
cost in runtime, and ID tends to produce similar coloring
quality as LDF but is slower [17].

Our algorithm is based on the Jones-Plassmann (JP) ap-
proach with the largest-degree-first (LDF) heuristic. We se-
lected JP-LDF as it tends to produce good colorings while
being quite fast [17]. It colors vertices with higher degrees
first, so vertices with a lower degree must wait before the
algorithm can assign a color to them. To minimize this
waiting, we have developed “shortcuts” that, under certain
conditions, enable us to already color lower-degree vertices
before their higher-degree neighbors have been colored.
Importantly, these shortcuts are guaranteed to yield the
same final coloring as the JP-LDF algorithm without the
shortcuts. However, the shortcuts increase the amount of
parallelism as more vertices can be colored simultaneously,
thus boosting performance.
This paper makes the following main contributions.

• It presents algorithmic optimizations to increase the
amount of parallelism in graph coloring without affect-
ing the coloring quality.

• It describes techniques to efficiently implement these
algorithmic optimizations.

• It demonstrates that our CUDA implementation is
faster than prior CPU and GPU graph coloring codes
on a variety of graphs.

The CUDA source code of our implementation is available
at https://cs.txstate.edu/~burtscher/research/ECL-GC/.

The rest of the paper is organized as follows. Section 2
provides background information. Section 3 explains the
shortcuts and the optimizations to implement them effi-
ciently. Section 4 summarizes related work. Section 5 de-
scribes the methodology. Section 6 presents and analyzes
the results. Section 7 concludes the paper.

2 Background

Throughout this paper, we use the color order shown in
Figure 1a, i.e., the first color (red) must be chosen whenever
possible. If that is not possible, the second color (blue) must
be chosen if possible, and so on.

We use the graph in Figure 1b with 7 vertices and 16
edges for illustration. For simplicity, the vertices are labeled
in LDF order: vertices A, B, C, D, and E have degree 5, ver-
tex F has degree 4, and vertex G has degree 3. We use al-
phabetic ordering to break ties between vertices of the same
degree, i.e., letters that appear earlier in the alphabet win
the tie. The resulting ordering imposes a direction upon
each edge (from the higher-priority vertex that must be col-
ored first to the lower-priority neighbor), which turns the
undirected graph into a directed acyclic graph (DAG). The
DAG is shown in Figure 1c.

Figure 1d displays a possible coloring with four colors.
This is the result that the greedy serial algorithm produces
when processing the vertices alphabetically. It first colors
A, which has no colored neighbors, so A gets red. Then B is
colored, which is adjacent to A and, therefore, cannot be
red. Hence, B is assigned blue. Vertex C can be red again
and D must take orange as it has red and blue neighbors. E
must be purple as it has red, blue, and orange neighbors.
Finally, F can be blue and G can be orange. Note that the
serial algorithm requires as many steps as there are verti-
ces. Each step must traverse all edges of the current vertex,
resulting in the total work of O(|V| + |E|), where |V| is the
number of vertices and |E| the number of edges in the graph.
Any parallel algorithm that adheres to the same vertex pri-
ority must produce the same coloring, including the JP al-
gorithm and our algorithm, which we named “ECL-GC”.

 (b) (c) (d)

Figure 1: Assumed color order (a), sample graph (b),
LDF-imposed DAG (c), and greedy coloring (d)

First Second Third Fourth Fifth Sixth

B

C

F

D

G

A

E

B

C

F

D

G

A

E

B

C

F

D

G

A

E

(a)

A DAG generally only specifies a partial order, in this
case the order in which to color the vertices. The parallel-
ism of the JP algorithm originates from this partial order.
The depth of the DAG determines the number of parallel
steps, and the width at a given level determines the amount
of parallelism. Figure 2 illustrates the steps of the JP-LDF
algorithm on the sample graph.

 (a) (b) (c)

 (d) (e) (f)

Figure 2: Steps of the JP-LDF algorithm

Figure 2a shows the initialization step, which computes
the direction of each edge in parallel by comparing the de-
grees of the two vertices the edge connects (and invoking
the tie breaker if needed). Vertex A can already be colored
as it has no incoming edges. In each of the following pro-
cessing steps, every uncolored vertex checks, in parallel,
whether all its higher-priority neighbors (incoming edges)
have been colored. We visualize this with light edges. Once
a vertex has no incoming dark edges, it can be colored.

In the first processing step (Figure 2b), vertex B has no
incoming dark edges. It gets blue as it has a neighbor that
already uses red. In the second step (Figure 2c), vertex C
has no incoming dark edges, so it is colored with the best
available color, which is red. In the third step (Figure 2d),
vertices D and G find that all their higher-priority neigh-
bors have been colored. So, they are colored concurrently
with the best available color, which is orange in both cases.
In the fourth step (Figure 2e), only vertex E is ready. It must
be colored purple as all “better” colors are taken by its
neighbors. In the fifth and final processing step (Figure 2f),
vertex F is colored blue. Since all vertices are now colored,
the JP-LDF algorithm terminates.

3 Shortcut Approach

There is little parallelism in the above example. Only one
step colors more than one vertex. Yet, additional non-spec-
ulative parallelism may exist. To see where it resides,

consider the partially colored subgraph in Figure 3a. We re-
use the color order from Figure 1a in this section.

 (a) (b) (c)

Figure 3: Examples of Shortcut 1

Vertices Y and Z cannot be colored because they both
have a higher-priority neighbor that has not yet been col-
ored, as indicated by the incoming dark edge. It appears
that vertex Q also cannot be colored for the same reason.
However, it can be colored red (the best color) without
waiting for Y or Z. This is safe because Y and Z are guaran-
teed not to use red as they both have a neighbor that is al-
ready red. Figure 3b depicts a similar scenario but vertex X
is now blue. Applying the same reasoning, we conclude
that it is safe to color Q blue as well. However, we want to
give each vertex the same color as the serial and JP-LDF
algorithms. Unfortunately, we do not yet know whether it
is possible to color vertex Q red and must, therefore, wait.
In the modified case depicted in Figure 3c, we do not have
to wait because blue is the best possible color for Q, and we
know that neither Y nor Z will be blue. Generalizing these
observations leads to the first enhancement we propose,
which we call a “shortcut” because it allows the coloring of
vertices before it is their turn.

Shortcut 1: A vertex can safely be colored with its best
possible color as soon as its uncolored higher-priority
neighbors are no longer considering that color.

To be able to determine whether this is the case, we need
to record, for each vertex, what colors it is still considering.
We call them the “possible colors”. This information allows
us to decide both the best available color for a vertex and
whether a neighbor is still considering a specific color. We
store this information in a bitmap, where each bit repre-
sents one color. A set bit (1) means the corresponding color
is still possible, and a cleared bit (0) means it is not. The
position of the bit reflects to which color it refers.

A colored vertex has a single set bit in the bitmap indi-
cating the color of the vertex. Uncolored vertices have at
least two set bits. Whenever a higher-priority vertex is col-
ored, the corresponding bit must be cleared in its lower-
priority neighbors since that color is no longer possible.

The bitmaps are initialized with the k+1 bottom-most
(least-significant) bits set, where k is the number of incom-
ing DAG edges. This is because, in the worst case, every

B

C

F

D

G

A

E

A

G B

D

E

F

C

A

G B

D

E

F

C

A

G B

D

F

E

C

A

G B

D

E

F

C

A

G B

D

F

E

C

Q

Y Z

X

Q

Y Z

X

Y Z

X

PQ

incoming edge of vertex v will be from a differently colored
neighbor and use up the first k colors, leaving the k+1st
color for vertex v. If the incoming edges end up not using
all of the first k colors, because some neighbors of v either
have the same color or use a color above k, then at least one
of the first k colors will be available for v. Hence, it always
suffices to only reserve the first k+1 colors for a vertex with
k incoming edges [30].

This bitmap-based approach is utilized in other graph-
coloring codes, e.g., by Martínez-Bazan et al. [21]. Our ap-
proach employs the bitmaps for two additional tasks,
namely to determine the best available color of a vertex (the
lowest set bit in its bitmap) and whether any of the higher-
priority neighbors are still considering this color to deter-
mine if the first shortcut can be applied. Moreover, we use
the bitmaps for a second type of shortcut.

The second shortcut allows to ignore some higher-pri-
ority neighbors before they have been colored, which is
tantamount to deleting an edge. This has two benefits. First,
it enables us to remove one possible color from the bitmap
as the number of incoming edges has decreased by one,
which may make the first shortcut more effective (on other
vertices). Second, it speeds up later processing steps as they
no longer need to check that edge. Figure 4 illustrates the
idea behind the second shortcut.

Figure 4: Example of Shortcut 2

In this example, vertex R cannot be colored because it is
waiting for one higher-priority neighbor (the incoming
dark edge). However, we know it will end up with either
blue or purple as those are the only two possible colors re-
maining. Similarly, vertex S cannot be colored yet, and we
know that its remaining possible colors are red, orange, and
gray. Since there is no overlap between the possible colors
of R and S, no matter which of its possible colors R eventu-
ally gets, it will not interfere with S. Hence, we can delete
the edge from R to S. That lowers the number of incoming
dark edges of vertex S to one, meaning it only needs to con-
sider two possible colors. Consequently, we can safely re-
move the worst color from its list of possible colors, which
is gray. Generalizing this idea leads to the second shortcut.

Shortcut 2: An edge from a higher-priority vertex u to
vertex v can safely be removed as soon as there is no
overlap between the possible colors of vertices u and v,

which enables the removal of the worst color from the
list of possible colors of vertex v.

It is important to note that neither of the two shortcuts
affect the ultimate coloring of the graph in any way. They
just speed up the processing by increasing the parallelism.

Figure 5 shows how the sample graph is colored using
ECL-GC, our shortcut-based graph-coloring algorithm. In
addition to the vertices and edges, the figure includes the
bitmap of possible colors for each vertex. Note that the
right-most bit represents the first color, the next bit to the
left the second color, and so on.

 (a) (b)

 (c) (d)

Figure 5: Steps of our ECL-GC algorithm

The initialization phase of ECL-GC (Figure 5a) is identi-
cal to that of the JP-LDF algorithm (Figure 2a). Moreover,
each vertex gets k+1 bits that are set to one, where k is the
number of incoming DAG edges. All non-displayed leading
bits are zero. In each of the following computation steps, all
uncolored vertices are processed in parallel. Every vertex v
visits all incoming edges/neighbors. There are three cases:

1) If the neighbor has been colored, i.e., its bitmap only
contains a single set bit, the edge is removed (grayed out)
and one bit in the bitmap of v is cleared. If the bit corre-
sponding to the neighbor’s color is set, that bit must be
cleared since this color is no longer a possible color for v.
This is equivalent to the coloring performed by the JP algo-
rithm. However, if the bit corresponding to the neighbor’s
color is not set, the highest set bit in the bitmap of v is
cleared instead. This is not necessary in the JP algorithm. It
is also not required in the ECL-GC algorithm, but it may
help with the following two cases.

2) If the neighbor has not yet been colored, i.e., its bit-
map contains multiple set bits, and none of the set bits in
the neighbor’s bitmap overlap with the set bits of v, the
edge is removed (grayed out) and the highest set bit in the
bitmap of v is cleared. This implements Shortcut 2.

E

F

A
B

C

D
R

S

B

C

F

D

G

A

E

A: 1

D: 1111

F: 11111

E: 11111

C: 11

B: 11

G: 1111

A: 1

D: 1110

F: 11110

E: 11110

C: 11

B: 10

G: 1110

A

G B

D

F

E

C

A: 1

D: x100

F: 11110

E: 01100

C: 01

B: 10

G: x100

A

G B

D

F

E

C

A: 1

D: 0100

F: xxx10

E: 01000

C: 01

B: 10

G: 0100

A

G B

D

F

E

C

3) For all remaining uncolored neighbors, the union (bit-
wise OR) of their bitmaps is computed. If the currently best
possible color of v is not in the union, all incoming edges
are removed and v is colored with its best available color,
i.e., all bits above the lowest set bit are cleared (since that
many edges were removed). This implements Shortcut 1.

In the first computation step of ECL-GC (Figure 5b), all
vertices that are adjacent to A clear their rightmost bit.
Note that this colors vertex B as it only has one set bit left.
B gets blue because the set bit is in the second position.

In the second computation step (Figure 5c), multiple
events occur. All uncolored vertices that are adjacent to B
clear their second bit. This colors vertex C red. Due to the
parallel processing, the other vertices either see the old bit-
map of “11” or the new bitmap of “01” for C. Either bitmap
suffices for vertices D and G, both of which have vertex C
as the only remaining higher-priority neighbor, to conclude
that they can be colored using Shortcut 1 since their best
possible color (orange) is not considered by any of their in-
coming neighbors. Applying Shortcut 1 clears all the bits
past the first set bit, indicated by an “x” in the figure.
Shortcut 2 can also be applied in this computation step. The
bitmap of E has no overlap with the (outdated or new) bit-
map of C, so the edge CE is deleted and the highest set bit
of E is cleared.

In the third computation step (Figure 5d), vertices E and
F remove their third bit due to vertex D, which colors vertex
E purple. Vertex F may not yet see this update of vertex E’s
bitmap but can still conclude that its first set bit is not con-
tained in any of its remaining neighbors’ (vertices C and E)
bitmaps, that is, it can be colored using Shortcut 1 and the
higher bits are cleared. At this point, all vertices are colored,
and the algorithm terminates.

The resulting coloring is identical to that of the serial
and JP-LDF algorithms. Moreover, it only takes the ECL-
GC algorithm three steps to color this graph compared to
the five steps of the JP-LDF algorithm.

3.1 Shortcut Derivation

The two shortcuts were systematically derived from com-
binations of intersections between the possible colors
among neighboring vertices. Assume set C(v) ⊂ ℕ contains
the possible colors of vertex v. As shortcuts only apply to
uncolored vertices and a vertex can only have a finite num-
ber of incoming DAG edges, 2 ≤ |C(v)| < ∞ holds. Further-
more, the complement C’(v) = ℕ\ C(v) must have cardinal-
ity |C’(v)| = ∞. If U(v) denotes the union of the possible col-
ors of all uncolored higher-priority neighbors of v, 2 ≤ |U(v)|
< ∞ must also hold since there must be at least one such
neighbor given that v is uncolored. Assuming vertex n

represents one of those neighbors and that set B(v) ⊂ C(v)
contains the best color of C(v), i.e., |B(v)| = 1, we end up with
the 16 possibilities listed in Table 1.

Table 1. Bitmap intersections and resulting actions

Some intersections cannot yield an empty set due to the
cardinality constraints outlined above. Others may yield an
empty set, but the condition under which they do is not
strong enough to derive a shortcut. The remaining four
(red) cases are candidates. The 1st case from the top is
Shortcut 2. The 5th case by itself is insufficient and only part
of Shortcut 1. The 9th case is unnecessarily strong and al-
ready covered by the 13th case, which is Shortcut 1. We sim-
ilarly tried using the possible colors of the neighbors’
neighbors but could not find any additional shortcuts.

3.2 ECL-GC Implementation & Optimization

A direct implementation of the ECL-GC algorithm as de-
scribed above may be inefficient due to long bitmaps that
must be processed for vertices with many higher-degree
neighbors. This potential inefficiency is concerning since
the goal of the shortcuts is to accelerate the computation.

Graph coloring is typically performed on sparse graphs
(e.g., dependence graphs) as there is little to be gained from
coloring dense graphs that require close to |V| colors. We
define a graph as sparse if it has O(|V|) edges, that is, |E| =
c|V| where c is a small constant (the average degree) that is
much smaller than |V|. In a sparse graph, most of the verti-
ces must have a low degree (much lower than |V|). Since a
vertex of degree k can always be colored with one of the
first k+1 colors, most vertices in sparse graphs can be col-
ored with just a few colors. This observation led us to treat
high-degree and low-degree vertices separately. Specifi-
cally, we fully implement the shortcuts on the low-degree
vertices and only approximate them on the high-degree
vertices to avoid the processing of long bitmaps.

meaning of empty intersection resulting action
C(v) ∩ C(n) poss. colors don't overlap with neighbor remove edge (Shortcut 2)
C'(v) ∩ C(n) there is overlap: C(n) ⊂ C(v) continue
C(v) ∩ C'(n) there is overlap: C(v) ⊂ C(n) continue
C'(v) ∩ C'(n) impossible
B(v) ∩ C(n) best color not considered by neighbor record info (for Shortcut 1)
B'(v) ∩ C(n) impossible
B(v) ∩ C'(n) best color is considered by neighbor continue
B'(v) ∩ C'(n) impossible
C(v) ∩ U(v) p. colors don't overlap with any neighbor use best color (Shortcut 1)
C'(v) ∩ U(v) there is overlap: U(v) ⊂ C(v) continue
C(v) ∩ U'(v) there is overlap: C(v) ⊂ U(v) continue
C'(v) ∩ U'(v) impossible
B(v) ∩ U(v) best color not considered by any neighbor use best color (Shortcut 1)
B'(v) ∩ U(v) impossible
B(v) ∩ U'(v) best color is considered by some neighbor continue
B'(v) ∩ U'(v) impossible

intersection

For each low-degree vertex (d(v) < 32), we use a fixed
bitmap with 32 bits (i.e., an integer). For all other vertices,
we maintain the full bitmap to ultimately assign the best
possible color but only use two integers for the shortcut
computations. The first integer specifies the best possible
color and the second integer the worst possible color. We
do not update the worst possible color as we found that, for
high-degree vertices, it rarely gets small enough to matter.
However, the best possible color is maintained precisely.

The shortcuts are approximated as follows with the two
integers. Shortcut 1 is applied if the best possible color of a
lower-priority vertex is not in the range between the best
and worst possible color of any of the uncolored higher-
priority neighbors. This simplified implementation runs in
constant time (irrespective of how long the bitmaps are) but
may miss some shortcutting opportunities. Shortcut 2 is
simply skipped as it is less important (cf. Section 6.2.3).

Our CUDA implementation has fewer than 300 state-
ments with around 150 kernel statements and is available
at https://cs.txstate.edu/~burtscher/research/ECL-GC/. It
produces a deterministic coloring and incorporates the
above optimizations. It transfers the graph to the GPU and
the final colors back to the CPU. The code repeatedly pro-
cesses the vertices until convergence is reached. For perfor-
mance reasons, the processing is done asynchronously,
which may result in data races. However, these races are
guaranteed to be benign because the bitmaps, once initial-
ized, only ever have bits cleared. Similarly, the first integer
(see above) only ever increases. Due to these two types of
monotonicity, it is always safe for a thread to act upon an
outdated value, but doing so may require extra rounds.

4 Related Work

A large amount of related work exists on graph coloring.
However, we know of no other work that proposes the use
of shortcuts to increase the parallelism.

The classical sequential graph coloring algorithm is
based on the greedy first-fit heuristic. Several other heuris-
tics have been proposed that use relatively few colors and
have good bounds on their computational complexity (cf.
Section 1). In contrast, parallel algorithms have not been
studied as extensively. Nevertheless, there are a few poly-
nomial-time algorithms, some of which can solve the prob-
lem using as few colors as the sequential algorithms.

In 1986, Luby designed a Monte Carlo algorithm to find
a maximal independent set (MIS) in parallel [20]. All verti-
ces in the MIS are given the same color. Then the algorithm
finds a new MIS among the remaining vertices and assigns
the vertices in the second MIS the second color, and so on
until all vertices have been colored.

In 1993, Mark Jones and Paul Plassmann proposed a new
graph coloring heuristic (JP) [19] based on Luby’s Monte
Carlo algorithm. Luby’s algorithm selects new random
numbers in each iteration, which requires global synchro-
nization (a barrier). Moreover, generating the random num-
bers incurs overhead. Jones and Plassmann largely elimi-
nate the global synchronization and this overhead by
choosing a random number for each vertex only once.

The Largest-Degree-First (LDF) heuristic assigns a pri-
ority to each vertex that is proportional to the degree of the
vertex. This causes the vertices to be colored in decreasing
degree order, i.e., the vertices with the highest degree are
colored first. Using this ordering typically yields a better
coloring quality than the JP and greedy algorithms. Ran-
dom numbers are used to resolve conflicts when two neigh-
boring vertices have the same degree [17]. The JP algorithm
can easily be augmented with LDF. The operation of the
resulting parallel JP-LDF algorithm is outlined in Section 2.

The Smallest-Degree-Last (SDL) algorithm tries to im-
prove upon the coloring quality of LDF by using more so-
phisticated weights [22]. It comprises two phases, a
weighting phase and a coloring phase. In the weighting
phase, the algorithm starts by finding all vertices with the
minimum degree dmin. These vertices are assigned weights
and are removed from the graph, which changes the degree
of their neighbors. The algorithm repeatedly removes ver-
tices with degree dmin and assigns larger weights in each
iteration. Once there are no vertices of degree dmin left, the
algorithm continues with vertices of degree dmin+1 and so
on. Then the coloring phase starts with the vertices that
have the highest weights. It works in the same way as the
LDF algorithm except is uses the weights instead of the de-
grees to determine the order in which to color the vertices.
As mentioned in Section 1, SDL tends to yield a very good
coloring quality but is slow.

In 2011, Grosset et al. implemented their 3-step GM al-
gorithm in CUDA [16]. It partitions the graph, colors each
partition independently, and resolves conflicts along the
border first on the GPU and then on the CPU using one of
the heuristics described in Section 1. The resulting runtime
is often worse than the sequential algorithm [4].

The CUSPARSE library [8] includes the “csrcolor”
graph-coloring code [3]. As the name implies, it operates
on graphs in CSR format. We use the same format in ECL-
GC. Csrcolor is based on the Jones-Plassmann and Cohen-
Castonguay [5] algorithms. It uses multiple hash functions
to generate the “random” numbers for each vertex. The lo-
cal maximums and minimums of the hash values are used
to produce two distinct maximal independent sets. The
GPU implementation is three to four times faster than the

JP algorithm. However, csrcolor typically requires over
twice as many colors as the JP algorithm.

Chen et al. [4] proposed two graph coloring algorithms
based on Nasre’s ideas for implementing irregular algo-
rithms on GPUs [24]. The first is a topology-driven algo-
rithm. It uses the first-fit heuristic to color all vertices in
parallel with the first permissible color. Conflicts between
adjacent vertices with the same color are handled by allow-
ing the vertex with the highest degree to preserve its color
whereas the remaining conflicting vertices are uncolored.
Chen et al.’s second algorithm works in the same way but
is data driven. It maintains two worklists for holding the
vertices that need to be processed, making it more work ef-
ficient, but maintaining the worklists incurs overhead.

Chen et al. implemented multiple versions of their algo-
rithms with different optimizations [4], including bitmap
operations to reduce the memory footprint and the time
consumed in reading and writing the color mask. For better
load balancing, they implemented Merrill’s balancing strat-
egy [23], which maps the workload of a vertex to a thread,
warp, or block depending on the size of its neighbor list.
Similarly, ECL-GC uses threads for processing vertices with
degrees under 32 and warps for higher-degree vertices.

5 Experimental Methodology

We evaluate the graph-coloring codes listed in Table 2.
Some of these programs have multiple versions. We only
show results for the fastest version as well as the version
producing the least number of colors if it is different.

Table 2. The graph coloring codes we evaluate

In the evaluated codes, we only measured the runtime of

the color computation, excluding the time it takes to copy
the graphs into main memory, to transfer data to and from
the GPU, and to verify the result. We ran each experiment
three times and use the best measured runtime. The ECL-
GC runtimes only vary by a few percent between runs. For

all ECL-GC implementations, we verified the solution by
comparing it to that of the serial code.

We present results from two GPUs. The first is a Titan
V with 5120 processing elements distributed over 80 multi-
processors. Each multiprocessor has 96 kB of L1 data cache.
The 80 multiprocessors share a 4.5 MB L2 cache as well as
12 GB of global memory with a peak bandwidth of 652
GB/s. The second GPU is a GeForce GTX Titan X with 3072
processing elements distributed over 24 multiprocessors.
Each multiprocessor has 48 kB of L1 data cache. The 24
multiprocessors share a 2 MB L2 cache as well as 12 GB of
global memory with a peak bandwidth of 336 GB/s.

The system we used for the serial and parallel CPU codes
has dual 10-core 3.1 GHz Xeon E5-2687W v3 CPUs. Hyper-
threading is enabled, i.e., the 20 cores can simultaneously
run 40 threads. Each core has separate 32 kB L1 caches, a
256 kB L2 cache, and the cores on a socket share a 25 MB
L3 cache. The 128 GB main memory has a peak bandwidth
of 68 GB/s. The operating system is Fedora 23.

We compiled all GPU codes with nvcc 9.2 using “-O3
-arch=sm_70” for the Titan V and “-O3 -arch=sm_52” for
the Titan X. The CPU codes were compiled with gcc/g++
7.3.1 using “-O3 -march=native”.

Table 3. Information about the input graphs

We used the 18 graphs listed in Table 3 as inputs. They

were obtained from the Center for Discrete Mathematics
and Theoretical Computer Science at the University of
Rome (Dimacs) [10], the Galois framework (Galois) [12],
the Stanford Network Analysis Platform (SNAP) [28], and
the SuiteSparse Matrix Collection (SMC) [29]. The table
lists the name, type, source, number of vertices, number of
edges, average degree, maximum degree, and the percent-
age of vertices with a degree of at least 32 (for which we
use simplified shortcuts). Where necessary, we made the
graphs undirected and removed self-edges. Due to the CSR

Device Ser/Par Name Version Source
GPU Parallel ECL-GC (our code) 1.0 [11]

 CUSP 0.5.1 [9]
 csrcolor 9.2.88 [3]
 Data-wlc 1.0 [4]
 Data-pq 1.0 [4]

CPU Parallel GMMP-NT [7]
 FirstFit 1.0 [4]
 Grappolo [15]

CPU Serial JP-D1 [7]
 FirstFit 1.0 [4]
 Boost 1.66.0 [1]

Graph name Type Origin Vertices Edges davg dmax d≥32
2d-2e20.sym grid Galois 1,048,576 4,190,208 4.0 4 0.0%
amazon0601 co-purchases SNAP 403,394 4,886,816 12.1 2,752 3.3%
as-skitter Internet topo. SNAP 1,696,415 22,190,596 13.1 35,455 6.3%
citationCiteseer publication SMC 268,495 2,313,294 8.6 1,318 3.6%
cit-Patents patent cites SMC 3,774,768 33,037,894 8.8 793 3.0%
coPapersDBLP publication SMC 540,486 30,491,458 56.4 3,299 52.5%
delaunay_n24 triangulation SMC 16,777,216 100,663,202 6.0 26 0.0%
europe_osm road map SMC 50,912,018 108,109,320 2.1 13 0.0%
in-2004 web links SMC 1,382,908 27,182,946 19.7 21,869 8.4%
internet Internet topo. SMC 124,651 387,240 3.1 151 0.3%
kron_g500-logn21 Kronecker SMC 2,097,152 182,081,864 86.8 213,904 19.3%
r4-2e23.sym random Galois 8,388,608 67,108,846 8.0 26 0.0%
rmat16.sym RMAT Galois 65,536 967,866 14.8 569 11.4%
rmat22.sym RMAT Galois 4,194,304 65,660,814 15.7 3,687 12.4%
soc-LiveJournal1 community SNAP 4,847,571 85,702,474 17.7 20,333 14.0%
uk-2002 web links SMC 18,520,486 523,574,516 28.3 194,955 18.6%
USA-road-d.NY road map Dimacs 264,346 730,100 2.8 8 0.0%
USA-road-d.USA road map Dimacs 23,947,347 57,708,624 2.4 9 0.0%

format, each undirected edge is represented by two directed
edges. While it may or may not make sense to color these
graphs, we selected them for their wide variety.

6 Results

In this section, we first study the amount of parallelism.
Second, we evaluate the coloring quality. Third, we inves-
tigate the throughput in completed vertices per second, that
is, the number of vertices divided by the runtime.

6.1 Amount of Parallelism

In this subsection, we evaluate the intrinsic amount of par-
allelism with and without the shortcuts. We express the
parallelism as the number of vertices divided by the number
of steps it takes to color a graph in an architecture-agnostic
way, i.e., assuming a machine with infinite resources that
processes as many vertices per step as possible subject only
to data dependencies. Hence, in every step, all vertices are
colored that do not have to wait for uncolored higher-pri-
ority neighbors.

Figure 6: Amount of parallelism in each step on the
kron_g500-logn21 graph

Figures 6 and 7 show the steps along the x axis and how
many vertices are colored per step along the y axis. Note
that the y axes use a logarithmic scale to better show what
happens in the last steps, but this upsets certain intuitions
that would hold if a linear scale were used, such as that both
curves enclose the same area. The larger the number of col-
ored vertices in each step the higher the amount of paral-
lelism is. The blue curve shows the results without the
shortcuts and the red curve with the shortcuts. Both ap-
proaches yield identical colorings and perform the same
amount of total work. Therefore, finishing in fewer steps
implies a higher average parallelism.

Figure 6 shows that the shortcuts can yield a large in-
crease in parallelism, in this case a 7.85-fold increase. In

contrast, Figure 7 shows the worst case, i.e., an example
where the shortcuts do not increase the average parallel-
ism. However, they significantly increase the average par-
allelism on most of the tested inputs as shown in Table 4,
which lists the number of steps, the average parallelism,
and the improvement in parallelism for all 18 graphs.

Figure 7: Amount of parallelism in each step on the
uk-2002 graph

Table 4: Number of steps and average amount of parallel-
ism with and without the shortcuts

In the worst case (uk-2002), the amount of parallelism

does not increase. This only happens on one of the 18 tested
graphs. In the best case (rmat22.sym), the parallelism is
over 12 times higher. On average, it is 3.4 times higher,
demonstrating the potential of the shortcuts.

Figure 8 shows the fraction of the vertices that is colored
during initialization (blue), using the shortcuts (green), and
conventionally (red), i.e., after all higher-priority neighbors
have been colored. On average, 52.6% of the vertices are
colored conventionally, 38.8% are colored using the
shortcuts, and 8.6% are colored during initialization. The
number of vertices colored in the initialization phase is

1

4

16

64

256

1024

4096

16384

65536

262144

1048576

0 500 1000 1500 2000 2500 3000 3500 4000

V
er

ti
ce

s
co

lo
re

d

Step

No shortcuts With shortcuts

1

4

16

64

256

1024

4096

16384

65536

262144

1048576

4194304

0 100 200 300 400 500 600 700 800 900 1000

V
er

ti
ce

s
co

lo
re

d

Step

No shortcuts With shortcuts

Both lines
overlap and end
at same point

Graph
Steps w/o
shortcuts

Steps with
shortcuts

Avg parallelism
w/o shortcuts

Avg parallelism
with shortcuts

Increase in
parallelism

2d-2e20.sym 14 12 74,898.3 87,381.3 1.17
amazon0601 55 24 7,334.4 16,808.1 2.29
as-skitter 481 73 3,526.9 23,238.6 6.59
citationCiteseer 67 20 4,007.4 13,424.8 3.35
cit-Patents 140 26 26,962.6 145,183.4 5.38
coPapersDBLP 802 338 673.9 1,599.1 2.37
delaunay_n24 25 17 671,088.6 986,895.1 1.47
europe_osm 13 11 3,916,309.1 4,628,365.3 1.18
in-2004 501 490 2,760.3 2,822.3 1.02
internet 27 13 4,616.7 9,588.5 2.08
kron_g500-logn21 3,997 509 524.7 4,120.1 7.85
r4-2e23.sym 30 17 279,620.3 493,447.5 1.76
rmat16.sym 188 30 348.6 2,184.5 6.27
rmat22.sym 644 52 6,512.9 80,659.7 12.38
soc-LiveJournal1 1,095 322 4,427.0 15,054.6 3.40
uk-2002 943 943 19,640.0 19,640.0 1.00
USA-road-d.NY 12 10 22,028.8 26,434.6 1.20
USA-road-d.USA 14 13 1,710,524.8 1,842,103.6 1.08

identical to the number of roots in the DAG. Since the
shortcuts shorten the dependence chains, they tend to be
more effective, i.e., color a larger fraction of the vertices, on
graphs with larger average degrees like kron_g500-logn21,
which has a high maximum and average degree.

Figure 8: Fraction of colors assigned by various means

6.2 Comparison with GPU Codes
This subsection compares the performance of ECL-GC to
that of leading GPU codes. We show results for CUSP and
csrcolor as well as Data-wlc and Data-pq, the two fastest
versions of Chen et al.’s algorithms described in Section 4.

6.2.1 Coloring Quality
Figure 9 shows the number of colors needed by the five
GPU codes. Lower numbers are better. The x axis lists the
input graphs and the y axis the number of colors using a
logarithmic scale. The rightmost set of bars reflects the ge-
ometric mean over all inputs.

ECL-GC, CUSP, and csrcolor are deterministic and al-
ways produce the same coloring for a given input. This is
not the case for Data-wlc and Data-pq, where the number
of colors may vary. For these codes, we show the lowest
observed number of colors out of 100 runs on the Titan V.

ECL-GC either uses the smallest or the same number of
colors for all inputs compared to the other four GPU codes.
CUSP, Data-wlc, and Data-pq yield a similar coloring qual-
ity. Csrcolor requires the largest number of colors on each
of the 18 graphs. The geometric mean is 30.6 colors for ECL-
GC, 35.0 for CUSP, 149.4 for csrcolor, 37.2 for Data-wlc, and
34.3 colors for Data-pq.

By design, the coloring of ECL-GC is that of JP with LDF,
which tends to produce a good coloring quality. As dis-
cussed in Section 4, csrcolor requires more colors because
it is based on the Cohen-Castonguay algorithm. Data-wlc
and Data-pq are based on FirstFit, which typically results in
good coloring when paired with LDF.

6.2.2 Throughput
Figures 10 and 11 present the throughput of the codes on
two GPUs. The x axis lists the inputs and the geometric
mean whereas the y axis shows the throughput in millions
of completed (colored) vertices per second on a logarithmic
scale. Throughput is a higher-is-better metric.

Figure 10 shows the throughput on the Titan V. ECL-
GC, which is our implementation with the shortcuts, is
faster than CUSP on all tested inputs. It is faster than Data-
wlc and Data-pq on 16 of the 18 graphs and faster than
csrcolor on all but one input. Based on the geometric mean,
ECL-GC is 29.9 times faster than CUSP, 5.5 times faster than
csrcolor, 3.7 times faster than Data-wlc, and 2.9 times faster
than Data-pq. Note that, in each of the few cases where the
other codes are faster, they require more colors.

We correlated the speedup of our code over the other
codes with various graph properties and found a moderate
linear correlation with both the maximum and the average
degree, which is expected because the higher the degree the
higher the chance that the algorithm must wait for higher-
priority neighbors, which is where the shortcuts can help.
In fact, our code outperforms the other codes by at least a
factor of two on all tested graphs with a maximum degree

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

initialization conventional shortcut

Figure 9: Number of colors needed by the GPU codes

1
2
4
8

16
32
64

128
256
512

1024
2048
4096

N
u

m
be

r
of

 c
ol

or
s

ECL-GC CUSP csrcolor Data-wlc Data-pq

above 4000. On the kron_g500-logn21 graph, which has the
highest average and maximum degree of the graphs listed
in Table 3, ECL-GC is 17 times faster than Data-pq, the sec-
ond fastest of the five GPU codes. Due to its high degree,
this graph requires the most work per vertex, which is why
it results in a low throughput for all tested codes.

For reference, Figure 10 also shows results for “ECL-GC

w/o shortcuts”, which is ECL-GC with the shortcut code
disabled. Its geometric-mean performance is slightly higher
than that of the other tested codes, meaning our baseline
implementation is on par with the best codes from the lit-
erature. Section 6.2.3 discusses the performance of the two
shortcuts in more detail.

Figure 11 shows throughput results for the older Titan

X GPU. ECL-GC outperforms CUSP on all tested inputs. It
outperforms Data-wlc and Data-pq on 15 and csrcolor on
17 of the 18 graphs. Again, in all cases where the other
codes are faster, they use more colors. Based on the geo-
metric mean, ECL-GC is 12.4 times faster than CUSP, 3.0
times faster than csrcolor, 2.1 times faster than Data-wlc,
and 1.9 times faster than Data-pq.

6.2.3 Shortcut Performance
Table 5 presents the performance benefit due to the short-
cuts. It shows the speedups attained when using only
Shortcut 1 (+SC1), only Shortcut 2 (+SC2), and both
shortcuts together (+SC1+SC2) relative to our code without
any shortcuts (baseline).

On all tested inputs, using both shortcuts together is al-
ways faster than using no shortcut. In the worst case, the
shortcuts only improve performance by a factor of 1.027, in
the best case by over a factor of 70, and in the mean by a
factor of 2.63. These self-relative speedups demonstrate the
practical utility of the shortcuts.

Shortcut 1 provides most of the benefit. Adding it never
hurts on the tested inputs, helps by a factor of over 2.5 in
the mean and by more than a factor of 70 in the best case.
Its benefit strongly correlates with the average degree of
the graph (r = 0.82), which is why it helps the most on
kron_g500-logn21, our highest-degree graph.

Interestingly, adding Shortcut 2 on top of Shortcut 1
hurts in three cases (by up to 2%) and adding it on top of
the baseline also hurts in three cases (by up to 1.1%). In the
mean, adding Shortcut 2 helps by a few percent and, in the
best case, by 25.8%. There are two primary reasons for why

Figure 11: Throughput in millions of completed vertices per second on a Titan X

0.5
1
2
4
8

16
32
64

128
256
512

1024
2048

M
il

li
on

s
of

 v
er

ti
ce

s
p

er
 s

ec
on

d

ECL-GC CUSP csrcolor Data-wlc Data-pq

Figure 10: Throughput in millions of completed vertices per second on a Titan V

0.5
1
2
4
8

16
32
64

128
256
512

1024
2048
4096

M
il

li
on

s
of

 v
er

ti
ce

s
p

er
 s

ec
on

d

ECL-GC ECL-GC w/o shortcuts CUSP csrcolor Data-wlc Data-pq

Table 5: Speedup on the Titan V due to the shortcuts rela-
tive to the baseline code without any shortcuts

Shortcut 2 is not more effective. First, our implementation
does not use it on vertices of degree ≥ 32 (under 20% of the
vertices in all but one graph, cf. Table 3). Second, employing
it does not reduce the number of steps needed until a vertex
can be colored. It only makes later steps a little faster be-
cause they may be able to skip checking a few neighbors.

Executing the shortcut code itself incurs overhead. If
this overhead cannot be amortized, there is a net slowdown,
which explains the few cases where adding Shortcut 2 low-
ers the performance. Fortunately, the benefit of either
shortcut is typically high enough to more than amortize
this overhead, thus leading to speedups.

6.3 Comparison with CPU Codes
In the following subsections, we compare the performance
of ECL-GC running on the Titan V to that of the leading
parallel and serial CPU codes. Figures 12 and 14 show the
number of colors. The x axis lists the inputs and the geo-
metric mean whereas the y axis lists the number of colors
using a logarithmic scale. Figures 13 and 15 show the
throughput. The x axis again lists the input graphs and the
geometric mean whereas the y axis lists the throughput in
completed vertices per second on a logarithmic scale.

input baseline +SC1 +SC2 +SC1+SC2

2d-2e20.sym 1.000 1.046 1.005 1.092
amazon0601 1.000 1.236 1.075 1.285
as-skitter 1.000 3.957 1.001 4.198
citationCiteseer 1.000 1.751 1.057 1.816
cit-Patents 1.000 2.015 1.258 2.123
coPapersDBLP 1.000 4.410 1.004 4.407
delaunay_n24 1.000 1.126 1.037 1.168
europe_osm 1.000 1.025 0.999 1.028
in-2004 1.000 1.051 1.019 1.030
internet 1.000 1.248 1.016 1.284
kron_g500-logn21 1.000 70.378 1.004 70.179
r4-2e23.sym 1.000 1.250 1.110 1.339
rmat16.sym 1.000 5.112 1.008 5.251
rmat22.sym 1.000 9.958 0.989 10.163
soc-LiveJournal1 1.000 16.026 0.996 16.028
uk-2002 1.000 2.590 1.010 2.612
USA-road-d.NY 1.000 1.000 1.014 1.027
USA-road-d.USA 1.000 1.068 1.003 1.073

geo mean 1.000 2.570 1.032 2.632

Figure 13: Throughput in millions of completed vertices per second on 20 Xeon cores (Titan V for ECL-GC)

1
2
4
8

16
32
64

128
256
512

1024
2048
4096

M
il

li
on

s
of

 v
er

ti
ce

s
p

er
 s

ec
on

d

ECL-GC ECL-GC with CPU/GPU transfer GMMP-NT FirstFit Grappolo

Figure 12: Number of colors needed by the parallel CPU codes as well as by ECL-GC

1

2

4

8

16

32

64

128

256

512

1024

N
u

m
be

r
of

 c
ol

or
s

ECL-GC GMMP-NT FirstFit Grappolo

6.3.1 Parallel CPU Performance Comparison
This subsection compares the throughput and coloring
quality of ECL-GC to leading parallel CPU codes. We show
results for ColPack’s GMMP algorithm with the natural
(NT) heuristic priority [14], the FirstFit implementation by
Chen et al. [4], and the graph-coloring code Grappolo [15].

Figure 12 shows the number of colors assigned by the
parallel CPU codes and by ECL-GC. As the number of col-
ors may vary from run to run for GMMP-NT, FirstFit, and
Grappolo, we present the minimum number observed. ECL-
GC uses fewer colors than ColPack’s GMMP-NT on all
tested inputs. It uses the smallest or the same number of
colors as the FirstFit and Garppolo codes on 11 of the 18
inputs. On the remaining seven inputs, those two codes re-
quire one fewer color than ECL-GC’s LDF heuristic. The
geometric mean is 30.6 colors for ECL-GC, 36.0 for GMMP-
NT, 34.3 for FirstFit, and 34.0 colors for Grappolo.

Figure 13 shows the throughput of the parallel CPU
codes on the dual 10-core Xeon system. We ran the codes
using both 20 and 40 threads. The results in Figure 13 are
for 40 threads since hyperthreading yields a shorter run-
time in most cases. ECL-GC running on the Titan V is faster
than GMMP-NT and Grappolo on all tested inputs and

faster than FirstFit on 15 of the 18 inputs. Based on the ge-
ometric mean, ECL-GC is 7.2 times faster than GMMP-NT,
4.0 times faster than FirstFit, and 7.8 times faster than Grap-
polo on the tested graphs.

For reference, Figure 13 also shows results for “ECL-GC
with CPU/GPU transfer”, which include the time to send
the graph to the GPU and the resulting color information
back to the CPU. This lowers the geometric-mean through-
put by a factor of 2.8, meaning it takes longer to transfer
the data than to compute the coloring. Nevertheless, on
most of the inputs and in the mean, the throughput is still
higher than that of the parallel CPU codes. Of course, this
depends on the performance ratio between the CPU and the
GPU as well as the speed of the link between the two de-
vices. On our system and graphs, it is often faster to send
the data to the GPU, perform the coloring there, and send
the result back than to perform the coloring on the CPU.
Note that graph coloring is generally a step of a larger com-
putation. If the previous and next steps are also executed
on the GPU, no data transfers are needed.

6.3.2 Serial CPU Performance Comparison
This subsection compares the throughput and coloring
quality of ECL-GC to leading serial codes. We show results

Figure 15: Throughput in millions of completed vertices per second on a Xeon core (Titan V for ECL-GC)

0.5
1.0
2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0
512.0

1024.0
2048.0
4096.0

M
il

li
on

s
of

 v
er

ti
ce

s
p

er
 s

ec
on

d

ECL-GC JP-D1 FirstFit Boost

Figure 14: Number of colors needed by the serial CPU codes as well as by ECL-GC

1

2

4

8

16

32

64

128

256

512

1024

N
u

m
be

r
of

 c
ol

or
s

ECL-GC JP-D1 FirstFit Boost

for ColPack’s sequential JP code with its fastest heuristic
(D1) [7], the serial FirstFit code by Chen et al. [4], and the
graph-coloring code in the Boost library [1][26].

Figure 14 presents the number of colors assigned by the
serial codes and by ECL-GC. ECL-GC uses fewer or the
same number of colors as serial FirstFit and Boost on all
tested inputs. ECL-GC’s and JP-D1’s coloring quality is al-
most identical. This is not surprising given that JP-D1 and
ECL-GC both implement the Jones-Plassmann algorithm
with the largest-degree-first heuristic. The small discrepan-
cies on three inputs are due to different tie breakers. The
geometric mean is 30.6 colors for ECL-GC, 30.9 colors for
ColPack’s JP-D1, and 35.0 colors for both FirstFit and Boost.

Figure 15 shows the serial throughput on the Xeon sys-
tem as well as that of ECL-GC running on the Titan V. ECL-
GC is faster on all inputs expect on in-2004. On this graph,
on which the shortcuts are nearly ineffective and the aver-
age parallelism is low (cf. Table 4), ECL-GC is 16% slower
than FirstFit. Based on the geometric mean, ECL-GC is 42.9
times faster than JP-D1, 13.2 times faster than FirstFit, and
324 times faster than Boost.

7 Summary and Conclusions

Graph coloring is an assignment of colors to the vertices of
a graph such that no two adjacent vertices have the same
color. It is an important step in many applications and is
used, for example, in data mining, image processing, net-
working, resource allocation, and process scheduling.

We present a deterministic parallel graph-coloring ap-
proach that improves upon the Jones-Plassmann algorithm
with the largest-degree-first heuristic. It incorporates new
algorithmic optimizations called “shortcuts” to increase the
parallelism (by 3.4 times on average). Under certain condi-
tions, these shortcuts enable the code to break data depend-
encies without changing the ultimate color assignment.

The shortcuts leverage intermediate coloring infor-
mation from neighboring vertices, which sometimes allows
to correctly color a vertex even before all its higher-priority
neighbors have been colored. The shortcuts are particularly
useful for high-degree vertices. The paper also presents op-
timizations to efficiently implement these shortcuts.

We implemented our approach in CUDA. The code is
available at https://cs.txstate.edu/~burtscher/research/ECL-
GC/. Running on a Titan V, it is on average 2.9 times faster
than the fastest prior GPU code, 4.0 times faster than the
fastest OpenMP code running on 20 Xeon cores, and 13
times faster than the fastest serial code we could find. Of
course, these speedups are system dependent. Our code
uses as few or fewer colors as the best GPU codes. Whereas
there are a few inputs on which other GPU codes

outperform ours in throughput, they require more colors in
those cases.

Comparing the performance across two different GPU
generations, we find that our code is 3.1 times faster on the
newer GPU whereas the other GPU codes are only up to
twice faster. The better scaling of our code to a newer GPU
may indicate that it will outperform the other codes by
larger margins on future GPUs.

In conclusion, we hope our work will help improve the
performance of many applications that incorporate graph
coloring as a key step and inspire researchers to develop
similar shortcut ideas to increase the amount of parallelism
in other important (graph) algorithms.

Acknowledgments
We thank the anonymous reviewers for their feedback,
which helped improve our paper. This work was supported
in part by the National Science Foundation under award
#1406304 and by equipment donations from Nvidia.

References
[1] Boost,

https://www.boost.org/doc/libs/1_63_0/libs/graph_paral-
lel/doc/html/index.html, last accessed on 12/28/2019.

[2] Çatalyürek, Ümit V., John Feo, Assefaw H. Gebremedhin,
Mahantesh Halappanavar, and Alex Pothen. “Graph color-
ing algorithms for multi-core and massively multithreaded
architectures.” Parallel Computing 38, no. 10-11 (2012): 576-
594.

[3] Chen and Li, https://github.com/chenxuhao/csrcolor, last
accessed on 12/28/2019.

[4] Chen, Xuhao, Pingfan Li, Jianbin Fang, Tao Tang, Zhiying
Wang, and Canqun Yang. “Efficient and high‐quality sparse
graph coloring on GPUs.” Concurrency and Computation:
Practice and Experience 29, no. 10 (2017): e4064.

[5] Cohen, Jonathan and Patrice Castonguay. “Efficient graph
matching and coloring on the GPU.” In GPU Technology
Conference, pp. 1-10. 2012.

[6] Coleman, Thomas F. and Arun Verma. “The efficient com-
putation of sparse Jacobian matrices using automatic differ-
entiation.” SIAM Journal on Scientific Computing 19, no. 4
(1998): 1210-1233.

[7] ColPack, Combinatorial Scientific Computing and Petascale
Simulations, https://github.com/CSCsw/ColPack, last ac-
cessed on 12/28/2019.

[8] Cusparse library. NVIDIA Corporation, Santa Clara, Califor-
nia. 2014.

[9] Dalton, S., and N. Bell. “CUSP: A C++ templated sparse ma-
trix library.” http://cusplibrary.github.io, last accessed on
12/28/2019.

[10] DIMACS, Center for Discrete Mathematics and Theoretical
Computer Science, http://www.dis.uniroma1.it/chal-
lenge9/download.shtml, last accessed on 12/28/2019.

[11] ECL-GC, Texas State University,
https://cs.txstate.edu/~burtscher/research/ECL-GC/, last ac-
cessed on 12/28/2019.

[12] Galois, ISS - The University of Texas at Austin,
https://iss.oden.utexas.edu/?p=projects/galois, last accessed
on 12/28/2019.

[13] Garey, Michael R., and David S. Johnson. “Computers and
Intractability”, vol. 29. W. H. Freeman and Company, New
York (2002): 1-99.

[14] Gebremedhin, Assefaw H., Duc Nguyen, Mostofa Ali Pat-
wary, and Alex Pothen. “ColPack: Graph coloring software
for derivative computation and beyond.” ACM Transactions
on Mathematical Software, 40 (1), 30, 2013.

[15] Grappolo, the Grappolo graph toolkit,
https://github.com/luhowardmark/GrappoloTK, last ac-
cessed on 12/28/2019.

[16] Grosset, Andre Vincent Pascal, Peihong Zhu, Shusen Liu,
Suresh Venkatasubramanian, and Mary Hall. “Evaluating
graph coloring on GPUs.” ACM SIGPLAN Notices 46, no. 8
(2011): 297-298.

[17] Hasenplaugh, William, Tim Kaler, Tao B. Schardl, and
Charles E. Leiserson. “Ordering heuristics for parallel graph
coloring.” In 26th ACM Symposium on Parallelism in Algo-
rithms and Architectures, pp. 166-177. ACM, 2014.

[18] Huang, G., and Weerakorn Ongsakul. “An efficient task al-
location algorithm and its use to parallelize irregular Gauss-
Seidel type algorithms.” In Proceedings of 8th International
Parallel Processing Symposium, pp. 497-501. IEEE, 1994.

[19] Jones, Mark T., and Paul E. Plassmann. “A parallel graph
coloring heuristic.” SIAM Journal on Scientific Computing 14,
no. 3 (1993): 654-669.

[20] Luby, Michael. “A simple parallel algorithm for the maximal
independent set problem.” SIAM journal on computing 15,
no. 4 (1986): 1036-1053.

[21] Martínez-Bazan, Norbert, M. Ángel Águila-Lorente, Victor
Muntés-Mulero, David Dominguez-Sal, Sergio Gómez-Vil-
lamor, and Josep-L. Larriba-Pey. “Efficient graph

management based on bitmap indices.” In 16th International
Database Engineering & Applications Symposium, pp. 110-
119. ACM, 2012.

[22] Matula, David W., George Marble, and Joel D. Isaacson.
“Graph coloring algorithms.” In Graph theory and compu-
ting, pp. 109-122. Academic Press, 1972.

[23] Merrill, Duane, Michael Garland, and Andrew Grimshaw.
“Scalable GPU graph traversal.” In ACM SIGPLAN Notices,
vol. 47, no. 8, pp. 117-128. ACM, 2012.

[24] Nasre, Rupesh, Martin Burtscher, and Keshav Pingali.
“Data-driven versus topology-driven irregular computations
on GPUs.” In 2013 IEEE International Symposium on Parallel
and Distributed Processing, pp. 463-474. IEEE, 2013.

[25] Naumov, Maxim, Patrice Castonguay, and Jonathan Cohen.
“Parallel graph coloring with applications to the incom-
plete-LU factorization on the GPU.” Nvidia White Paper,
2015.

[26] Siek, Jeremy, Andrew Lumsdaine, and Lie-Quan Lee. “The
boost graph library: user guide and reference manual.” Ad-
dison-Wesley, 2002.

[27] Singhal, Nandini, Sathya Peri, and Subrahmanyam Kal-
yanasundaram. “Practical multi-threaded graph coloring al-
gorithms for shared memory architecture.” In 18th Interna-
tional Conference on Distributed Computing and Networking,
p. 44. ACM, 2017.

[28] SNAP, Stanford Large Network Dataset Collection,
https://snap.stanford.edu/data/, last accessed on 12/28/2019.

[29] SuiteSparse Matrix Collection, https://sparse.tamu.edu/, last
accessed on 12/28/2019.

[30] Welsh, Dominic JA, and Martin B. Powell. “An upper bound
for the chromatic number of a graph and its application to
timetabling problems.” The Computer Journal 10, no. 1
(1967): 85-86.

