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Abstract
Hypergraph partitioning is used in many problem domains
including VLSI design, linear algebra, Boolean satisfiabil-
ity, and data mining. Most versions of this problem are NP-
complete or NP-hard, so practical hypergraph partitioners
generate approximate partitioning solutions for all but the
smallest inputs. One way to speed up hypergraph partitioners
is to exploit parallelism. However, existing parallel hyper-
graph partitioners are not deterministic, which is considered
unacceptable in domains like VLSI design where the same
partitions must be produced every time a given hypergraph is
partitioned.

In this paper, we describe BiPart, the first deterministic, par-
allel hypergraph partitioner. Experimental results show that
BiPart outperforms state-of-the-art hypergraph partitioners
in runtime and partition quality while generating partitions
deterministically.

CCS Concepts: • Computing methodologies→ Shared mem-
ory algorithms.

Keywords: Hypergraph Partitioning, Parallelism, Determinis-
tic Partitioning

1 Introduction
A hypergraph is a generalization of a graph in which an edge
can connect any number of nodes. Formally, a hypergraph
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(b) Bipartite graph representation

Figure 1. Example hypergraph and the corresponding
bipartite graph representation

is a tuple (𝑉 , 𝐸) where 𝑉 is the set of nodes and 𝐸 is a set
of nonempty subsets of 𝑉 called hyperedges. Graphs are a
special case of hypergraphs in which each hyperedge connects
exactly two nodes [3].

Figure 1a shows a hypergraph with 6 nodes and 4 hyper-
edges. The hyperedges are shown as colored shapes around
nodes. The degree of a hyperedge is the number of nodes it
connects. In the figure, hyperedge h1 connects nodes a, c, and
f, and it has a degree of three.

Hypergraphs arise in many application domains. In VLSI
design, circuits are often modeled as hypergraphs; nodes in
the hypergraph represent the pins of the circuit and hyper-
edges represent wires from the output pin of a gate to the input
pins of other gates [6]. In Boolean satisfiability, a Boolean
formula can be represented as a hypergraph in which nodes
represent clauses and hyperedges represent the occurrences of
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a given literal in these clauses. Hypergraphs are also used to
model data-center networks [37], optimize storage sharding
in distributed databases [20], and minimize the number of
transactions in data centers with distributed data [39].

1.1 Hypergraph Partitioning
In many of these applications, it is necessary to partition the
hypergraph into a given number of subgraphs. For example,
one of the key steps in VLSI design, called placement, as-
signs a location on the die to each gate. Good algorithms for
placement must balance competing goals: to avoid hotspots
on the chip, it is important to spread out circuit components
across the entire die but this may increase interconnect wire
lengths, reducing the rate at which the chip can be clocked.
This problem is often solved using hypergraph partitioning [6].
Hypergraph partitioning is also used to optimize logic synthe-
sis [30], sparse-matrix vector multiplication [7], and storage
sharding [20].

Formally, the k-way hypergraph partitioning problem is de-
fined as follows. Given a hypergraph G = (V, E), the number
of partitions to be created (𝑘 ≥ 2), and an imbalance param-
eter (𝜖 ≥ 0), a k-way partition 𝑃 = {𝑉1,𝑉2...,𝑉𝑘 } is said to
be balanced if it satisfies the constraint |𝑉𝑖 | ≤ (1 + 𝜖) ( |𝑉 |/𝑘).
Given a partition of the nodes, each hyperedge is assigned a
penalty equal to one less than the number of partitions that it
spans; intuitively, a hyperedge whose nodes are all in a single
partition has zero penalty, and the penalty increases as the
number of partitions spanned by the hyperedge increases. The
penalty for the partition is defined to be the sum of the penal-
ties of all hyperedges. Formally, 𝑐𝑢𝑡 (𝐺, 𝑃) = ∑

𝑒 (𝜆𝑒 (𝐺, 𝑃)−1),
where 𝜆𝑒 (𝐺, 𝑃) is the number of partitions that hyperedge 𝑒
spans. The goal of hypergraph partitioning is to find a bal-
anced partition that has a minimal cut. In some applications,
hyperedges have weights, in which case the contribution to
𝑐𝑢𝑡 (𝐺, 𝑃) from each hyperedge 𝑒 in the definition above is
multiplied by the weight of 𝑒.

Many partitioners produce two partitions (often called bi-
partitions), and this step is repeated recursively to obtain the
required number of partitions.

Although graph partitioners have been studied extensively
in the literature [13, 15, 23, 24], there has been relatively little
work on hypergraph partitioning. In principle, graph partition-
ers can be used for hypergraph partitioning by converting
a hypergraph into a graph, which can be accomplished by
replacing each hyperedge with a clique of edges connecting
the same nodes. However, this transformation increases the
memory requirements of the partitioner substantially if there
are many large hyperedges and may lead to poor-quality par-
titions [6]. Therefore, it is often better to treat hypergraphs
separately from graphs. One way to represent a hypergraph 𝐻

concretely is to use a bipartite graph 𝐺 as shown in Figure 1.
In 𝐺 , one set of nodes represents the hyperedges in 𝐻 , the
other set of nodes represents the nodes in 𝐻 , and an edge
(𝑢, 𝑣) in G is used to represent the fact that, in the hypergraph,

the hyperedge represented by 𝑢 contains the node represented
by 𝑣 .

An ideal hypergraph partitioner has three properties.

1. The partitioner should be capable of partitioning large
hypergraphs with millions of nodes and hyperedges,
producing high-quality partitions within a few seconds.

2. In some domains like VLSI circuit design, the parti-
tioner must be deterministic; i.e., for a given hyper-
graph, it must produce the same partitions every time
it is run even if the number of threads is changed from
run to run. For example, the manual post-processing in
VLSI design after partitioning optimizes the placement
of the cells within each partition. Many placement tools
can do efficient placement only for standard cells, and
if non-standard cells are used, the placement may need
to be optimized manually. Deterministic partitioning is
essential to avoid having to redo the placement.

3. Since hypergraph partitioners are based on heuristics,
they have parameters whose optimal values may de-
pend on the hypergraph to be partitioned. Hypergraph
partitioners should permit design-space exploration of
these parameters by sophisticated users.

Most variations of graph and hypergraph partitioning are
either NP-complete or NP-hard [1], so heuristic methods are
used in practice to find good solutions in reasonable time.
Prior work in this area is surveyed in Section 2 [7, 10, 11, 16,
22, 23, 26, 36].

In our experience, existing partitioners lack one or more
of the desirable properties listed above. Many high-quality
hypergraph partitioners like HMetis [22], PaToH [7], and
KaHyPar [16] are serial programs. For some of the hyper-
graphs in our test suite, these partitioners either run out of
memory or time out after an hour, as described in Section 4.

Parallel hypergraph partitioners like Zoltan [11] and the
Social Hash Partitioner from Facebook [20] can handle all
hypergraphs in our test suite, but they are nondeterministic
(we have observed that, for a hypergraph with 9 million nodes,
the edge-cut in the output of Zoltan can vary by more than
70% from run to run when using different numbers of cores).
It is important to note that this nondeterminism does not arise
from incorrect synchronization of parallel reads and writes
but from under-specification in the program; for example, the
program may make a random selection from a set, and al-
though it is correct to choose any element of that set, different
choices may produce different outputs. Parallel programming
systems may exploit such don’t-care nondeterminism to im-
prove parallel performance [35], but parallel partitioners with
don’t-care nondeterminism will violate the second require-
ment listed above.
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1.2 BiPart
These limitations led us to design and implement BiPart, a
parallel, deterministic hypergraph partitioner that can parti-
tion all the hypergraphs in our test suite in just a few seconds.
This paper makes the following contributions.

• We describe BiPart, an open-source framework for par-
allel, deterministic hypergraph partitioning.
• We describe application-level mechanisms that ensure

that partitioning is deterministic even though the run-
time exploits don’t-care nondeterminism for perfor-
mance.
• We describe a novel strategy for parallelizing multiway

partitioning.
• We show experimentally that BiPart outperforms exist-

ing hypergraph partitioners in either partition quality
or running time, and usually outperforms them in both
dimensions.

The rest of the paper is organized as follows. Section 2
describes background and related work on hypergraph parti-
tioning. Section 3 describes BiPart, our deterministic parallel
hypergraph partitioner. Section 4 presents and analyzes the
experimental results on a shared-memory NUMA machine.
Section 5 concludes the paper.

2 Prior Work on Graph and Hypergraph
Partitioning

There is a large body of work on graph and hypergraph parti-
tioners, so we discuss only the most closely related work in
this section. It is useful to divide partitioners into geometry-
based partitioners (Sec. 2.1) and topology-based partitioners
(Sec. 2.2). Multilevel partitioning, discussed in Sec. 2.3, adds
a different dimension to partitioning. BiPart uses a topology-
based multilevel partitioning approach.

2.1 Geometry-based Partitioning
In some domains such as finite elements, the nodes of the
graph are points in a metric space such as Rd, so we can
compute the distance between two nodes. The geometric
notion of proximity of nodes can be used to partition the graph
using techniques like k-nearest-neighbors (KNN) [29]. A
sophisticated geometric partitioner was introduced by Miller,
Teng, and Vavasis [28]. This partitioner stereographically
projects nodes from R𝑑 to a sphere in R𝑑+1. The sphere is
bisected by a suitable great circle, creating the partitions, and
the nodes are projected back to R𝑑 to obtain the partitions.

When there is no geometry associated with the nodes of
a graph, embedding techniques can be used to map nodes to
points in R𝑑 in ways that try to preserve proximity of nodes
in the graph; geometry-based partitioners can then be used to
partition the embedded graph.

One powerful but expensive embedding technique is based
on computing the Fiedler vector of the Laplacian matrix of a

graph [13]. The Fiedler vector is the eigenvector correspond-
ing to the second smallest eigenvalue of the Laplacian matrix.
The Fiedler vector is a real vector (it can be considered an em-
bedding of the nodes in R1) and the signs of its entries can be
used to determine how to partition the graph. Several spectral
partitioners based on this idea were implemented and studied
in the mid-90’s [36]. They can produce good graph partitions
since they take a global view of the graph, but they are not
practical for large graphs.

Heuristic embedding techniques known as node2vec or
DeepWalk are currently receiving a lot of attention in the
machine-learning community [14, 33]. These techniques are
based on random walks in the graph to estimate proximity
among nodes, and these estimates are used to compute the em-
bedding. Techniques like stochastic gradient descent (SGD)
are employed to iteratively improve the embedding.

Unfortunately, all embedding techniques we know of are
computationally intensive so they cannot be used for large
graphs without geometry if partitioning is to be done quickly.

2.2 Topology-based Partitioning
In contrast to geometry-based partitioners, topology-based
partitioners work only with the connectivity of nodes in the
graph or hypergraph. These partitioners generally start with
some heuristically chosen partitioning and then apply local
refinements to improve the balance or the edge cut until a
termination condition is reached.

Kernighan and Lin invented one of the first practical graph
partitioners. An initial bipartition of the graph is obtained
using a technique such as a breadth-first traversal of the graph,
starting from an arbitrary node and terminating when half the
nodes have been touched. Given such a partitioning of the
graph that is well balanced, the algorithm (usually called the
KL algorithm) attempts to reduce the cut by swapping pairs
of nodes between the partitions until a termination criterion
is met [24].

Fiduccia and Mattheyses generalized this algorithm to hy-
pergraphs (their algorithm is usually referred to as the FM
algorithm) [12]. It starts by computing the gain values for
each node, where gain refers to the change in the edge cut if
a node were moved to the other partition. The algorithm exe-
cutes in rounds; in each round, a subset of nodes are moved
from their current partition to the other partition. A greedy
algorithm is used to identify this subset: the node with the
highest gain value is selected to be moved, the gain values
of its neighbors are updated accordingly, and the process is
repeated with the remaining unmoved nodes until all nodes
are moved exactly once. At the end of every round, the algo-
rithm picks the maximal prefix of these moves that results in
the highest gain and moves the rest of the nodes back to their
original partition. The overall algorithm terminates when no
gain is achieved in the current round.

Experimental studies show that the quality of the parti-
tions produced by these techniques depends critically on the
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quality of the initial partition. Intuitively, these algorithms
perform local optimization, so they can improve the quality
of a good initial partition but they cannot find a high qual-
ity partition if the initial partition is poor, since this requires
global optimization.

2.3 Multilevel Graph Partitioning
Multilevel partitioning techniques attempt to circumvent the
limitations of the algorithms described above rather than re-
place them with an entirely new algorithm. This approach
was first explored for graphs [2, 5, 23] and later extended
to hypergraphs in the HMetis partitioner [22]. Since every
graph is a hypergraph, we use the term hypergraph to include
graphs in the rest of the paper.

Multilevel hypergraph partitioning consists of three phases:
coarsening, initial partitioning, and refinement.

• Coarsening: For a given hypergraph 𝐺 𝑓 , a coarsened
hypergraph 𝐺𝑐 is created by merging pairs of nodes
in 𝐺 𝑓 . We call 𝐺𝑐 the coarsened hypergraph and 𝐺 𝑓

the fine-grained hypergraph. This process can be ap-
plied recursively to the coarsened hypergraph, creating
a chain of hypergraphs in which the first hypergraph
is the initial hypergraph and the final hypergraph is
a coarsened hypergraph that meets some termination
criterion (e.g., its size is below some threshold).
• Initial partitioning: The coarsest hypergraph is parti-

tioned using any of the techniques discussed in Sec-
tions 2.1 and 2.2.
• Refinement: For each pair 𝐺𝑐 and 𝐺 𝑓 , the partitioning

of 𝐺𝑐 is projected onto 𝐺 𝑓 and then refined, starting
from the most coarsened hypergraph and finishing with
the input hypergraph.

Various heuristics have been implemented for these three
phases. For example, heavy-edge matching, where a node
tries to merge with the neighbor with which it shares the
heaviest weighted edge, is widely used in coarsening [23].
Techniques frequently used in refinement include swapping
pairs of nodes from different partitions, as in the KL algo-
rithm, or moving nodes from one partition to another, as in
the FM algorithm. Most of these heuristics were designed for
sequential implementations so they cannot be used directly in
a parallel implementation.

2.4 Parallel Hypergraph Partitioning
Hypergraph partitioners should be parallelized to prevent
them from becoming the performance bottleneck in hyper-
graph processing. Zoltan [11] and Parkway [38] are parallel
hypergraph partitioners based on the multilevel scheme. Hy-
perSwap [40] is a distributed algorithm that partitions hyper-
edges instead of nodes. The Social Hash partitioner [20] is
another distributed partitioner for balanced k-way hypergraph
partitioning.

One disadvantage of these parallel hypergraph partitioners
is that their output is nondeterministic. For example, in the
coarsening phase, it may be desirable to merge a given node𝑉1
with either node 𝑉2 or node 𝑉3. In a parallel implementation,
slight variations in the internal timing between executions
may result in choosing different nodes for merging, producing
different partitions of the same input graph. However, many
applications require deterministic partitioning, as discussed
in Section 1.

2.5 Ensuring Determinism
The problem of ensuring deterministic execution of parallel
programs with don’t-care nondeterminism has been studied at
many abstraction levels. At the systems level, there has been a
lot of work on ensuring that parallel threads communicate in
a deterministic manner [9, 18, 21]. For many programs, this
ensures deterministic output if the program is executed on the
same number of threads in every run. However, it does not
address our requirement that the output of the partitioner must
be the same even if the number of threads on which it executes
is different in different runs. Moreover, these solutions usually
result in a substantial slowdown [9, 32].

For nested task-parallel programs, an approach called inter-
nal determinism has been proposed to ensure that the program
is executed in deterministic steps, thereby ensuring that the
output is deterministic as well [4]. The Galois system solves
the determinism problem in its task scheduler [32], which
finds independent sets of tasks in an implicitly constructed
interference graph. To guarantee a deterministic schedule,
the independent set must be selected in a deterministic fash-
ion. This is achieved without building an explicit interference
graph. The neighborhood items of a task are marked with the
task ID, and ownership of neighborhood items with lower
ID values are stolen during the marking process. An inde-
pendent set is then constructed by selecting the tasks whose
neighborhood locations are all marked with their own ID
values.

Both these solutions guarantee that the output does not
depend on the number of threads used to execute the pro-
gram. However, our experiments showed that these generic,
application-agnostic solutions are too heavyweight to parti-
tion real-world hypergraphs. We instead devise a lightweight
application-specific technique for ensuring determinism with
substantially less overhead as described in Section 3.

3 BiPart: A Deterministic Parallel
Hypergraph Partitioner

This sections describes BiPart, our deterministic parallel mul-
tilevel hypergraph partitioner. BiPart produces a bipartition of
the hypergraph, and it is used recursively on these partitions
to produce the desired number of partitions.
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Figure 2. Multi-node coarsening: (a) a hypergraph with 3 hyperedges, h1, h2, and h3 (left). (b) multi-node matching matches
nodes within a hypergraph (center). (c) merging matched nodes coarsen hypergraph (right).

Algorithm 1 Parallel Matching Policy

Input: 𝑓 𝑖𝑛𝑒𝐺𝑟𝑎𝑝ℎ, 𝑝𝑜𝑙𝑖𝑐𝑦;
/* Initialize node priorities */

1: for all nodes 𝑛𝑜𝑑𝑒 ∈ 𝑓 𝑖𝑛𝑒𝐺𝑟𝑎𝑝ℎ in parallel do
2: 𝑛𝑜𝑑𝑒.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ←∞
3: 𝑛𝑜𝑑𝑒.𝑟𝑎𝑛𝑑 ←∞
4: 𝑛𝑜𝑑𝑒.ℎ𝑒𝑑𝑔𝑒𝑖𝑑 ←∞

/* Assign priorities based on the policy (e.g. low de-
gree hyperedges) */

5: for all hyperedges ℎ𝑒𝑑𝑔𝑒 ∈ 𝑓 𝑖𝑛𝑒𝐺𝑟𝑎𝑝ℎ in parallel do
6: ℎ𝑒𝑑𝑔𝑒.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← 𝑑𝑒𝑔𝑟𝑒𝑒 (ℎ𝑒𝑑𝑔𝑒)
7: ℎ𝑒𝑑𝑔𝑒.𝑟𝑎𝑛𝑑 ← ℎ𝑎𝑠ℎ(ℎ𝑒𝑑𝑔𝑒.𝑖𝑑)
8: for 𝑛𝑜𝑑𝑒 ∈ ℎ𝑒𝑑𝑔𝑒 do
9: 𝑛𝑜𝑑𝑒.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← 𝑎𝑡𝑜𝑚𝑖𝑐𝑀𝑖𝑛(𝑛𝑜𝑑𝑒.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦,

10: ℎ𝑒𝑑𝑔𝑒.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)
/* Assign a second priority (hash of hedge id) */

11: for all hyperedges ℎ𝑒𝑑𝑔𝑒 ∈ 𝑓 𝑖𝑛𝑒𝐺𝑟𝑎𝑝ℎ in parallel do
12: for node ∈ hedge do
13: if ℎ𝑒𝑑𝑔𝑒.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 == 𝑛𝑜𝑑𝑒.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 then
14: 𝑛𝑜𝑑𝑒.𝑟𝑎𝑛𝑑 ← 𝑎𝑡𝑜𝑚𝑖𝑐𝑀𝑖𝑛(𝑛𝑜𝑑𝑒.𝑟𝑎𝑛𝑑,
15: ℎ𝑒𝑑𝑔𝑒.𝑟𝑎𝑛𝑑)

/* Assign each node to its incident hyperedge with
highest priority */

16: for all hyperedges ℎ𝑒𝑑𝑔𝑒 ∈ 𝑓 𝑖𝑛𝑒𝐺𝑟𝑎𝑝ℎ in parallel do
17: for node ∈ hedge do
18: if ℎ𝑒𝑑𝑔𝑒.𝑟𝑎𝑛𝑑 == 𝑛𝑜𝑑𝑒.𝑟𝑎𝑛𝑑 then
19: 𝑛𝑜𝑑𝑒.ℎ𝑒𝑑𝑔𝑒𝑖𝑑 ← 𝑎𝑡𝑜𝑚𝑖𝑐𝑀𝑖𝑛(𝑛𝑜𝑑𝑒.ℎ𝑒𝑑𝑔𝑒𝑖𝑑,
20: ℎ𝑒𝑑𝑔𝑒.𝑖𝑑)

3.1 Coarsening
The goal of coarsening is to create a series of smaller hyper-
graphs until a small enough hypergraph is obtained that can
be partitioned using a simple heuristic. Intuitively, coarsening
finds nodes that should be assigned to the same partition and
merges them to obtain a smaller hypergraph. However, it is
important to reduce the size of hyperedges as well since this
enables the subsequent refinement phase to be more effec-
tive (FM and related algorithms are most effective with small
hyperedges).

Algorithm 2 Parallel Coarsening

Input: 𝑓 𝑖𝑛𝑒𝐺𝑟𝑎𝑝ℎ, 𝑝𝑜𝑙𝑖𝑐𝑦; Output: 𝑐𝑜𝑎𝑟𝑠𝑒𝐺𝑟𝑎𝑝ℎ
1: Find a multi-node matching 𝑀 of 𝑓 𝑖𝑛𝑒𝐺𝑟𝑎𝑝ℎ using Al-

gorithm 1
/* Merge nodes of the finer graph */

2: for all hyperedges ℎ𝑒𝑑𝑔𝑒 ∈ 𝑓 𝑖𝑛𝑒𝐺𝑟𝑎𝑝ℎ in parallel do
3: 𝑆: Set of nodes that are matched to ℎ𝑒𝑑𝑔𝑒 in 𝑀

4: if |𝑆 | > 1 then
5: Merge nodes in 𝑆

6: 𝑁 : node in 𝑆 with lowest id
7: for all 𝑛𝑜𝑑𝑒 ∈ 𝑆 do
8: 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑛𝑜𝑑𝑒) ← 𝑁

/* Merge singleton nodes with an already merged
node */

9: for all hyperedges ℎ𝑒𝑑𝑔𝑒 ∈ 𝑓 𝑖𝑛𝑒𝐺𝑟𝑎𝑝ℎ in parallel do
10: 𝑆: Set of nodes that are matched to ℎ𝑒𝑑𝑔𝑒 in 𝑀

11: if |𝑆 | = 1 then
12: 𝑢: node in set 𝑆
13: if exists an already merged node 𝑣 ∈ ℎ𝑒𝑑𝑔𝑒 then
14: 𝑣 : Merged node in hedge with smallest weight

15: Merge node 𝑢 with 𝑣

16: 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢) ← 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣)
/* Self merge singleton nodes */

17: else
18: Create new node 𝑢 ′ in 𝑐𝑜𝑎𝑟𝑠𝑒𝐺𝑟𝑎𝑝ℎ

19: 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢) ← 𝑢 ′

/* Create hyperedges in the coarsened graph */
20: for all hyperedges ℎ𝑒𝑑𝑔𝑒 ∈ 𝑓 𝑖𝑛𝑒𝐺𝑟𝑎𝑝ℎ in parallel do
21: 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ← ∅
22: for all 𝑛𝑜𝑑𝑒 ∈ ℎ𝑒𝑑𝑔𝑒 do
23: if 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑛𝑜𝑑𝑒) ∉ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 then
24: 𝑝𝑎𝑟𝑒𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑛𝑜𝑑𝑒))
25: if |𝑝𝑎𝑟𝑒𝑛𝑡𝑠 | > 1 then
26: 𝐸 ← 𝑐𝑜𝑎𝑟𝑠𝑒𝐺𝑟𝑎𝑝ℎ.𝑐𝑟𝑒𝑎𝑡𝑒𝐻𝑦𝑝𝑒𝑟𝑒𝑑𝑔𝑒 ()
27: 𝑝𝑎𝑟𝑒𝑛𝑡 (ℎ𝑒𝑑𝑔𝑒) ← 𝐸

28: for all 𝑛𝑜𝑑𝑒 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 do
29: 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑁𝑜𝑑𝑒𝐼𝑛𝐸𝑑𝑔𝑒 (𝐸, 𝑛𝑜𝑑𝑒)
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Table 1. Matching policies for multi-node matching

Policy Policy Description
LDH Hyperedges with lower degree have higher priority
HDH Hyperedges with higher degree have higher priority
LWD Lower weight hyperedges have higher priority
HWD Higher weight hyperedges have higher priority
RAND Priority assigned by a deterministic hash of ID value

Coarsening can be described using the idea of matchings
from graph theory [3].
Hyperedge matching: A hyperedge matching of a hyper-

graph 𝐻 is an independent set of hyperedges such that
no two of them have a node in common. In Figure 1,
{h3, h4} is a hyperedge matching.

Node matching: A node matching of a hypergraph 𝐻 is a
set of node pairs (𝑢, 𝑣), where 𝑢 and 𝑣 belong to the
same hyperedge such that no two pairs have a node in
common. In Figure 1, {(a,e), (b,c)} is a node matching.

Multi-node matching: BiPart uses a modified version of
node matching called multi-node matching, where in-
stead of node pairs we have a partition of the nodes
of 𝐻 such that each node set in the partition contains
nodes belonging to one hyperedge. In Figure 1, {(a,e),
(b,c,d), (f)} is a multi-node matching.

Coarsening can be performed by contracting nodes or hy-
peredges. In the node coarsening scheme, a node matching is
first computed and the nodes in each node pair in the matching
are then merged together. Hyperedge coarsening computes
a hyperedge matching, and all nodes connected by a hyper-
edge in this matching are merged to form a single node in the
coarsened hypergraph.

In contrast, BiPart uses multi-node matching, which has
advantages over both node coarsening and hyperedge coars-
ening. A hyperedge disappears from a coarsened graph only
after all its member nodes are merged into one node. In node
coarsening, the number of hyperedges may stay roughly the
same even after merging the nodes in the matching. Similarly
in hyperedge coarsening, the hyperedge matching may have
a very small size and may result in only a small reduction in
the size of the hypergraph. The coarsening phase in BiPart
consists of two parts: finding a multi-node matching and the
coarsening algorithm.

3.1.1 Finding a Multi-node Matching. Algorithm 1 lists
the pseudocode of multi-node matching. BiPart computes
a multi-node matching in the following way: First, every
hyperedge is assigned a priority based on a matching policy
and a deterministic hash of its ID value (Lines 6 - 7). The
matching policy can be based on the degree of the hyperedge,
weight, etc. Table 1 lists the available matching policies for
BiPart. Every node is then assigned a piority value, which
is the minimum across all its incident hyperedges (Lines 8-
10). In case many hyperedges have identical degrees, every

node is assigned a second priority value (Lines 11-15) to
reduce contention. Finally, every node matches itself to one
of its incident hyperedges with the highest priority, e.g., the
hyperedge with the lowest degree and with the lowest hashed
value (in case the hyperedges have the same degree) (Lines 16-
20). The nodes that are matched to the same hyperedge are
then grouped together, resulting in a deterministic multi-node
matching.

3.1.2 Coarsening Algorithm. Algorithm 2 lists the pseu-
docode of a single phase of the coarsening algorithm used in
BiPart. We perform this step repeatedly for at most coarseTo
iterations (The default value used in BiPart for coarseTo is
25). Coarsening consists of two steps. First, BiPart merges all
the nodes that are matched to the same hyperedge into a single
node in the coarsened graph (Lines 2-8 ). For optimization
purposes, we ignore the singleton sets during the merge step
in Lines 2-8 and BiPart instead merges nodes in such sets
with a neighbor node that has been merged in the previous
step (Lines 11-16).

Figure 2 illustrates this on a hypergraph with nine nodes
and three hyperedges h1, h2, and h3. In the first step, BiPart
performs multi-node matching (priority is with the low degree
hyperedges (LDH)), Figure 2 (center). Figure 2 (right) shows
the result of this matching. The nodes in each of the disjoint
sets in the matching are merged into a single node. Note that,
since all nodes of hyperedges h1 and h3 are merged to a single
node, we can remove those hyperedges and only h2 remains
in the hypergraph.

3.1.3 Ensuring Determinism. A potential source of non-
determinism is Step 1 in the coarsening phase, which finds
a multi-node matching of the hypergraph. The approach pre-
sented in Section 3.1.1 yields a deterministic multi-node
matching. This matching is used to coarsen the graph de-
terministically.

In the Appendix, we analyze the parallel time complexity
and the parallel work of our coarsening algorithm (Algo-
rithm 2) in the CREW PRAM model [19].

3.2 Initial Partitioning

Algorithm 3 Initial Partitioning Algorithm
Input: coarsest graph 𝐺𝑥 = (𝑉𝑥 , 𝐸𝑥 )
Output: Partitions 𝑃0 and 𝑃1.

1: 𝑃0 = {}; 𝑃1 = 𝑉𝑥
2: n = |𝑉𝑥 |
3: Compute move gain values for nodes in 𝑃1 using Algorithm 4
4: while |𝑃0 | < |𝑃1 | do
5: Pick

√
𝑛 nodes from 𝑃1 with highest gain values (break ties

using node ID) and move them to 𝑃0 in parallel
6: Re-compute move gain values for nodes in 𝑃1 using Algo-

rithm 4

The goal of this step is to obtain a good bipartition of the
coarsest graph. There are many ways to accomplish this but
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the key idea in most algorithms is to maintain two sets of
nodes 𝑃0 and 𝑃1 where 𝑃0 and 𝑃1 contain the nodes assigned
to partitions 0 and 1, respectively. Iteratively, some nodes
from 𝑃1 are selected and moved to 𝑃0 (assuming 𝑃0 is smaller
than 𝑃1) until the balance condition is met.

The selection of nodes can be implemented in many ways.
A simple approach is to do a breadth-first search (BFS) of the
graph starting from some arbitrary vertex. In this approach,
nodes on the BFS frontier are selected at each step for inclu-
sion in the partition. The greedy graph-growing partitioning
algorithm (GGGP) used in Metis maintains gain values for
every node 𝑣 in 𝑃1 (i.e., the decrease in the edge cut if 𝑣 is
moved to the growing partition) and it always picks the node
with the highest gain at each step and updates the gain values
of the remaining nodes in 𝑃1. However, this GGGP approach
is inherently serial.

Instead, BiPart uses a more parallel approach to obtain an
initial partition. The approach used in BiPart is the following.
Like GGGP, we maintain gain values for nodes in 𝑃1, but
we pick the top

√
𝑛 nodes with the highest gain values in

each step and move them to 𝑃0 (here 𝑛 denotes the number
of nodes in the coarsest graph). We then re-compute the gain
values of all nodes in 𝑃1. This gives us a good parallel algo-
rithm for computing the initial partition. Algorithm 3 lists the
pseudocode.

Algorithm 4 describes the pseudocode for computing move
gain values. It is based on the approach used in the FM algo-
rithm [12].

Algorithm 4 Compute Move-Gain Values
Input: Graph 𝐺 = (𝑉 , 𝐸), 𝑃0 and 𝑃1 are the two partitions

1: Initialize 𝐺𝑎𝑖𝑛(𝑢) to 0 for all 𝑢 ∈ 𝑉 in parallel
2: for all hyperedges ℎ𝑒𝑑𝑔𝑒 ∈ 𝐸 in parallel do
3: 𝑛0← number of nodes in 𝑃0 ∩ ℎ𝑒𝑑𝑔𝑒
4: 𝑛1 ← number of nodes in 𝑃1 ∩ ℎ𝑒𝑑𝑔𝑒
5: for 𝑢 ∈ ℎ𝑒𝑑𝑔𝑒 do
6: 𝑖 ← partition of 𝑢
7: if 𝑛𝑖 == 1 then ⊲ 𝑢 is the only node from 𝑃𝑖 in ℎ𝑒𝑑𝑔𝑒

8: 𝐺𝑎𝑖𝑛(𝑢) ← 𝐺𝑎𝑖𝑛(𝑢) + 1
9: else if 𝑛𝑖 == |ℎ𝑒𝑑𝑔𝑒 | then ⊲ all nodes are in 𝑃𝑖

10: 𝐺𝑎𝑖𝑛(𝑢) ← 𝐺𝑎𝑖𝑛(𝑢) − 1

3.2.1 Ensuring Determinism. In the initial partitioning phase,
nondeterminism may be present in Line 5 of Algorithm 3
where we need to pick a node 𝑣 with highest gain value and
there are multiple nodes with the same highest gain. To ensure
determinism, BiPart again breaks ties using node IDs.

In the Appendix, we analyze the parallel time complexity
and total work of Algorithms 3 and 4 in the CREW PRAM
model.

3.3 Refinement Phase
The third phase of the overall partitioning algorithm is the
refinement phase. The goal of this phase is to improve on the

bipartition obtained from the initial partitioning. This phase
runs a refinement algorithm on the sequence of graphs ob-
tained during the coarsening phase, starting from the coarsest
graph and terminating at the original input graph. The FM
refinement algorithm described in Section 2.2 is inherently
serial and cannot be used for large graphs as it is, since it
needs to make individual moves for every node in every pass.
Our refinement algorithm, in contrast, makes parallel node
moves, thus speeding up the process. However, this approach
may result in a poor edge cut since it does not choose the
best prefix of moves, unlike the FM algorithm. We address
this issue by ensuring that we only move nodes with high or
positive gain values.

Another major difference in our refinement algorithm is
that we do not consider the weight of the nodes when making
these moves. This helps in speeding up the algorithm but
may result in an unbalanced partition. We resolve this pos-
sible issue by running a separate balancing algorithm after
the refinement. Algorithm 5 provides the pseudocode of our
refinement approach. The input to the algorithm is an integer
iter that specifies the number of rounds of refinement to be
performed; a larger number of rounds may improve partition
quality at the cost of extra running time (The default value
used in BiPart for 𝑖𝑡𝑒𝑟 is 2).

Algorithm 5 Refinement Algorithm
Input: 𝑖𝑡𝑒𝑟 : refinement iterations; Partitions 𝑃0 and 𝑃1

1: Initialization: Project bipartition from coarsened graph
2: for 𝑖𝑡𝑒𝑟 iterations do
3: Compute move gain values for all nodes using Algo 4
4: 𝐿0 ← nodes in 𝑃0 with gain value ≥ 0
5: 𝐿1 ← nodes in 𝑃1 with gain value ≥ 0
6: Sort nodes in 𝐿0 and 𝐿1 with gain value as the key (break

ties using node IDs)
7: 𝑙𝑚𝑖𝑛 ← min ( |𝐿0 |, |𝐿1 |)
8: Swap 𝑙𝑚𝑖𝑛 nodes with highest gain values between parti-

tions 𝑃0 and 𝑃1 in parallel

9: Check if the balance criterion is satisfied. Otherwise, move
highest gain nodes from the higher weighted partition to the
other partition, using a variant of Algorithm 3.

3.3.1 Ensuring Determinism. In the refinement phase, the
only step with potential nondeterminism is Line 6, in which
we create a sorted ordering of the nodes based on their gain
values, since there can be multiple nodes with the same gain.
BiPart breaks ties between such nodes using their IDs.

In the Appendix, we analyze the parallel time complexity
and total work of Algorithm 5 in the CREW PRAM model.

3.4 Tuning Parameters
Multilevel hypergraph partitioning algorithms like BiPart
have a number of tuning parameters whose values can af-
fect the quality and runtime of the partitioning. For BiPart,
the three most important tuning parameters are the following.
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The first tuning parameter controls the maximum number
of levels of coarsening to be performed before the initial parti-
tioning. Most hypergraph partitioners coarsen the hypergraph
until the coarsest hypergraph is very small (e.g., PaToH [7]
terminates its coarsening phase when the size of the coars-
ened hypergraph falls below 100). Although one would expect
more coarsening steps to produce a better partitioning, this is
not always the case. For some hypergraphs, we end up with
heavily weighted nodes (the weight is the number of merged
nodes represented by that node) and processing such nodes
in the refinement phase is expensive since they can cause
balance problems. In Section 4, we study the performance
impact of terminating the coarsening phase at different levels.
The default value used in BiPart is 25.

The second tuning parameter controls the iteration count
in the refinement phase. To obtain the best solution, we can
run the refinement until convergence (i.e., until the edge cut
does not change anymore). However, this strategy is very
slow and thus infeasible for large hypergraphs, which are the
focus of this work. BiPart, by default, uses only 2 refinement
iterations.

The final tuning parameter is selecting a matching policy
for finding a multi-node matching in a hypergraph. Table 1
shows the different matching policies available in BiPart.
Some of these policies are based on hyperedge degrees or
on the weight of the hyperedge. More policies can be added
to the framework by the user. The best choice for the policy
depends on the structure of the graph, and different policies
can result in different partitioning quality as well as different
convergence rates. For the experimental results in Section 4,
we used LDH, HDH, or RAND, depending on the input hy-
pergraph.

BiPart exposes these tuning parameters to the application
developer but also provides default values for use by novices.
Section 4 studies the effect of changing these parameters.

3.5 Parallel Strategy for Multiway Partitioning
Multiway partitioning for obtaining 𝑘 partitions can be per-
formed in two ways: direct partitioning and recursive bisec-
tion. In direct partitioning, the hypergraph obtained after
coarsening is divided into 𝑘 partitions and these partitions
are refined during the refinement phase. Recursive bisection
uses a divide-and-conquer approach by recursively creating
bipartitions until the desired number of partitions is obtained.

In this paper, we present a novel nested 𝑘-way approach for
obtaining 𝑘 partitions. At each level of the divide-and-conquer
tree, we apply the three phases of multilevel partitioning to all
the subgraphs at that level. Intuitively, the divide-and-conquer
tree is processed level-by-level, and each phase of the multi-
level partitioning algorithm is applied to all the subgraphs at
the current level. Algorithm 6 presents the pseudocode of our
nested 𝑘-way approach.

This algorithm allows us to run the parallel loops over the
entire edge list of the original hypergraph instead of running

Algorithm 6 Nested 𝑘-Way Algorithm
Input: 𝑘

1: for 𝑙𝑒𝑣𝑒𝑙 𝑙 = 1 to ⌈log𝑘⌉ iterations do
2: Construct subgraphs 𝐺1,𝐺2, . . . ,𝐺𝑖 (where 𝑖 = 2𝑙−1) such

that 𝐺 𝑗 contains nodes that are in partition 𝑗

3: 𝐶𝑜𝑎𝑟𝑠𝑒𝑛 (𝐺1,𝐺2, . . . ,𝐺𝑖 )
4: 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝐺1,𝐺2, . . . ,𝐺𝑖 )
5: 𝑅𝑒 𝑓 𝑖𝑛𝑒 (𝐺1,𝐺2, . . . ,𝐺𝑖 )

them over edge lists for each subgraph separately, which
yields a significant reduction of the overall running time. In
Section 4.4, we present experimental results for obtaining 𝑘

partitions using this approach.

4 Experiments
We implement BiPart in the Galois 6.0 system, compiled
with g++ 8.1 and boost 1.67 [25]. Galois is a library of data
structures and a runtime system that exploits parallelism in
irregular graph algorithms expressed in C++ [31, 34].

Table 2 describes the 11 hypergraphs that we use in our
experiments. The hypergraphs WB, NLPK, Webbase, Sat14,
and RM07R are from the SuiteSparse Matrix Collection [8],
Xyce and Circuit1 are netlists from Sandia Laboratories [11],
Leon is a hypergraph derived from a netlist from the Univer-
sity of Utah, and IBM18 is from the ISPD 98 VLSI Circuit
Benchmark Suite. Random-10M and Random-15M are two
hypergraphs that we synthetically generated for the experi-
ments.

All experiments are done on a machine running CentOS 7
with 4 sockets of 14-core Intel Xeon Gold 5120 CPUs at 2.2
GHz, and 187 GB of RAM in which there are 65,536 huge
pages, each of which has a size of 2 MB.

We benchmarked BiPart against three third-party partition-
ers: (i) Zoltan 3.83 (Zoltan is designed to work in a distributed
environment; for our experiments, we run Zoltan with MPI in
a multi-threaded configuration), (ii) KaHyPar (direct k-way
partitioning setting), the state-of-the-art partitioner for high-
quality partitioning, and (iii) HYPE, a recent serial, single-
level bipartitioner [27]. Zoltan and KaHyPar were described
in Section 2.

The balance ratio for these experiments is 55:45. Since
Zoltan is nondeterministic, the runtime and quality we report
is the average of three runs. BiPart numbers are obtained
using the configuration discussed in Section 3.

4.1 Comparison with Other Partitioners
Table 3 compares BiPart results with those obtained by run-
ning Zoltan, KaHyPar and HYPE. BiPart is executed on 14
threads, and Zoltan is executed on 14 processes, while KaHy-
Par, and HYPE are executed on a single thread since they are
serial codes.
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Table 2. Benchmark Characteristics

Hypergraph Bipartite
Representation

Name Nodes Hyperedges Edges
Random-15M 15, 000, 000 17, 000, 000 280, 605, 072
Random-10M 10, 000, 000 10, 000, 000 115, 022, 203

WB 9, 845, 725 6, 920, 306 57, 156, 537
NLPK 3, 542, 400 3, 542, 400 96, 845, 792
Xyce 1, 945, 099 1, 945, 099 9, 455, 545

Circuit1 1, 886, 296 1, 886, 296 8, 875, 968
Webbase 1, 000, 005 1, 000, 005 3, 105, 536

Leon 1, 088, 535 800, 848 3, 105, 536
Sat14 13, 378, 010 521, 147 39, 203, 144

RM07R 381, 689 381, 689 37, 464, 962
IBM18 210, 613 201, 920 819, 697

KaHyPar produces high-quality partitions but it took more
than 1800 seconds to partition large graphs such as Random-
10M, Random-15M, webbase, and Sat14. For the hypergraphs
that KaHyPar can partition successfully, BiPart is always
faster but worse in quality. HYPE runs on all inputs but the
execution time and the quality of the partitions are always
worse than BiPart.

Zoltan was able to partition all the hypergraphs in our test
suite except for the largest hypergraph, Random-15M. For
the three largest hypergraphs Random-10M, NLPK and WB,
BiPart is roughly 4X faster than Zoltan while producing par-
titions of comparable quality. We also compared our results
with other hypergraph partitioners, such as PaToH [7] and
HMetis [22]. We observed that the parallel execution time
of BiPart is better than HMetis’s and PaToH’s serial time on
large inputs. Since the source code for these partitioners is not
available and due to the space constraints, we do not list those
results here. We did not compare our results with Parkway
since it frequently produces segfaults.

Figure 3. Strong scaling of BiPart

4.2 Scalability
Figure 3 shows the strong scaling performance of BiPart. For
the largest graphs Random-10M and Random-15M, BiPart
scales up to 6X with 14 threads. Scaling is limited for the
smaller hypergraphs like Webbase, Sat14 and Leon since they
contain a small number of hyperedges.

Figure 4. Runtime breakdown for BiPart on 1 thread and 14
threads.

Figure 4 shows the breakdown of the time taken by the
three phases in BiPart on 1 and 14 threads, respectively. For
both single thread and 14 threads, the coarsening phase takes
the majority of the time for all hypergraphs.

The coarsening and refinement phases of BiPart scale simi-
larly. The end-to-end parallel performance of BiPart can be
improved by limiting the number of levels for the coarsen-
ing phase and by a better implementation of the refinement
phase. We also see a significant change in the slopes of all the
scaling lines when the number of cores is increased from 7
to 8 as well as from 14 to 15. On this machine, each socket
has 7 cores so the change in slope arises from NUMA effects.
Improving NUMA locality is another avenue for improving
the performance of BiPart.
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Table 3. Performance of hypergraph partitioners (time is measured in seconds)

BiPart (14) Zoltan (14) HYPE (1) KaHyPar (1)
Inputs Time Edge cut Time Edge cut Time Edge cut Time Edge cut

Random-15M 85.4 13,968,401 − − > 1, 800 15, 628, 206 > 1,800 −
Random-10M 35.2 7,588,493 133.6 8,206,642 > 1, 800 8, 816, 800 > 1,800 −

WB 7.9 13,853 31.4 35,212 42.2 819,661 581.5 11,457

NLPK 5.8 98,010 27.6 76,987 58.8 651,396 784.3 59,205

Xyce 1.3 1,134 4.1 1,190 11.8 549,364 412.4 420
Circuit1 0.7 3,439 4.2 2,314 10.9 371,700 524.1 2,171

Webbase 0.3 624 1.2 1,645 2.4 455,492 > 1,800 −
Leon 0.9 112 5.4 81 3.8 32460 354.6 59
Sat14 7.6 15,394 44.3 5,748 61.3 524317 > 1,800 −

RM07R 0.8 22,350 3.9 56,296 19.1 151,570 880.0 17,532

IBM18 0.2 2,669 0.4 2,462 1.0 52,779 453.9 1,915

4.3 Design-Space Exploration of Parameter Space
In this section, we discuss the effect of important tuning pa-
rameters on BiPart. The important parameters we explore
are the following: the number of coarsening levels, the num-
ber of refinement iterations, and the matching policy. These
parameters are described in detail in Section 3.4.

One benefit of having a deterministic system is that we can
perform a relatively simple design space exploration to under-
stand how running time and quality change with parameter
settings. In this section, we discuss how the choice of these
settings affects the edge cut and running time.

Figure 5 shows a sweep of the parameter space for the two
hypergraphs WB and Xyce. Points corresponding to different
matching policies are given different shapes; for example,
triangles represent points for the LDH policy. While there
are many points, we are most interested in those that are on
the Pareto frontier. As mentioned in Section 3, the default
settings for BiPart is to perform coarsening for at most 25
coarsening levels or as much as possible until there is no
change in the size of the coarsened graph and to do two
iterations of refinement per level. The BiPart points for this
default setting are shown as large circles and triangles (blue
in color), and we see that they both lie close to the Pareto
frontier. Zoltan points are shown as black X marks; for WB,
the point is far from the Pareto frontier while for Xyce, the
point is on the Pareto frontier but takes much more time for a
small improvement in quality.

As for the matching policy for finding a multi-node match-
ing in the coarsening phase, there is no single policy that
works best for all inputs. LDH and HDH usually dominate
other policies. LWD, which has been used in HMetis, does
not perform well and does not generate a point on the Pareto
frontier, so it should be deprecated.

Table 4 shows the running time and quality for the default
settings, for the settings that give the best quality, and for the

settings that give the best running time. The default setting
for BiPart is to do two iterations of refinement per level and at
most 25 levels of coarsening. For the matching policy, we do
not have a fixed matching policy for all graphs but it is a com-
bination of RAND, LD, and HDH. For all hypergraphs, the
point corresponding to the default setting for BiPart either lies
somewhere in between the two extreme points on the Pareto
frontier or lies near the Pareto frontier. We also observed that
there is no unique parameter setting that guarantees for all
hypergraphs that the corresponding point lies on the Pareto
frontier.

4.4 Multiway Partitioning Performance
Figure 6 shows the scaled execution time of BiPart for multi-
way partitioning of the two hypergraphs Xyce and WB. For
both hypergraphs, the execution times are scaled by the time
taken to create 2 partitions. If 𝑘 is the number of partitions to
be created, the critical path through the computation increases
as 𝑂 (𝑙𝑜𝑔2 (𝑘)). The experimental results shown in Figure 6
follow this trend roughly.

Tables 5 and 6 show the performance of BiPart and the
current state-of-the-art hypergraph partitioner, KaHyPar, for
multiway partitioning of a small graph IBM18 (Table 5) and
a large graph WB (Table 6). We do not compare our results
with Zoltan for 𝑘-way since their result is not deterministic.
BiPart is much faster than KaHyPar; for example, KaHyPar
times out after 30 minutes when creating 4 partitions of WB
(9.8M nodes, 6.9M hyperedges), whereas BiPart can create
16 partitions of this hypergraph in just 20 seconds. However,
when KaHyPar terminates in a reasonable time, it produces
partitions with a better edge cut (for IBM18, the edge cut is
on average 2.5X better).

We conclude that there is a tradeoff between BiPart and
KaHyPar in terms of the total running time and the edge cut
quality. As shown in Tables 5 and 6, BiPart may be better
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Table 4. Parameter sweep results for BiPart

Recommended Best Edge Cut Best Runtime
Graph Time (sec) EdgeCut Time (sec) EdgeCut Time (sec) EdgeCut

Random-15M 85.4 13,968,401 71.4 13,960,994 60.7 14,000,612
Random-10M 35.2 7,588,493 35.3 7,581,745 31.4 7,618,589

WB 7.9 13,853 15.2 10,773 6.2 15,904
NLPK 5.8 98,010 5.8 88,239 4.5 121,249

Xyce 1.3 1,134 1.3 1,134 0.9 5,124
Circuit1 0.7 3,439 1.1 3,408 0.5 5,717

Webbase 0.3 624 0.4 587 0.3 622
Leon 0.9 112 2.1 60 1.5 184
Sat14 7.6 15,394 9.7 13,833 2.4 155,325

RM07R 0.8 22,350 0.9 21,601 0.6 30,207

Figure 5. Design space for various tuning parameters for the
two largest hypergraphs, WB (top) and Xyce (bottom); the

Pareto frontier is shown for both hypergraphs

Table 5. Performance of BiPart and KaHyPar for k-way
partitioning of the IBM18 hypergraph (time in seconds)

BiPart (14) KaHyPar (1)
k Time Edge cut Time Edge cut
2 0.2 2,385 453.9 1,915

4 0.5 5,836 425.0 2,926

8 1.0 11,522 288.0 4,822

16 1.6 19,116 299.5 8,560

suited than KaHyPar for creating a large number of partitions
of large graphs while maintaining determinism.

Table 6. Performance of BiPart and KaHyPar for k-way
partitioning of the WB hypergraph (time in seconds)

BiPart (14) KaHyPar (1)
k Time Edge cut Time Edge cut
2 7.9 13,853 581.5 11,457

4 14.7 100,380 > 1,800 −
8 17.5 185,079 > 1,800 −
16 20.0 269,144 > 1,800 −

Figure 6. BiPart execution time for k-way partitioning

5 Conclusion and Future Work
We describe BiPart, a fully deterministic parallel hypergraph
partitioner, and show that it significantly outperforms KaHy-
Par, the state-of-the-art hypergraph partitioner, in running
time, albeit with lower edge-cut quality, for all inputs in our
test suite. On some large graphs, which BiPart can process in
less than a minute, KaHyPar takes over an hour to perform
multiway partitioning.

In future work, we want to explore whether we can clas-
sify hypergraphs based on features such as the average node
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degree and the number of connected components to come
up with optimal parameter settings and scheduling policies
for a given hypergraph. We are also looking into ways to
improve NUMA locality for better performance. Extending
this work to distributed-memory machines might be useful
for very large hypergraphs that do not fit in the memory of a
single machine [17].
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A Artifact Appendix
A.1 Abstract
We provide source code to BiPart in this paper and scripts
to run the main experiments from the paper. This artifact
supports the paper by making it possible to replicate the
numbers in this paper, and it can be validated by comparing
the figures and results that this artifact’s scripts generate with
the data from the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Parallel and deterministic multilevel hypergraph

partitioning
• Compilation: cmake, g++ 8.1 and boost 1.67
• Data set: Public SuiteSparse Matrix Collection, ISPD 98

VLSI Circuit Benchmark Suite
• Hardware: 187 GB of RAM
• Metrics: seconds
• Output: text
• How much time is needed to prepare workflow (approxi-

mately)?: Less than an hour
• How much time is needed to complete experiments (ap-

proximately)?: 10 minutes
• Publicly available?: Yes

A.3 Description
A.3.1 How to access. https://doi.org/10.5281/zenodo.4294144

A.3.2 Hardware dependencies. The artifact uses 128 GB of RAM

A.3.3 Software dependencies. The script provided uses python
and specifically module xlwt needs to be installed. Other dependen-
cies: A modern C++ compiler compliant with the C++-17 standard
(gcc >= 7, Intel >= 19.0.1, clang >= 7.0) CMake (>= 3.13) Boost
library (>= 1.58.0, we recommend building/installing the full library)
libllvm (>= 7.0 with RTTI support) libfmt (>= 4.0)

A.3.4 Data sets. They are too large to package with the artifact.
Those publicly available can be found at:

http://doi.org/10.5281/zenodo.291466

A.4 Installation
These instructions assume that you have ghostwheel2 access. For
public access please follow:

https://github.com/IntelligentSoftwareSystems/Galois
If you are using the provided server, ghostwheel2, the steps to

install Galois are the following:
git clone https://github.com/IntelligentSoftwareSystems/Galois

Then go to the Galois source folder and run the script
source scripts/iss_load_modules.sh
mkdir build
cd build
cmake ../
Once you build Galois, you can follow these steps to run BiPart:
cd build/lonestar/analytics/cpu/bipart/ make -j

A.5 Experiment workflow
Two scripts run.sh and stat.py is provided to run the code and save the
results in a spreadsheet. If you copy them in the executable directory
and run run.sh, you will have the results in a spreadsheet, results.xls.

If you want to run the code by hand here is how it works: After com-
piling BiPart, you can run the code with this command: bipart-cpu
[options] <input file> <size of coarsest graph> <number of itera-
tions in ref> <number of partitions> <scheduling policy><number
of threads>

A.6 Evaluation and expected results
We provide a executable for reviewers to evaluate, bipart-cpu. The
source code can be found at: Galois/lonestar/analytics/cpu/bipart.
Users are expected to reproduce the main results in this paper: Table
3. There may be slight variation of roughly 5-10% from the numbers
reported in the paper. There is only one script that you must run:
run script. This script will run the code on all the inputs used in this
paper and report the results in a spreadsheet.

A.7 Experiment customization
Users can run the code using this command:

bipart-cpu [options] <input file> <size of coarsest graph> <num-
ber of iterations in ref> <number of partitions> <scheduling pol-
icy><number of threads>

We only care about quality (edge cut) and the runtime. Please
note that the runtime is the sum of all three phases (coarsening,
partitioning, and refinement). What we claim in the paper is that the
quality (edge cut) of each run is the same (the run is deterministic)
regardless of the number of threads (-t=xx) and how many times you
run the code.

A.8 Notes
We have compared the performance of our system with three other
systems:

KaHyPar: https://kahypar.org/
Hype: https://github.com/mayerrn/HYPE
Zoltan: http://cs.sandia.gov/Zoltan/ug_html/ug_alg_phg.html
The description and the guide to install the softwares can be found

on their website.

A.9 Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-

badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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