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ABSTRACT 
Communication-intensive parallel applications spend a 
significant amount of their total execution time exchanging 
data between processes, which leads to poor performance 
in many cases.  In this paper, we investigate message com-
pression in the context of large-scale parallel message-
passing systems to reduce the communication time of indi-
vidual messages and to improve the bandwidth of the over-
all system.  We implement and evaluate the cMPI mes-
sage-passing library, which quickly compresses messages 
on-the-fly with a low enough overhead that a net execution 
time reduction is obtained.  Our results on six large-scale 
benchmark applications show that their execution speed 
improves by up to 98% when message compression is en-
abled. 

 
1. INTRODUCTION 
Parallel computation on clusters of inexpensive worksta-
tions has become the standard method for constructing 
supercomputers out of commodity parts.  Pairing industry-
standard SMP or uniprocessor nodes with high-speed in-
terconnection networks provides a computing platform that 
can achieve reasonable performance on a wide range of 
applications from databases to scientific algorithms. 

In order to hide many of the implementation-specific de-
tails of the underlying network protocol, several portable 
message-passing libraries have been designed that allow a 
“write once, run anywhere” paradigm for large-scale com-
puting needs.  The Message Passing Interface (MPI) [13] is 
perhaps the most widely used of these libraries.  MPI pro-
vides a rich set of interfaces for operations such as point-
to-point communication, collective communication, and 
synchronization operations. 

There has been much work on improving the perform-
ance of MPI runtime libraries.  Some libraries, such as 
TMPI [15] and TOMPI [4], provide fast messaging be-
tween processes co-located on the same node via shared 
memory semantics that are completely hidden from the 
application writer.  Other implementations [12, 14] take 
advantage of user-level networks such as VIA [5] or In-
finiBand [11] to drastically reduce the amount of overhead 
associated with sending messages, reducing small message 

latency.  Still other researchers have investigated ways to 
improve the performance of collective communication op-
erations in MPI [16]. 

While reducing the latency of small messages can be 
beneficial, there has been little work on improving the 
achievable bandwidth of large messages because with large 
message sizes the utilization of most networks is relatively 
good in comparison.  However, our research indicates that 
for many MPI applications large messages dominate the 
overall message makeup.  This paper investigates the idea 
of employing a fast compression algorithm to improve the 
overall bandwidth achievable by the system during periods 
of heavy communication. 

The latency to send a message to another process com-
prises the message setup overhead and the time for the 
message to pass through the network, the latter of which 
roughly equals to the message size divided by the network 
bandwidth.  The setup overhead can be expressed as a 
fixed cost plus a term that is proportional to the message 
size.  Therefore, the total latency L for a message of size S 
is 
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where l0 is the constant setup overhead, l1 is the per byte 
overhead, and BW is the network bandwidth.  When com-
pressing messages before they are sent and decompressing 
them at the receiving end, the latency becomes 
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where l0
’ + l1

’S is the overhead incurred by the compres-
sion and the decompression and R is the compression rate.  
For the compression to reduce the communication latency, 
L’ < L must hold.  Using the above two equations, the ine-
quality can be rewritten as 
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Since l0
’ and S cannot be negative, the term in parenthe-

ses must be sufficiently greater than zero for the above 
inequality to hold.  Hence, the compression overhead per 
message byte must at least satisfy 
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In Table 1, we tabulate the maximum available CPU cy-
cles to compress each message byte for various compres-
sion rates assuming a platform with a 3GHz processor and 
a 1Gbps network bandwidth. 

 
Table 1: Compression speed requirements. 

compression rate 1.2 1.5 2.0 4.0
max. cycles per byte 4 8 12 18  

 
For instance, with a compression rate of 1.5, the CPU 

needs to compress and decompress one byte every eight 
cycles.  Since CPUs operate on four or eight bytes at a 
time, there are actually 32 cycles available per word on, for 
example, a Pentium-style machine.  This corresponds to 
roughly one hundred machine instructions (assuming no 
stalls), as Pentiums can execute multiple instructions per 
cycle, which is sufficient to run a low-overhead compres-
sion algorithm.  Finally, the compression and decompres-
sion can be overlapped as will be discussed in Section 2.4. 

This paper introduces cMPI, a library that automatically 
compresses and decompresses MPI messages at runtime 
without any application-level source code modifications.  
cMPI currently provides the forty most commonly-used 
MPI functions, which is enough to cover the vast majority 
of MPI applications.  We evaluate cMPI on a set of bench-
marks from the NAS Parallel Benchmark Suite [1] and the 
ASCI Purple Benchmark Suite [8].  Our results show that 
cMPI can improve parallel application scaling beyond the 
point of an MPI library that does not employ a 
compression scheme, resulting in up to 98% reduction in 
overall execution time. 

The rest of this paper is organized as follows.  Section 2 
describes the design of the cMPI library.  Section 3 pre-
sents the experimental evaluation methodology used.  Sec-
tion 4 discusses results of the cMPI library on the Veloc-
ity+ supercomputing cluster at the Cornell Theory Center.  
Section 5 presents conclusions and avenues for future 
work. 

 
2. IMPLEMENTATION 
In this section we describe the design of our cMPI library, 
the compression algorithm that allows cMPI to make better 
use of available network bandwidth, and several perform-
ance-enhancing optimizations. 

 
2.1 The cMPI Library 
We have implemented a commonly used subset of forty 
MPI functions in our cMPI library, covering most point-to-
point communications, collective communications, and 
communicator creation APIs in the MPI specification [13].  
The library is written in C and provides an interface for 
linking with Fortran applications.  cMPI utilizes TCP as 
the underlying network protocol and creates one TCP con-
nection between every two communicating MPI processes.  
Each process creates a message thread to handle sending to 

and receiving from all communication channels.  This 
thread also compresses and decompresses appropriate mes-
sages if the corresponding environment variable is set, that 
is, if compression is enabled.  A flag in the cMPI message 
header marks whether or not a particular message has been 
compressed so that the receiver can interpret the message 
correctly. 

When calling a send function in MPI, the application 
must specify the message data type to the underlying MPI 
library.  Based on this type, an appropriate compression 
method can be selected.  Since the majority of the mes-
sages in numeric applications consist of arrays of 
MPI_DOUBLEs, in the initial implementation presented in 
this paper we only compress messages that consist of the 
type MPI_DOUBLE.  Choosing a suitable compression 
algorithm for different MPI data types is the subject of 
ongoing work. 

 
2.2 Compression Scheme 
Our compression technique employs a value predictor to 
forecast message entries based on earlier entries.  The 
compression is performed one MPI_DOUBLE at a time.  
To compress an MPI_DOUBLE, we predict its value and 
then encode the difference between the predicted and the 
true value.  If the prediction is close to the true value, the 
difference can be encoded in just a few bits. 

Figure 1 illustrates how the fourth value D4 in a message 
of 64-bit MPI_DOUBLEs is compressed.  First, the DFCM 
value predictor (see Section 2.3) produces a guess D’4.  
Then we xor D4 and D’4 to obtain the difference Diff4.  
Diff4 has many leading zero bits if the prediction D’4 is 
close to D4.  The leading zeros are then encoded using a 
leading zero count (LZC).  The remaining bits (EBits) are 
not compressed. 
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Figure 1: The compression algorithm. 

 
In our compression scheme, we use four bits for the 

LZC, which encodes 4*LZC leading zeros.  Note that this 



 

  

scheme provides the same average code length as a six-bit 
LZC if the leading zero counts are evenly distributed.  For 
maximum speed, we wrote the leading zero counter in 
inline assembly code, where we take advantage of the Pen-
tium’s leading-zero-count instruction [7]. 

We chose not to use a more sophisticated compression 
scheme because the (de)compression time lies on the criti-
cal path for message transmission and reception.  There-
fore, this code’s execution time needs to be kept very short 
so that reductions in message latency are not lost due to the 
(de)compression overhead. 

At the receiver side, the messaging thread first reads the 
four-bit LZC and then 64-4*LZC effective bits to regener-
ate the difference Diff4.  The predictor at the receiving end 
is kept consistent with the sender’s predictor by always 
updating both predictors with the same values, i.e., the 
previously seen MPI_DOUBLEs.  Thus both predictors are 
guaranteed to produce the same prediction D’4.  The true 
value D4 can therefore trivially be regenerated by xoring 
Diff4 with D’4. 

 
2.3 The DFCM Predictor 
The differential-finite-context-method predictor (DFCM) 
[6] computes a hash out of the n most recently encountered 
differences between consecutive values in the original 
message, where n is referred to as the order of the predic-
tor.  Figure 1 shows the third-order DFCM predictor we 
use.  It performs a table lookup using the hash as an index 
to retrieve the differences that followed the last two times 
the same hash was encountered, i.e., the last two times that 
same sequence of last three differences was observed.  The 
retrieved differences are used to predict the next value by 
adding them to the previous value in the message as ex-
plained below.  Once the prediction has been made, the 
predictor is updated with the true difference and value.  

The DFCM predictor exploits both spatial and temporal 
locality in MPI messages. Scientific applications often 
communicate data of adjacent simulation points in the 
same message. Each simulation point typically consists of 
multiple physical properties. The property lists of adjacent 
simulation points all exhibit the same structure and the 
values of the properties of two adjacent simulation points 
are often numerically close.  For instance, each simulation 
point in a weather forecast application may include proper-
ties such as the pressure and the temperature. The tempera-
tures of two spatially adjacent simulation points should 
differ only slightly.  Hence, such data patterns can readily 
be captured by the predictors and looked up when similar 
patterns repeat in the same or a subsequent message. 

The DFCM predictor was originally proposed as a mi-
cro-architectural enhancement to predict the content of 
CPU registers [6].  Recently, it has been modified and suc-
cessfully used to compress program traces [2, 3].  We 
found the DFCM predictor with the following modifica-
tions to predict and compress floating-point messages well.  

Hash function: For sequences of floating-point values, 
the chance of an exact 64-bit prediction match is low.  
Moreover, it is desirable that, for example, the decimal 
difference sequence (0.6001, 0.9001) be hashed to the 
same index as the sequence (0.6000, 0.9000) in a second-
order DFCM predictor.  For this reason, our hash function 
uses only the m most significant bits and ignores the re-
maining bits.  Our experiments show that hashing only the 
first fourteen bits (the sign bit, eleven exponent bits, and 
two mantissa bits) results in the best average prediction 
accuracy.  We use the following hash function. 

 

hash(∆0, ∆1, ∆2) = lsb0..14(∆2 ⊗ (∆1 << 5) ⊗ (∆0 << 10)) 
 

In this function, ⊗ denotes bit-wise xor, << denotes bit-
wise left shift with zero insertion, and the ∆i stand for the 
most significant fourteen bits of the difference between 
consecutive MPI_DOUBLE values in the MPI message.  
The lowest five bits of the ∆i consist of three exponent and 
two mantissa bits and thus contain the most frequently 
changing bits.  Shifting each ∆i by five bits before xoring 
them moves the frequently changing bits of the three ∆i 
into non-overlapping positions, which we found to de-
crease the chance of detrimental aliasing in the hash table.  
Note that we only need the fifteen least-significant bits of 
the xor result for the index. 

Prediction function: Instead of keeping just the latest ∆ 
in the hash-table, we keep two deltas, ∆” and ∆’.  These 
represent the most and the second-most recent difference 
values.  Each ∆ is a full 64-bit difference value.  The pre-
dicted difference ∆p is set to ∆” if ∆” and ∆’ are not close 
to each other, i.e., the first fourteen bits are not the same.  
Otherwise, ∆p is set to ∆”+(∆”-∆’).  In other words, we use 
a conventional DFCM predictor except if the two ∆s are 
almost the same, in which case we add ∆”-∆’ to account 
for the drift in the difference values, which we found to 
improve the prediction accuracy and thus the resulting 
compression rate. 

 
2.4 Optimizations 
To reduce the (de)compression overhead, cMPI posts a 
send whenever the compressed message size reaches one 
or two times the Maximum Transmission Unit (MTU) of 
the network interface, which is typically 1500 bytes for 
Ethernet.  This allows the receiver thread to start decom-
pressing the message as early as possible, hiding some of 
the compression overhead. 

For small messages, the setup overhead dominates the 
total messaging time.  Our experiments show that com-
pressing messages below a certain threshold yields no per-
formance improvement due to the overhead introduced by 
the compression algorithm.  In fact, for small messages the 
compression overhead may easily exceed the improved 
message bandwidth, as is evident from Equation 3.  Hence, 
we only invoke compression for messages that are at least 
128 MPI_DOUBLEs (one kilobyte in our system) in size.  



 

  

Since processes usually exchange large messages with only 
a small number of other processes and a predictor is only 
created when the first message of at least one kilobyte is 
seen, employing such a cutoff also reduces the number of 
predictors needed in each process, which in turn reduces 
the memory requirement. 

 
3. EVALUATION METHODS 
In this section we describe the system we use to generate 
our results as well as the benchmark applications used in 
each experiment. 

 
3.1 System 
We performed all measurements on the Velocity+ cluster 
at the Cornell Theory Center [10].  Velocity+ runs Micro-
soft Windows 2000 Advanced Server and consists of 64 
dual-processor nodes with 733 MHz Intel Pentium III 
processors and two gigabytes of RAM per node.  The net-
work we used is 100Mb/s Ethernet, interconnected by 
3Com 3300 24-port switches.  Note that although we use 
Fast Ethernet in our experiments due to resource con-
straints, our processor speed is also correspondingly lower 
than current state-of-the-art microprocessors.  We run large 
enough problem sizes that our chosen applications scale 
reasonably well, even in the baseline cases (see Table 3).  
We are currently migrating our experiments to a cluster 
with faster processors and network. 

 
Table 2: Benchmark program information. 

Program Lang Problem Size Description
LU F77 Class C Simulated CFD application that uses 

symmetric successive over-relaxation 
(SSOR) to solve a block lower triangular-
block upper triangular system of equations

BT F77 Class C

SP F77 Class C

sPPM F77 384x384x384 3-D gas dynamics problem on a uniform 
Cartesian mesh, using a simplified version 
of the PPM (Piecewise Parabolic Method)

Sweep3D F77 256x256x256 Solver for the 3-D, time-independent, 
particle transport equation

AZTEC C/F77 31855013 Parallel iterative library for solving linear 
systems

Simulated CFD applications that solve 
systems of equations resulting from an 
approximately factored implicit finite-
difference discretization of the Navier-
Stokes equations

 
 

3.2 Benchmarks 
Our benchmark suite consists of three applications from 
the NAS Parallel Benchmark Suite (NPB) [1] and three 
applications from the ASCI Purple Benchmarks [8].  The 
NAS Parallel Benchmarks are a set of eight programs de-
rived from computational fluid dynamics (CFD) applica-
tions consisting of five kernels and three pseudo-
applications.  We use the three pseudo-applications LU, 
BT, and SP.  In addition, we use sPPM, Sweep3D, and 
AZTEC from the ASCI Purple Benchmark suite (Sweep3D 
is no longer included in the current release of the Purple 
benchmarks but its source code is still available [9]).  

Table 2 provides an overview of these applications.  BT 
and SP require the number of processes to be a square 
number.  Hence, we run them on 36, 64, and 100 proces-
sors.  LU requires the process count to be a power of two, 
so we run it on 32, 64, and 128 processors.  The three re-
maining applications, sPPM, Sweep3D, and AZTEC, are 
also run on 32, 64, and 128 processors. 

 
3.3 Predictor Configuration 
Our experiments show that third-order DFCM predictors 
with a hash-table size of 215 lines work well for all six ap-
plications.  Higher order predictors do not improve the 
compression rate.  Larger hash tables increase the com-
pression rate slightly, but are not worthwhile because of 
their much larger memory requirement.  Hence, we use 
hash tables with 215 lines for all experiments. 

Each line in the hash table requires 16 bytes to store two 
MPI_DOUBLEs in our system.  Thus, the total table size is 
512 kilobytes (215 * 16 bytes).  Due to the minimum mes-
sage-length requirement introduced in Section 2.4, only 
four to twelve predictors are created in each process.  
Hence, no more than six megabytes of memory are allo-
cated for the predictor tables. 

 
4. RESULTS 
Section 4.1 compares the runtime of all applications with 
different numbers of processes on MPI-Pro, the commer-
cial MPI implementation used on Velocity+, and on cMPI 
with message compression turned off.  This is done to en-
sure that any speedups we obtain with compressed mes-
sages are not due to a poor baseline implementation.  Sec-
tion 4.2 studies the performance improvement when mes-
sage compression is turned on.  We conduct measurements 
for different numbers of processes to evaluate the effect of 
message compression on the scalability of the six applica-
tions.  Section 4.3 presents message information and com-
pression rates.  Section 4.4 investigates the time spent 
compressing and decompressing messages. 

 
4.1 cMPI Baseline Performance 
We first compare our MPI library with MPI-Pro, a widely 
used commercial MPI implementation.  Figure 2 plots the 
ratio of the baseline cMPI’s execution time normalized to 
that of MPI-Pro for our six benchmark applications and 
various numbers of processes.  Results below one indicate 
that cMPI (without compression) is faster than MPI-Pro.  
The absolute runtimes (in seconds) are given in Table 3.  
Note that for improved readability, most of the figures in 
this paper are not zero based. 

When BT is run on 100 and SP on 64 or 100 processors, 
cMPI outperforms MPI-Pro by almost 20%.  On the other 
hand, MPI-Pro is faster than cMPI for some of the other 
programs and configurations, though never by more than 
7.2%.  The two MPI implementations perform within about 
5% of each other in the majority of the cases.  The results 



 

  

clearly show cMPI (without compression) to be competi-
tive with MPI-Pro.  All remaining experiments use cMPI 
without compression as their baseline. 
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Figure 2: Runtime of cMPI normalized to MPI-Pro. 

 
Table 3: Benchmark runtimes in seconds. 

cMPI cMPI with
baseline compres.

36 3079 3176 3160
64 2207 2086 1986

100 1861 1537 1399
36 2821 2885 2863
64 2811 2361 2001

100 2552 2130 1692
32 3122 3128 3120
64 1690 1696 1665

128 1074 1130 1098
32 2173 2203 2173
64 1184 1195 1108

128 1283 1200 607
32 523 544 535
64 278 298 289

128 195 207 198
32 2340 2191 2019
64 1606 1526 1343

128 1470 1543 1198

program MPI-Pro

BT

SP

# procs

LU

sPPM

Sweep3D

AZTEC

 

 
4.2 Speedup with Message Compression 
The rightmost column in Table 3 shows the runtime of 
cMPI when message compression is enabled.  The corre-
sponding speedup over no compression is depicted in 
Figure 3.  Numbers above one indicate that an application 
runs faster with compression than without. 

The figure shows that all applications show improved 
performance when message compression is turned on.  
sPPM improves by 98 percent on the 128-process run.  As 
can be seen in Table 3, sPPM does not scale to more than 
64 processors on our baseline system.  However, our com-
pression approach allows this application to scale almost 
perfectly to 128 processors.  AZTEC’s speed improves by 
up to 29% in the 128-process run, which also does not 
scale on the baseline system.  For this application, message 
compression improves the overall performance at each 
processor-point in addition to increasing the scalability.  

The other four applications achieve a performance im-
provement of 3% to 26% in 128-process runs (100-process 
runs for BT and SP).  Overall, these results clearly demon-
strate the improved scalability that can result from utilizing 
our message compression technique in MPI. 
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Figure 3: Speedups due to message compression. 

 
4.3 Message Information and Compression Rate 
The net saving in communication time and the fraction of 
the total runtime that is communication time determine the 
performance improvement due to message compression.  
The former is in turn determined by the compression rate 
and the latter is interchangeable with the communication to 
computation ratio.  The higher the compression rate and 
the larger the communication to computation ratio, the 
greater the message-compression effect. 

 
Table 4: Statistics about large messages (above 1kB). 

# of message average predictors
procs count size (kB) per process

BT 64 617,856 80.9 12
SP 64 1,232,256 71.8 12
LU 64 56,476 256.2 7
sPPM 64 74,048 654.4 11
Sweep3D 64 286,720 24.0 7
AZTEC 64 207,522 785.1 3.9
BT 100 1,206,600 54.1 12
SP 100 2,406,600 47.3 12
LU 128 116,972 194.4 7.3
sPPM 128 156,480 428.2 11.5
Sweep3D 128 593,920 18.2 7.3
AZTEC 128 418,338 785.1 4

program

 
 
Table 4 summarizes the message information for each 

application on 64- and 128|100-process runs.  The message 
count is the sum of all messages on all processes that are 
larger than one kilobyte.  As we can see, the message count 
roughly doubles when the number of processes is doubled, 
so the message count per process remains about the same.  
However, the computation per process is usually halved, as 
problem sizes remain the same across varying numbers of 
processors.  At the same time, the average message size 
decreases by between zero and 35%, meaning that the 
communication to computation ratio increases substantially 



 

  

as the number of processes doubles.  Thus, assuming a 
constant compression rate, we expect higher speedups due 
to message compression as the number of processes in-
creases, which the results in Figure 3 confirm.  In other 
words, the compression scheme we employ allows for an 
overall improvement in the application’s use of available 
network bandwidth, reducing overall communication time 
and improving performance. 

The predictors per process numbers in Table 4 record 
the average number of (de)compression predictors created 
by each process.  Our experiments show that the maximum 
number of predictors in any process is twelve.  Since one 
compression predictor and one decompression predictor 
are created for each channel that has large (above one kilo-
byte) messages, the number of predictors per process di-
vided by two yields the average number of major commu-
nicating neighbors of each process. 

While a high communication to computation ratio pro-
vides opportunity for speedup due to message compres-
sion, the compression rate dictates the final success.  The 
compression rate is the size of the original message divided 
by the size of the compressed message.  Applications with 
highly predictable message values will demonstrate higher 
compressibility as described in Section 2.2.  Interestingly, 
we found the compression rate to be rather constant for 
different numbers of processes with each application.  This 
appears to be an indication that the message compressibil-
ity is program dependent but independent of the degree of 
parallelization.  Hence, we only list the compression rates 
for two problem sizes for each application in Table 5. 

 

Table 5: Compression rates. 
# processes BT SP LU sPPM Sweep3D AZTEC
64 1.35 1.30 1.24 4.39 1.39 1.46
128|100 1.36 1.29 1.24 4.63 1.40 1.46  

 
A compression rate of over four for sPPM and 1.46 for 

AZTEC, together with their large average message sizes, 
leads to the excellent runtime reductions shown in Figure 
3.  The other four applications exchange shorter messages 
and have a compression rate between 1.24 and 1.4, which 
is why they exhibit smaller speedups. sPPM’s messages 
are highly compressible because they contain large chunks 
of non-zero values that only differ in the last few bits. 

Note that we excluded the kernel benchmark applica-
tions from our study because their message data patterns, 
and hence the compressibility, may not be representative of 
real applications.  For the reasons discussed in Section 2.3, 
we believe that the message compressibility demonstrated 
in the applications we did investigate in this paper is char-
acteristic of many real applications.  

 
4.4 Compression Overhead 
The average compression and decompression times in the 
128-process runs (100-process runs for BT and SP) are 
plotted in Figure 4 as a percentage of the total runtime.  

They lie in the range of 0.4 to 1.8 percent of the runtime 
for most applications except AZTEC, where they represent 
5.7 percent of the runtime.  Compressing the messages 
takes approximately the same time as decompressing them 
in all six applications.  Note that even though the 
(de)compression overhead is non-negligible, we obtain an 
overall performance gain. This is mainly due to the larger 
benefit of the reduced communication time.  In addition, 
some of the (de)compression may have been overlapped 
with message completion, reducing the overhead imposed 
by our compression scheme. 

 

0%

1%

2%

3%

4%

5%

6%

BT SP LU sPPM Sweep3D AZTEC

re
la

tiv
e 

o
ve

rh
e

a
d

compression time

decompression time

 
Figure 4: Average (de)compression overhead 

(128|100-process runs). 

 
5. CONCLUSIONS AND FUTURE WORK 
This paper shows that the messages of large-scale parallel 
scientific applications are compressible and introduces 
message compression as part of an MPI library to reduce 
the messaging overhead.  Our novel compression algorithm 
is based on value prediction and encodes the difference 
between the true value and the predicted value to save bits.  
The compression algorithm is fast and provides good com-
pression rates for all applications we have investigated.  
The saved messaging overhead outweighs the compression 
and decompression overhead in all applications, resulting 
in an overall runtime reduction.  We observed speedups on 
128-process runs of at least 3% for all benchmarks and up 
to 98% in one case. 

The compression is handled by the MPI library and is 
therefore completely transparent to user applications.  
MPI-library providers can easily add our compression 
scheme to their implementation, which will immediately 
benefit a wide range of parallel programs without any 
source-code changes at the application level. 

We are planning to evaluate the benefits of message 
compression on other parallel machines with various net-
working speeds.  The relative speed of communication to 
computation will have a significant effect on the perform-
ance gain achievable through message compression.  In 
particular, we would like to investigate the potential bene-
fits of message compression on future architectures and 
computing grids. 



 

  

 Another direction for exploration is the possibility of 
off-loading the compression and decompression to the 
network interface card.  Due to the simplicity of our com-
pression approach, the (de)compression can be performed 
directly by a NIC processor and may even be implement-
able in the NIC hardware. 

Finally, since the compression rate is crucial to the ulti-
mate performance, we are also investigating other com-
pression algorithms that better exploit the unique charac-
teristics of MPI messages.  Adaptively choosing the best 
compression algorithm for a particular message type may 
yield more performance gains on applications in areas 
other than scientific computing. 
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