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Abstract—Many scientific programs produce large amounts 

of floating-point data that are saved for later use. To minimize 

the storage requirement, it is worthwhile to compress such data 

as much as possible. However, existing algorithms tend to com-

press floating-point data relatively poorly. As a remedy, we have 

developed FPcrush, a tool that automatically synthesizes an op-

timized compressor for each given input. The synthesized algo-

rithms are lossless and parallelized using OpenMP. This paper 

describes how FPcrush is able to perform this synthesis in real-

time, i.e., even when accounting for the synthesis overhead, it 

compresses the 16 tested real-world single- and double-precision 

data files more quickly than parallel bzip2. Decompression is an 

order of magnitude faster and exceeds the throughput of multi-

core implementations of bzip2, gzip, and FPC. On all but two of 

the tested files, as well as on average, the customized algorithms 

deliver higher compression ratios than the other three tools. 
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I. INTRODUCTION 

High-performance computing systems produce scientific 
data at a rapidly growing rate. Many of the resulting files are 
made available for download or are archived for later use. In 
either case, data compression has the potential to reduce the 
required storage space and to boost the download speed. How-
ever, scientific data consist predominantly of floating-point 
values, which are often difficult to compress well [9]. 

Due to the wide availability and generality of gzip and 
bzip2, many HPC users compress their data with one of these 
tools, either directly or through the use of a corresponding 
compression “filter” in HDF5. FPcrush, the approach de-
scribed in this paper, is meant as an alternative to using bzip2, 
gzip, or parallel versions thereof. In particular, FPcrush is a 
standalone tool for the lossless compression/decompression of 
files that is specifically tuned to work well on hard-to-com-
press floating-point data (but also works on other files). 

In environments where data files are accessed often, fast 
decompression is important, preferably at the same or a higher 
speed than obtained when reading the uncompressed data. 
Fast compression is also desirable but conflicts with the goal 
of achieving high compression ratios because better compres-
sion generally requires more computation. Therefore, an 
asymmetric approach where compression takes substantially 
longer than decompression is probably unavoidable when 

aiming both for maximal compression and for fast decompres-
sion, which is the objective of our work. 

Since data differ from each other and we want to compress 
each file as much as possible, it is unlikely that a single algo-
rithm will suffice. This is why we propose customization, that 
is, to compress each input with a different algorithm. Unfor-
tunately, only a handful of compression algorithms for float-
ing-point data exist in the current literature. Rather than de-
signing a few more algorithms, we created a framework that 
is capable of synthesizing millions of data compression algo-
rithms [26]. From it, we derived FPcrush, which incorporates 
key techniques to quickly identify promising algorithms in its 
search space for compressing a given file. The resulting com-
pressed files include a few bytes of information to identify the 
needed decompression algorithm. 

At a high level, most data compression tools operate on a 
linear sequence of values stored in an array and comprise two 
main steps, a data model and a coder. Roughly speaking, the 
goal of the model is to accurately predict the input values. The 
residual (i.e., the difference) between each actual value and its 
predicted value will be close to zero if the model is accurate 
for the given data. This residual sequence of values is then 
compressed with the coder by mapping the residuals in such a 
way that frequently encountered values or patterns produce a 
shorter output than infrequently encountered data. The inverse 
operations are performed to decompress the data. For in-
stance, an inverse model takes a residual sequence as input 
and generates the original sequence of values as output. 

To be able to search for effective floating-point compres-
sion algorithms, we built a framework for synthesizing com-
pressors and the corresponding decompressors using the fol-
lowing approach. We started with an in-depth study of previ-
ously proposed floating-point compression algorithms, broke 
them down into their constituent parts, rejected all parts that 
could not be implemented to run in linear time, and general-
ized the remaining parts as much as possible. This yielded a 
number of algorithmic components for building data models 
and coders. We then implemented each component using a 
common interface, i.e., each component can be given a block 
of data as input, which it transforms into an output block of 
data. This design makes it possible to chain the components, 
allowing the framework to generate a large number of com-
pression-algorithm candidates from a set of components. Note 



that each component comes with an inverse that performs the 
opposite transformation. Thus, for any chain of components, 
which represents a compression algorithm, it is always possi-
ble to synthesize the matching decompressor. Figure 1 illus-
trates this approach on the example of three components 
named LVs, BIT, and LZ3 as well as a Cut. Section 2 explains 
the operation of these components. Note that the order of the 
components matters. Every permutation represents a distinct 
algorithm that yields a potentially different compression ratio. 

 

Fig. 1. Three chained components plus a Cut that represent a compression 

algorithm along with the corresponding inverse components that make up 

the decompression algorithm 

Since we consider 29 algorithmic components, performing 
an exhaustive search to identify the best algorithm is too ex-
pensive for chains with more than about three components, 
i.e., algorithms with more than three stages. To speed up the 
search, FPcrush employs two complementary techniques. 
First, it uses a genetic algorithm (GA) to quickly find effective 
compressors without visiting most of the search space. Sec-
ond, it extracts a short but representative segment from the 
given input and uses only this segment to drive the GA. The 
combination of these two approaches quickly yields a good 
algorithm that is then used to compress the entire input. 

To further accelerate FPcrush, the synthesis as well as the 
resulting compression and decompression algorithms are par-
allelized using OpenMP. In particular, the GA evaluates the 
individuals in its population (cf. Section 3.2) concurrently. 
Moreover, the synthesized algorithms divide the input into 
chunks and process them in parallel. Since the evaluated indi-
viduals and the processed chunks are independent, these com-
putations are embarrassingly parallel. As a consequence, their 
parallelization is trivial and not the focus of this paper. 

We implemented all algorithmic components using C++ 
templates, which makes it possible to support both single- and 
double-precision data. Note that FPcrush uses a 4- and 8-byte 
integer representation of the floating-point data (i.e., the bit 
pattern representing the floating-point value is copied verba-
tim into an appropriately sized integer variable) and exclu-
sively uses integer operations to maximize performance and 

to avoid the possibility of floating-point exceptions or round-
ing inaccuracies. In other words, FPcrush generates lossless 
integer compression algorithms that are fed with and tuned for 
floating-point data. This approach is also used by other float-
ing-point compressors [3, 20]. As a result, positive and nega-
tive zeros and infinities, NaNs, denormals, and all other values 
are recreated bit-by-bit during decompression. 

FPcrush’s goal is to maximize the compression ratio on 
floating-point data while still providing high throughput, es-
pecially decompression throughput. This paper makes the fol-
lowing main contributions. 

 It is the first work to demonstrate that superior 
compression algorithms can be synthesized in real-
time and to present a combination of techniques that 
make it possible to achieve such high synthesis speeds. 

 It shows that customized algorithms can yield higher 
compression ratios than pre-existing algorithms, both 
on single- and double-precision floating-point data. 

 It illustrates that the synthesized parallel algorithms 
compress faster than parallel bzip2 and decompress 
more quickly than parallel gzip, bzip2, and FPC. 

 It makes FPcrush freely available on the computers 
listed at cs.txstate.edu/~burtscher/research/FPcrush/. 

The rest of this paper is organized as follows. Section 2 
describes the algorithmic components used in FPcrush. Sec-
tion 3 explains their implementation. Section 4 summarizes 
related work. Section 5 provides an overview of the evaluation 
system and the input files. Section 6 studies and analyzes var-
ious aspects of FPcrush. Section 7 concludes with a summary. 

II. ALGORITHMIC COMPONENTS 

This section describes the 29 algorithmic components 
available to FPcrush for synthesizing compression algorithms. 
Many of them are generalizations or approximations of com-
ponents extracted from previously proposed algorithms. Each 
component takes a sequence of values as input (i.e., an array), 
transforms it, and outputs the transformed sequence. To or-
ganize the components, we grouped them into categories. 

A. Mutators 

Mutators are components that computationally transform 
each value in the sequence. This is done independently of any 
other value and does not change the length of the sequence. 

The NUL component performs the identity operation, that 
is, it simply outputs the input sequence. Its presence ensures 
that chains with n components can also represent all possible 
algorithms with fewer than n components. NUL has the high-
est priority, i.e., FPcrush gives preference to shorter chains 
over longer chains with the same compression ratio. 

The SMS component converts each value from sign-mag-
nitude (as used in the IEEE 754 floating-point format) into 
signed twos-complement representation. It does this by invert-
ing all but the most significant bit if the most significant bit is 



set. Since FPcrush processes all values using integer opera-
tions, this transformation may be beneficial. 

B. Shufflers 

Shufflers rearrange the order of the values in the sequence 
but perform no computation on them. Some shufflers reorder 
the bits or bytes within the values. None of them change the 
length of the sequence. In some cases, they operate on chunks 
of data that encompass multiple words. 

The BIT component groups the values into chunks of as 
many values as there are bits per value. It then transforms each 
chunk independently by creating and emitting a word that con-
tains the most significant bits of the values, followed by a 
word that contains the second most significant bits, etc. The 
resulting sequence is easier to compress in cases where the bit 
positions between consecutive input values exhibit a higher 
correlation than the values themselves. 

The ROTn component takes a parameter n that specifies 
by how many units to rotate the bits of each word in the input 
sequence. There are seven versions of this component. For 
double-precision data, the values can be rotated by one to 
seven bytes, for single-precision data by one to seven nibbles, 
and for byte-sized data by one to seven bits. This rotation af-
fects the behavior of some of the other components. 

The DIMn component takes a parameter n that specifies 
the dimensionality of the input sequence and groups the values 
accordingly. For example, a dimension of three changes the 
linear sequence x1, y1, z1, x2, y2, z2, x3, y3, z3 into x1, x2, x3, y1, 
y2, y3, z1, z2, z3. This may be beneficial as values belonging to 
the same dimension often correlate more with each other than 
with values from other dimensions. For single-precision in-
puts, we use n = 2, 3, 4, 5, 7, 8, 12, and 32. For double-preci-
sion inputs, we use n = 2, 3, 5, 7, 8, 12, and 64. Since a dimen-
sionality of k∙m can be represented by combining a DIMk with 
a DIMm component, we primarily use small prime numbers 
for the parameter n. To capture important non-prime values of 
n in a single component (for performance reasons), we also 
include the following: n = 12 is useful because twelve is the 
least common multiple of 2, 3, 4, and 6 and therefore works 
well on 2D, 3D, 4D, 6D, and 12D data. n = 8 is useful in com-
bination with the BIT component because there are eight bits 
per byte and, in case of double-precision values, there are 
eight bytes per word. The bytes per word is also the reason for 
including n = 4 in case of single-precision data. The largest 
included dimension reflects the number of bits per word, i.e., 
n = 32 for single precision and n = 64 for double precision. 

C. Predictors 

Predictors guess the current value based on previous val-
ues in the input sequence, subtract the predicted from the cur-
rent value, and emit the result of the subtraction, that is, the 
residual sequence. If the predictions are close to the actual val-
ues, the residuals will cluster around zero, making them easier 
to compress than the original sequence. Predictors do not 
change the length of the sequence. The subtraction to compute 

the residual can be performed at word granularity (using con-
ventional subtraction, denoted by a trailing ‘s’) or at bit gran-
ularity (using XOR, denoted by a trailing ‘x’). 

The LVs and LVx components use the previous value in 
the sequence as a prediction of the current value. This is com-
monly referred to as delta modulation. 

For n-dimensional data, it may be useful to utilize the nth 
prior value. However, this can be achieved by preceding the 
LV component by a DIMn component. Hence, we do not in-
clude a last-n value predictor component. 

D. Reducers 

Reducers are the only components that can change the 
length of the sequence and therefore compress it. They exploit 
various types of redundancies to do so. The last component of 
a chain must always be a reducer and there has to be at least 
one reducer in each chain to form a useful compression algo-
rithm. FPcrush enforces this restriction automatically and 
does not consider other chains. 

The ZE component emits a bitmap that contains one bit 
for each value in the input. Each bit indicates whether the cor-
responding value is a zero or not. Following the bitmap, ZE 
emits all non-zero values from the input sequence. This com-
ponent’s effectiveness depends on the number of zeros, which 
is why some of the previously described components aim at 
generating as many zeros as possible. 

The RLE component performs run-length encoding. In 
particular, it counts how many times the current value appears 
in a row. Then it counts how many non-repeating values fol-
low. Both counts are recorded in a single word, i.e., each count 
gets half of the bits. This “count” is emitted first, followed by 
the current value and finally the non-repeating values. This 
procedure repeats until the end of the input is reached. We se-
lected this specific version of run-length encoding because it 
proved particularly effective on hard-to-compress floating-
point data. Nevertheless, its effectiveness is contingent upon 
the input containing many repeating values. 

The LZn component implements a variant of the LZ77 al-
gorithm [27]. It incorporates tradeoffs that make it more effi-
cient than other LZ77 versions on floating-point data and op-
erates as follows. It uses a hash table to identify the location l 
of the most recent prior occurrence of the current value. Then 
it checks whether the n values immediately before location l 
match the n values just before the current location. If they do 
not, the current value is emitted and the component advances 
to the next value. If the n values match, the component counts 
how many values following the current value match the values 
following location l. The length of the matching substring is 
emitted and the component advances by that many values. 
Smaller values of n yield more matches, which have the po-
tential to improve compression, but also result in a higher 
chance of zero-length substrings, which hurt compression. We 
consider n = 1, 2, 3, 4, 5, 6, and 7. 

The LZ components contain a hash table. We use a con-
stant table size of 65,536 words throughout this paper, which 



seems to work well and is reasonably fast. Note that larger 
tables tend to increase the compression ratio while decreasing 
the compression and decompression throughput. Smaller ta-
bles have the opposite effect. 

E. The Cut 

The │ pseudo component, called the Cut and denoted by 
a vertical bar, is a singleton component that converts a se-
quence of words into a sequence of bytes. It is merely a type 
cast and requires no computation or data copying. Every algo-
rithm produced by FPcrush contains exactly one Cut, which is 
included because it is often more effective to perform com-
pression at byte rather than word granularity. Note, however, 
that the Cut can appear before the first component, in which 
case the data are treated as a sequence of bytes, after the last 
component, in which case the data are treated as a sequence of 
words, or between components, in which case the data are in-
itially treated as words and then as bytes. 

F. Discussion 

The components described above can all be implemented 
to run in O(n) time, where n is the sequence length. We ex-
cluded more complex components such as move-to-front and 
block-sorting components to make the synthesis, which has to 
evaluate many different chains of components, as fast as pos-
sible. Nevertheless, as the results in this paper demonstrate, 
the included components suffice to create algorithms that 
compress better than preexisting tools in many cases. 

Due to the Cut, FPcrush needs three versions of each com-
ponent: one for double-precision values (8-byte words), one 
for single-precision values (4-byte words), and one for byte 
values. We implemented all components in form of C++ tem-
plates to facilitate the generation of these different versions. 

Each component requires a corresponding inverse compo-
nent that performs the reverse transformation. By chaining the 
inverse components in the opposite direction, FPcrush can au-
tomatically synthesize the matching decompression algorithm 
for any given chain of components, i.e., for any of the com-
pression algorithms in can generate (cf. Figure 1). 

The seven LZ components utilize hash tables. For perfor-
mance reasons, their hash functions only use some of the bits 
from the input values. This is why altering the location of bits 
and bytes by other components affects the effectiveness of 
these components. Note, however, that FPcrush is able to op-
timize which bits to use by the hash function, for example, 
through the inclusion of an appropriate ROT component. 

Not counting the Cut, FPcrush has 29 components at its 
disposal, only nine of which are able to reduce the length of 
the data. The purpose of the remaining 20 components is to 
transform the values in such a way that the reducers become 
maximally efficient. Thus, longer chains of components have 
the potential to compress better but make the search for a good 
algorithm take longer and decompression slower. For an algo-
rithm with k stages, that is, a chain with k components, the 
search space encompasses (k+1) ∙ 29k–1 ∙ 9 possible algorithms 
because there are k+1 locations for the Cut, k–1 stages that can 

each hold any one of the 29 components, and a final stage that 
can hold any one of the nine reducers. This amounts to over a 
million possible four-stage algorithms and over 42 billion 
seven-stage algorithms. 

III. FPCRUSH IMPLEMENTATION 

A. Representative Segments 

Since there is not nearly enough time available to search 
the entire input for a good compression algorithm, FPcrush 
first determines a small representative segment and then per-
forms the search only on this segment. To identify a good seg-
ment, it breaks up the input into many segments and uses a 
sliding-window approach where the window is advanced in 
steps of one eighths of the segment size. The segment size is 
selectable and expressed as a percentage of the entire file size. 
Then, FPcrush computes the byte entropy of each segment and 
selects the one whose entropy is closest to that of the entire 
file. Shorter segments result in faster searches but may be less 
representative. Moreover, there is no guarantee that a repre-
sentative segment exists at all. Once a good compression al-
gorithm for the selected segment has been found, this algo-
rithm is applied to the entire file. 

B. Genetic Algorithm 

The genetic algorithm (GA) [10, 11] employed by FPcrush 
to quickly search for an effective compression algorithm uses 
a fixed population size of twenty individuals. Each individual 
(i.e., a chain of components representing a compression algo-
rithm) is initialized with a randomly selected reducer in the 
last stage, randomly selected components in the other stages, 
and a random location for the Cut. This population is then 
evolved over a selectable number of generations in the follow-
ing way. First, the compression ratio (i.e., the fitness) of each 
individual is evaluated on the chosen segment and the best-
performing algorithm is recorded. Then a new generation of 
individuals is created using the following genetic approach. 

A quarter of the new individuals are the result of a cross-
over operation, which selects two parents from the prior gen-
eration with a probability that is proportional to their fitness. 
The components are taken from one parent up to a randomly 
selected stage and the remaining components are taken from 
the other parent. The Cut is randomly taken from the first or 
the second parent. The next quarter of the new individuals are 
also the result of a cross-over operation. However, this cross-
over picks the Cut and the components for each stage from 
one or the other parent based on a random bitmask. The third 
quarter of the new individuals are the result of mutating a sin-
gle clone, which is selected from the prior generation with a 
probability proportional to its fitness. The mutation replaces 
one randomly selected component or the Cut with a random 
but legal alternative. The probability of a single mutation is 
100%, a second mutation happens with 50% probability, a 
third one with 25%, etc. The last quarter of the new individu-
als are also the result of mutations, but in this case they are 
applied to a copy of the best algorithm found so far. 



Genetic algorithms represent a heuristic search method 
that is meant to quickly converge on some good solutions. 
However, there is no guarantee that a genetic algorithm will 
do so and it generally does not find the globally best solution 
in large search spaces. However, the best identified solution 
often performs nearly as well as the globally best solution. 

IV. RELATED WORK 

A. Floating-Point Compressors 

This subsection summarizes related work on lossless float-
ing-point compression. We extracted the basic idea behind 
many of our algorithmic components from these papers. Of 
course, many more papers on the lossless compression of 
floating-point data exist (cf. [19] and references therein). 

Lindstrom and Isenburg discuss on-line compression of 
floating-point grid data for speeding up I/O operations [20]. 
They use a Lorenzo predictor and map reals to unsigned inte-
gers. FPcrush also exclusively uses integer representation and 
operations. Since the Lorenzo predictor is not particularly 
suitable for linear sequences of values, FPcrush does not in-
clude a corresponding component. 

Burtscher and Ratanaworabhan’s FPC algorithm targets 
double-precision values [3]. It predicts the integer interpreta-
tion of the 64-bit values using an FCM and a DFCM predictor. 
The two predictions are XORed with the true value. The result 
with more leading zeros is compressed using leading-zero 
byte counts. The authors also published a parallel version of 
their compression algorithm, called pFPC [4], with which we 
compare FPcrush in the result section. We include the XOR 
idea in our study. We found the FCM and DFCM predictors 
with leading-zero-byte-elimination to be outperformed by 
chains with an LZ component, which is why we ended up not 
including components for the two predictors. 

Chen et al.’s work orders grid points of tetrahedral volume 
data to improve compressibility [6]. Their approach separates 
the “signed exponent” from the mantissa values. We include 
a similar component (BIT) that groups the various bit posi-
tions from adjacent values so that all the sign bits, exponent 
bits, etc. can be compressed together. 

Bicer et al. describe a framework that XORs values and 
leading-zero compresses the results [1]. As it operates at bit 
granularity, their approach works for both single- and double-
precision data. The data are split into chunks, which are com-
pressed independently. FPcrush also supports both single- and 
double-precision data and uses data chunks to facilitate paral-
lel compression and decompression. 

Filgueira et al. focus on runtime compression of MPI mes-
sages, including floating-point messages [8]. They found lzop 
to work best on their synthetic integer and floating-point data 
that include a significant number of zeros because lzop is very 
fast. The user can select which compression algorithm to use 
for which data type. A later paper describes an extension that 
dynamically selects the most appropriate algorithm based on 

the data type, including none for short messages [9]. Our ap-
proach is orthogonal to theirs and could be used to find good 
compression algorithms for various data types. 

Schendel et al. introduce a pre-compression tool to im-
prove the performance of general-purpose compressors on 
double-precision floating-point data. Their approach analyzes 
the compressibility of the data at byte granularity, determines 
the best compressor for the job, and identifies and removes 
hard-to-compress sections before piping the remaining data to 
the compressor [22]. FPcrush searches for effective algo-
rithms at word and byte granularity and produces customized, 
standalone compression algorithms. However, it uses a similar 
analysis of the input to find a good segment. 

Jenkins et al. create a system for rapid indexing, storing, 
and querying based on compressed metadata [17]. Their com-
pression approach is based on the idea that most double-pre-
cision data have similarity in the sign and exponent fields. 
They discard the redundancies in the higher-order bits and 
map the lower-order bytes to a bin according to distinct 
higher-order bits. They then pass the separated data to bzip2. 
FPcrush does not depend on such assumptions about the data, 
but it does contain components to separate higher- and lower-
order bits so that they can be compressed separately. 

B. Generating Compression Algorithms 

This subsection describes prior techniques for synthesiz-
ing compression algorithms. FPcrush is a derivative of the 
Crusher framework, which we previously used to synthesize 
a floating-point compression algorithm that is GPU friendly 
[26]. This prior work uses some of the same algorithmic com-
ponents to generate the compressor. However, it only employs 
components that can easily be parallelized for GPUs. FPcrush 
does not have this limitation, which is why its algorithms al-
most always compress the same files better, in some cases by 
a large margin. More importantly, our prior work is not con-
cerned with the synthesis speed. It does not use a genetic al-
gorithm nor segments to accelerate the processing. In fact, it 
is several orders of magnitude slower and unfit for real-time 
synthesis. Furthermore, it only proposes a single algorithm. In 
contrast, FPcrush generates a new algorithm for each file. 

None of the remaining related works described in this sub-
section are designed for floating-point data. Instead, they tar-
get program execution traces, heterogeneous files, images, 
and databases. Moreover, none of these approaches were de-
signed for or support real-time compression and none of them 
employ segmentation to speed up the algorithm generation. As 
a consequence, when including the synthesis time, they are 
much slower than standard compression tools. Hence, we do 
not compare FPcrush to these approaches in the result section. 

Burtscher and Sam present TCgen, a tool that generates 
customized trace compressors based on a user-provided con-
figuration of one or more predictors [5]. TCgen then translates 
this description into C source code that is optimized for the 
specified trace format and predictors. FPcrush supports a 
larger number of components, in particular also non-predictor 



components, and automatically determines good algorithms 
without the need for a description from the user. 

Kattan and Poli propose a system that employs genetic 
programming to find optimal ways to combine standard com-
pression algorithms [18]. They group similar data chunks to-
gether and label each group with the best compression algo-
rithm for its chunks. We also utilize a genetic algorithm and 
combine components. However, their components represent 
entire compression algorithms whereas our components are 
finer grained and represent parts of a compression algorithm. 

Hsu and Zwarico present an automatic synthesis technique 
for compressing heterogeneous files [12]. Each chunk of data 
is compressed using a different algorithm, which is deter-
mined using a statistical method. A compression history, re-
quired for decompression, is automatically generated and 
added in this phase. We use a similar approach to record the 
needed decompression algorithm in the compressed output. 

Mitra et al. propose a methodology for compressing fractal 
images using a genetic algorithm [21]. Initially, fractal codes 
are computed for each domain block. Then these blocks are 
classified into two types based on the variability of the pixels 
in each block. A block belongs to the smooth type if its vari-
ance is below a given threshold and is considered rough oth-
erwise. The purpose of this classification is to obtain higher 
compression ratios and to reduce the encoding time. The final 
step uses a genetic algorithm to find a good match for the 
rough domain blocks. Wu and Lin use a similar approach with 
three classes [25]. FPcrush also uses a genetic algorithm to 
find an effective solution in its search space. 

Several other papers have been published that employ a 
genetic algorithm for image compression, primarily to speed 
up the compression. Vences and Rudomin use it to compress 
sequences of images [23], Wu et al. [24] improve upon 
Vences and Rudomin’s approach, and Boucetta and Melkemi 
describe how to transform the RGB planes of a color image 
into more suitable spaces using a genetic algorithm [2]. 

Fang et al. investigate how to compress database infor-
mation using GPUs to overcome the transfer overhead [7]. 
They employ a compression planner along with a cost model 
of the GPU to identify an optimal combination among nine 
different compression schemes and use a rule-based method 
to automatically prune the search space. They utilize fewer 
components than we do and, as in Kattan and Poli’s work, 
each component is an entire compression algorithm. 

Chaining whole compression algorithms, as is proposed in 
many of the above related works, is fundamentally different 
from chaining algorithmic components to build a compression 
algorithm, which is what we do. After all, the goal of a com-
pression algorithm is to maximally reduce the number of 
bytes, which generally means that there are few exploitable 
patterns left in the output. This makes it difficult for the next 
compression algorithm in the chain to be effective. Our ap-
proach does not suffer from this problem. In fact, most of the 
algorithmic components we use do not reduce the number of 
bytes at all but transform the data to better expose patterns. 

V. EVALUATION METHODOLOGY 

We evaluated all tested compressors on a compute node of 
the Maverick supercomputer at the Texas Advanced Compu-
ting Center. The node contains two 10-core Intel Xeon E5-
2680 v2 Ivy Bridge processors running at 2.8 GHz with a 20 
MB L3 cache and 128 GB of main memory. The operating 
system is CentOS 6.4. We used the icc compiler version 14.0.1 
with the “-O3 -xhost” flags. 

A. Compression Tools 

We compare FPcrush in terms of compression ratio, com-
pression throughput, and decompression throughput to three 
compressors from the literature: 1) pigz [16], a parallel version 
of gzip, 2) pbzip2 [13], a parallel version of bzip2, and 3) 
pFPC [15], a parallel version of FPC. The first two are widely 
used general-purpose compressors, i.e., they are not specifi-
cally designed for floating-point data. pFPC is a special-pur-
pose compressor designed for double-precision floating-point 
data. It does not support single-precision data. Since our pri-
mary objective is to obtain a high compression ratio and the 
secondary objective is fast decompression, we use pigz with 
the “-c9 -p20” flags, pbzip2 with the “-9 -p20” flags, and 
pFPC with one million table entries, 20 threads, and 4096-el-
ement chunks, which are the recommended parameters. 

B. FPcrush Parameter Space and Randomization 

FPcrush is parameterizable along multiple dimensions. 
We studied all combinations of 2, 4, 8, 16, 32, and 64 genera-
tions in the GA, 1, 2, 3, 4, 5, 6, and 7-stage algorithms, and 
100% (i.e., the entire input), 10%, 1%, and 0.1% segments. 
We use a fixed population size of 20 to match the number of 
cores in our system (hyper-threading is turned off on Maver-
ick). Based on the results, we empirically selected sixteen gen-
erations, five-stage algorithms, and one percent segments as 
the baseline configuration for our performance evaluation, 
which yields good compression ratios and throughputs. 

The genetic operations rely on a random-number genera-
tor. As a consequence, using different seeds can result in dif-
ferent synthesized algorithms even when otherwise using the 
same configuration and the same input. To lower the impact 
of the random seed, we repeated every experiment three times 
with three different seeds and present the results from the run 
that produced the median compression ratio. This should 
make the results more representative of what can be expected 
on average from our approach. 

C. Throughput Measurements 

For the special-purpose floating-point compressors pFPC 
and FPcrush, the timing measurements are performed by add-
ing code to read a timer before and after the compression and 
decompression code sections. For the general-purpose com-
pressors pbzip2 and pigz, we measure the runtime of compres-
sion and decompression when reading the input file from a 
disk cache in main memory and writing the output to 
/dev/null. In case of FPcrush, the compression time includes 
the time to select a representative data segment, running the 
genetic algorithm, and using the resulting best algorithm to 



compress the entire file. In all cases, the decompressed data 
are compared to the original to ensure that every bit is identi-
cal. This validation is not included in the timings. 

D. Input Files 

We use eight FPC data sets for our evaluation [14]. Each 
file consists of a binary sequence of IEEE 754 double-preci-
sion floating-point values. They encompass numeric results 
(num) and observational data (obs). For the single-precision 
experiments, we simply converted the double-precision files. 

The following 4 data sets stem from numeric simulations: 

 num_brain: simulation of the velocity field of a human 
brain during a head impact 

 num_comet: simulation of the comet Shoemaker-Levy 
9 entering Jupiter’s atmosphere 

 num_control: control vector output between two min-
imization steps in weather-satellite data assimilation 

 num_plasma: simulated plasma temperature evolution 
of a wire array z-pinch experiment 

The following 4 data sets stem from scientific instruments: 

 obs_error: data values specifying brightness tempera-
ture errors of a weather satellite 

 obs_info: latitude and longitude information of the ob-
servation points of a weather satellite 

 obs_spitzer: data from the Spitzer Space Telescope 
showing a slight darkening as an extrasolar planet dis-
appears behinds its star 

 obs_temp: data from a weather satellite denoting how 
much the observed temperature differs from the actual 
contiguous analysis temperature field 

Table I provides pertinent information about the double-
precision inputs. The first two data columns list the size in 
megabytes and in millions of double-precision values. The 
middle column shows the percentage of values that are 
unique. The fourth column displays the first-order entropy of 
the values in bits. The last column expresses the randomness 
of each input in percent, i.e., it reflects how close the first-
order entropy is to that of a truly random data set with the same 
number of unique values. We chose these files because they 
contain real-world data and are large enough to demonstrate 
the utility of our approach while making parameter-space 

evaluations tractable. Note that FPcrush tends to be more ef-
ficient on larger files, especially the segmentation, which is 
important as many real-world scientific applications produce 
files that are much larger than our test files. 

TABLE I.  INFORMATION ABOUT THE DOUBLE-PRECISION INPUTS 

 

VI. EXPERIMENTAL RESULTS 

A. Compression Ratios 

Table II shows the compression ratios on the 16 single- 
and double-precision files as well as the geometric mean for 
each compressor. FPcrush is run with the baseline configura-
tion of five stages, 1% segments, and 16 generations. pFPC 
does not support single-precision data. 

Except on obs_spitzer, FPcrush yields the highest com-
pression ratio on all tested inputs, in particular also on 
num_plasma, the most compressible of the studied files. The 
benefits of compression range from 11% to over a factor of 
10. pbzip2 compresses the obs_spitzer file 26% and 41% bet-
ter, presumably due to its use of a block-sorting algorithm, 
which is relatively slow and not synthesizable from the com-
ponents included in FPcrush. 

The results in Table II demonstrate that FPcrush is able to 
synthesize effective floating-point compression algorithms. In 
fact, it often yields never-before-described algorithms that 
compress better than some of the best available compressors. 

B. Decompression Speed 

Table III lists the decompression throughput in megabytes 
per second on the 16 inputs as well as the geometric mean. 
Again, FPcrush refers to the baseline configuration with five 
stages, 1% segments, and 16 generations. 

The automatically synthesized decompression algorithms 
deliver the highest throughput on each tested file. The geomet-
ric mean is over one gigabyte per second, which is 5.4 and 5.7 

TABLE II.  COMPRESSION RATIOS (THE HIGHEST SINGLE- AND DOUBLE-PRECISION COMPRESSION RATIOS ARE SHADED) 

 

size doubles unique values 1st order randomness

(megabytes) (millions) (percent) entropy (bits) (percent)

num_brain 135.3 17.73 94.9 23.97 99.9

num_comet 102.4 13.42 88.9 22.04 93.8

num_control 152.1 19.94 98.5 24.14 99.6

num_plasma 33.5 4.39 0.3 13.65 99.4

obs_error 59.3 7.77 18.0 17.80 87.2

obs_info 18.1 2.37 23.9 18.07 94.5

obs_spitzer 189.0 24.77 5.7 17.36 85.0

obs_temp 38.1 4.99 100.0 22.25 100.0

geomean num_brain num_comet num_control num_plasma obs_error obs_info obs_spitzer obs_temp

pigz 1.206 1.064 1.160 1.057 1.608 1.447 1.157 1.228 1.035

pbzip2 1.460 1.043 1.173 1.029 5.670 1.331 1.218 1.746 1.023

pFPC 1.440 1.148 1.151 1.038 7.042 1.542 1.215 1.022 0.997

FPcrush 1.665 1.194 1.285 1.127 10.547 1.672 1.403 1.237 1.114

pigz 1.524 1.113 1.117 1.043 8.652 1.338 1.327 1.391 1.049

pbzip2 1.510 1.113 1.117 1.043 8.781 1.337 1.219 1.389 1.048

FPcrush 1.667 1.302 1.203 1.157 10.189 1.613 1.606 1.106 1.128
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TABLE III.  DECOMPRESSION THROUGHPUT [MB/S] (THE HIGHEST SINGLE- AND DOUBLE-PRECISION THROUGHPUTS ARE SHADED) 

 

TABLE IV.  COMPRESSION THROUGHPUT [MB/S] (THE HIGHEST SINGLE- AND DOUBLE-PRECISION THROUGHPUTS ARE SHADED) 

 

times faster than pigz and 6.6 and 10.1 times faster than 
pbzip2. pFPC is outperformed by a factor of 1.6. Note that 
each of these compressors utilizes all 20 CPU cores. 

For comparison, we also measured the memory copy 
throughput of the built-in memcpy function on the same data. 
It ranges from 3358 MB/s to 8707 MB/s. In other words, 
simply copying the data from one memory location to another 
is 2.4 to 6.5 times faster than the decompression speed of 
FPcrush’s algorithms on our machine. 

Clearly, the synthesized algorithms decompress quickly 
and compress well. In fact, the benefit in decompression 
throughput is higher than the benefit in compression ratio. 

C. Compression Speed 

Table IV shows the compression throughput in megabytes 
per second on the 16 input files and the geometric mean. As 
before, FPcrush refers to the baseline configuration with five 
stages, 1% segments, and 16 generations. Note that the meas-
ured runtime of FPcrush includes the time to identify the best 
segment, the time to run the genetic algorithm on this segment, 
and the time to compress the entire file using the best algo-
rithm the GA found. 

pFPC compresses the double-precision files the fastest. 
Since it does not support single-precision data, pigz performs 
best on those files. Surprisingly, FPcrush delivers well over 
100 MB/s compression throughput even though it first has to 
determine a suitable algorithm. This throughput is sufficient 
for real-time compression on a gigabit-per-second channel. 

On average, FPcrush is nine times slower than pFPC and 
two to three times slower than pigz, but it is 1.6 and 1.9 times 
faster than pbzip2. In addition to being faster than pbzip2 on 
each tested input, it also compresses better and decompresses 
more quickly, which underscores the benefit of our approach. 

Figure 2 illustrates the relative breakdown of FPcrush’s 
compression time on the double-precision files when using 
five stages, 1% segments, and 16 generations. The bottom part 
of each bar shows the time to find the best segment, the middle 
part shows the time to run the genetic algorithm on this seg-
ment, and the top part shows the time to compress the entire 
file using the best found algorithm. 

 

Fig. 2. Breakdown of the double-precision compression time 

Running the genetic algorithm dominates and takes on av-
erage 68% of the overall compression time. Determining a 
good segment takes 22% of the runtime. It is relatively slow 
because of calculating the entropy, which requires slow tran-
scendental floating-point operations whereas the compression 
is performed exclusively with fast integer operations. The ac-
tual compression takes about 10% of the overall runtime. 
Combined with the throughput results from Table IV, we find 
the true compression to be about as fast as the decompression 
(cf. Table III). The synthesis (the genetic algorithm) plus the 
segmentation slow down compression by a factor of ten. 

geomean num_brain num_comet num_control num_plasma obs_error obs_info obs_spitzer obs_temp

pigz 217.0 200.4 212.4 214.6 269.2 236.4 206.5 196.0 208.7

pbzip2 122.9 67.3 121.8 66.1 330.0 200.1 168.0 45.4 190.8

pFPC 786.3 883.2 808.0 791.2 1112.4 781.3 541.8 889.1 618.0

FPcrush 1247.5 1494.6 1464.5 1425.4 1231.2 1195.4 852.7 1335.5 1121.7

pigz 206.3 199.6 224.6 204.1 214.0 218.4 198.6 191.4 201.7

pbzip2 170.6 210.7 207.0 141.1 249.5 195.9 142.0 102.1 164.6

FPcrush 1121.7 1231.3 1214.3 1387.0 964.0 849.2 1333.1 1148.2 964.6
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geomean num_brain num_comet num_control num_plasma obs_error obs_info obs_spitzer obs_temp

pigz 384.3 423.8 362.3 451.0 537.1 264.9 381.2 300.6 421.8

pbzip2 75.6 87.2 101.1 87.3 20.8 99.1 73.8 113.4 80.5

pFPC 1080.4 1370.5 1262.4 1149.9 1310.4 1073.5 596.7 1395.4 796.7

FPcrush 122.0 132.0 130.8 149.8 111.7 130.3 74.9 144.1 120.9

pigz 304.5 358.8 410.8 419.7 401.8 143.4 289.8 212.5 336.5

pbzip2 70.3 85.8 87.6 74.6 22.7 89.2 73.0 96.2 74.7

FPcrush 134.2 133.3 142.5 166.1 127.1 115.2 89.1 178.7 142.8
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TABLE V.  SYNTHESIZED ALGORITHMS 

 

D. Synthesized Algorithms 

Table V illustrates the most effective algorithm FPcrush 
synthesized for each tested input when using five stages, 1% 
segments, and 16 generations. The component names follow 
the description in Section 2. 

While not easy to understand, it is obvious that the algo-
rithms differ substantially from one input to another and, per-
haps more surprisingly, even between the single- and double-
precision versions of the same input. However, this is at least 
in part due to performing an imperfect search using an imper-
fect segment. These imperfections are reflected, for example, 
in the double-precision algorithm for num_brain, which con-
tains three ROT components in a row that should be replaced 
by an equivalent single ROT component. Adding a post-pro-
cessing step to FPcrush could identify and eliminate such ar-
tifacts, which might improve the synthesis results, the conver-
gence of the GA, and the throughput of the algorithms. 

Other observations of note include, for example, that two 
of the single-precision algorithms contain a NUL component, 
meaning that they really only have four stages. SMS, the other 
mutator, also occurs twice. All shufflers (BIT, ROT, and 
DIM) are very frequent. As mentioned, ROT is needed to ad-
just the hash function of the LZ components. Both the subtrac-
tion- and the XOR-based LV predictor appear in several algo-
rithms, through subtraction dominates. Finally, all reducers 
are employed. RLE and ZE occur twice. At least one version 
of LZ is included in every algorithm with up to three in a sin-
gle algorithm. Whereas all parameters of LZ are used, only 
parameters 3 through 7 are frequent with 4 being the most fre-
quent. For DIM, the parameter 5 is not used. For ROT, param-
eters 3 and 6 do not occur. 

Clearly, not all components are equally important. Elimi-
nating some components/parameters would speed up the ge-
netic algorithm and the synthesis, but it is unknown whether 
these components are useful on other files. A more extensive 
study is needed to determine if they are truly unnecessary. 

The Cut never appears at the end, indicating that it is useful 
to eventually process the data at byte granularity. Note that 
most of the employed components are not reducers, i.e., do 
not compress the data, demonstrating that transforming the 
values to make them more amenable for the reducers is para-
mount in an efficient compression algorithm. 

E. Segment Size 

The key novelty of FPcrush is its ability to synthesize custom-
ized compression algorithms in real-time. This subsection 
studies the use of segments, i.e., one of the main techniques 
that make this possible. Since the single-precision results ex-
hibit the same trends, we only present double-precision re-
sults. We use exhaustive search as the baseline, which is very 
slow. Hence, we can only show results for three-stage algo-
rithms, the largest chain length for which the exhaustive 
search completes within the 12-hour job limit on Maverick. 

Figure 3 shows the throughput results in megabytes per 
second on a log-log plot. We ran the exhaustive search on the 
entire input (100%) as well as with segments that are 10%, 
1%, and 0.1% as long as the complete inputs. 

 

Fig. 3. Double-precision compression throughput of exhaustive search with 

three stages as a function of the segment size 

The results show roughly linear scaling with the segment 
size down to one percent. In fact, all eight inputs exhibit some 
superlinear scaling in this range because the entire working set 
does not fit in the processor’s L3 cache, but when using suffi-
ciently small segments it does. The scaling drops off when go-
ing to 0.1% segments because the search becomes so fast that 
other work starts to dominate, most notably the ultimate com-
pression of the entire input with the best algorithm. For ex-
haustive search, the workload is exponential in the length of 
the chains. Hence, even smaller segments are likely to be ben-
eficial with four or more stages. Having said that, care should 
be taken not to make the segments too short. For example, the 

 customized double-precision algorithm  customized single-precision algorithm

num_brain  | ROT1 ROT7 ROT1 DIM8 LZ5  | DIM4 ROT1 LZ6 DIM12 LZ7

num_comet  BIT ZE RLE | ROT2 LZ6  | DIM12 SMS DIM7 SMS LZ4

num_control  ROT2 LVx BIT DIM64 | LZ4  LVs BIT RLE | ROT7 LZ5

num_plasma  ROT1 SMS LZ2 LZ6 | LZ3  LVs LZ7 | DIM8 LVx LZ4

obs_error  LZ3 | DIM64 ROT1 DIM3 LZ6  DIM2 | NUL LZ7 DIM12 LZ5

obs_info  LVs | DIM8 LZ3 ROT2 LZ7  | NUL DIM4 DIM2 ROT5 LZ3

obs_spitzer  LZ1 LZ2 ZE BIT | LZ5  DIM32 BIT ROT5 DIM32 | LZ4

obs_temp  BIT ROT4 DIM64 | LVx LZ4  DIM8 LVs BIT ROT2 | LZ4



0.1% segment of obs_info is only 18 kilobytes long. We em-
pirically determined that at least a few kilobytes are necessary 
to obtain compression algorithms that work well on the full 
inputs. This means very small segment percentages are only 
prudent for large files to speed up the synthesis. 

Using segments is clearly an effective approach to reduce 
the algorithm synthesis time and therefore to increase the 
compression throughput. However, using segments lowers the 
compression ratio in cases where no representative segment 
can be found. To investigate the magnitude of this potential 
problem, Table VI shows the achieved compression ratio rel-
ative to that of exhaustive search on the whole inputs. 

TABLE VI.  HIGHEST COMPRESSION RATIO OF EXHAUSTIVE SEARCH 

WHEN USING SEGMENTS RELATIVE TO USING THE ENTIRE FILE 

 

10% and 1% segments yield essentially the same compres-
sion ratio on our eight double-precision files as using the 
whole files does. 0.1% segments are also quite good except on 
num_plasma, where no representative segment was found. 
Nevertheless, with 0.1% segments, FPcrush is still able to de-
termine the best algorithm in its search space for half of the 
studied inputs. Interestingly, on num_control, smaller seg-
ments yield better results than larger segments. This is possi-
ble because longer segments may be less representative of the 
entire input than the finer-grained shorter segments. 

F. Number of Generations 

This subsection studies the number of generations in the 
genetic algorithm, another key parameter that greatly affects 
the synthesis speed. We again only present double-precision 
results and use exhaustive search as the baseline. 

Figure 4 shows the throughput on a log-log plot for the 
genetic algorithm with 64, 32, 16, 8, 4, and 2 generations. In 
all cases, the entire files were used rather than segments. 

The throughput scales well with decreasing numbers of 
generations. num_plasma is again an outlier and yields the 
highest throughput because it is more compressible than the 
other files. Clearly, reducing the number of generations is an-
other effective way to speed up the algorithm synthesis. How-
ever, doing so can hurt the quality of the best found algorithm, 
as the results in Table VII illustrate. 

As expected, Table VII shows that the algorithm quality 
tends to decrease with fewer generations. While not severe for 
three-stage chains, where the genetic algorithm quickly finds 
the best compression algorithm in the search space, the quality 

degrades more for longer chains of components. Since the 
search space is exponential in the length of the chain, longer 
chains require more generations for the genetic algorithm to 
find high-quality solutions. Since exhaustive search is intrac-
table for long chains, using a genetic algorithm (or any other 
fast search method) not only drastically speeds up the search 
for effective multi-stage compression algorithms but is essen-
tial in that it makes such searches possible in the first place. 

 

Fig. 4. Compression throughput of the genetic algorithm with three stages 

and no segments as a function of the number of generations 

TABLE VII.  HIGHEST COMPRESSION RATIO WITH THREE STAGES FOR 

VARIOUS NUMBERS OF GENERATIONS RELATIVE TO EXHAUSTIVE SEARCH 

 

G. Number of Stages 

Table VIII shows the compression ratios on the eight dou-
ble-precision files when running the genetic algorithm for 16 
generations on 1% segments with various numbers of stages. 

Expectedly, longer chains tend to perform better as they 
can express supersets of the algorithms with fewer stages. 
However, because the GA-based search is imperfect, this is 
not always the case. For example, on obs_info, the best found 
four- and six-stage algorithms are worse than the best three-
stage algorithm. The geometric mean compression ratio 
climbs steadily up to five stages, beyond which the increase is 
lower and even drops at six stages. Note that longer chains 
result in lower compression and decompression throughput. 
Five-stage algorithms seem to yield good compression ratios 
without overly burdening the throughput. Nevertheless, if a 
higher throughput is desired, using fewer stages is an obvious 
approach to achieve that. Since more stages do help on some 
inputs and the user does not know a priori how many stages 

100% 10% 1% 0.1%

num_brain 1.00 1.00 1.00 1.00

num_comet 1.00 1.00 1.00 1.00

num_control 1.00 0.96 0.99 1.00

num_plasma 1.00 1.00 1.00 0.53

obs_error 1.00 1.00 0.99 0.99

obs_info 1.00 1.00 1.00 0.96

obs_spitzer 1.00 1.00 1.00 0.97

obs_temp 1.00 1.00 1.00 1.00

64 32 16 8 4 2

num_brain 0.99 0.99 1.00 0.99 0.99 0.99

num_comet 1.00 0.97 0.97 0.91 0.96 0.93

num_control 0.99 0.98 0.98 0.98 0.98 0.91

num_plasma 1.00 1.00 1.00 0.97 0.92 0.89

obs_error 0.99 1.00 0.99 0.93 0.98 0.92

obs_info 1.00 1.00 0.99 0.95 0.96 0.94

obs_spitzer 0.97 0.96 0.96 0.94 0.94 0.92

obs_temp 0.99 0.95 0.98 0.99 0.98 0.92



will suffice, we evaluated and recommend using FPcrush with 
five stages or thereabouts. 

TABLE VIII.  COMPRESSION RATIO USING 16 GENERATIONS WITH 1% 

SEGMENTS AS A FUNCTION OF THE NUMBER OF ALGORITHM STAGES 

 

H. Other Parameters 

We did not present an evaluation of the population size 
used by the genetic algorithm, the size of the hash tables in the 
LZ components, and the chunk size, in favor of more detailed 
measurements and analysis of more important parameters. We 
used a fixed population size of 20 to match the number of 
cores in our system. This parameter is somewhat uninteresting 
as larger populations hardly improve the final algorithms but 
make the synthesis slower. We selected a constant hash-table 
size of 65,536 words to maximize the compression ratio while 
mostly hitting in the L2 cache. Larger tables increase the av-
erage compression ratio only a little but substantially decrease 
the compression and decompression throughput while smaller 
tables result in significantly lower compression ratios. We 
chose a fixed chunk size of 131,072 words for similar reasons, 
i.e., to fully exploit the L3 cache. Larger chunks only improve 
the compression ratio a little while significantly lowering the 
compression and decompression throughput. Smaller chunks 
hurt the compression ratio considerably. 

VII. SUMMARY AND CONCLUSIONS 

This paper describes a high-speed approach to automati-
cally synthesize data compression and matching decompres-
sion algorithms. The key novelty of our work is to demon-
strate that superior compression algorithms can, in fact, be 
synthesized in real-time. To the best of our knowledge, we are 
the first to show that this is doable at all and to present a com-
bination of techniques that make it possible. This combination 
is essential as the parallel genetic algorithm, the segmentation 
approach, and the linear-time components are only fast 
enough when used together to achieve real-time synthesis. 

We implemented our approach in the FPcrush tool, which 
is based on a set of algorithmic components that can be 
chained to construct sophisticated compression algorithms. 
FPcrush employs a genetic algorithm to quickly search for the 
most effective chains of components, i.e., algorithms, and uses 
small representative segments of the input data to further ac-
celerate the search. Together, these techniques make our com-
pression-algorithm-synthesis tool faster than the parallel 
bzip2 compressor while compressing better in most cases. In 

spite of FPcrush’s synthesis overhead, even compression op-
erates at over 100 megabytes per second. 

There are several avenues for future work. For instance, 
other fast search algorithms could be tried, as could other 
mechanisms for identifying representative segments such as 
sampling. The presented study could also be expanded to in-
clude more inputs, larger inputs, and non-floating-point in-
puts. Moreover, one could make it possible to trade off com-
pression ratio and throughput by allowing the end-user to 
choose which components to include, what table and popula-
tion size to use, etc. Another interesting idea is to seed the GA 
with promising algorithms rather than starting with a random 
population. To support streaming data in FPcrush, the ap-
proach for determining a good segment would have to be 
changed to not require all the data to be present or available. 

We believe the FPcrush approach to be applicable to other 
domains. All that is needed is for an expert to develop trans-
formations and inverses thereof for the new domain so that 
corresponding components can be added to the database. 
FPcrush will then automatically incorporate the new compo-
nents if they turn out to be useful. Aside from its direct appli-
cation to data compression, we hope that our work will inspire 
others to build similar systems for other environments. 
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