
SC16; Salt Lake City, Utah, USA; November 2016

978-1-4673-8815-3/16/$31.00 ©2016 IEEE

Real-Time Synthesis of Compression Algorithms for

Scientific Data

Martin Burtscher, Hari Mukka, Annie Yang, and Farbod Hesaaraki

Department of Computer Science
Texas State University

San Marcos, TX, USA

Abstract—Many scientific programs produce large amounts

of floating-point data that are saved for later use. To minimize

the storage requirement, it is worthwhile to compress such data

as much as possible. However, existing algorithms tend to com-

press floating-point data relatively poorly. As a remedy, we have

developed FPcrush, a tool that automatically synthesizes an op-

timized compressor for each given input. The synthesized algo-

rithms are lossless and parallelized using OpenMP. This paper

describes how FPcrush is able to perform this synthesis in real-

time, i.e., even when accounting for the synthesis overhead, it

compresses the 16 tested real-world single- and double-precision

data files more quickly than parallel bzip2. Decompression is an

order of magnitude faster and exceeds the throughput of multi-

core implementations of bzip2, gzip, and FPC. On all but two of

the tested files, as well as on average, the customized algorithms

deliver higher compression ratios than the other three tools.

Keywords—data compression; real-time algorithm synthesis

I. INTRODUCTION

High-performance computing systems produce scientific
data at a rapidly growing rate. Many of the resulting files are
made available for download or are archived for later use. In
either case, data compression has the potential to reduce the
required storage space and to boost the download speed. How-
ever, scientific data consist predominantly of floating-point
values, which are often difficult to compress well [9].

Due to the wide availability and generality of gzip and
bzip2, many HPC users compress their data with one of these
tools, either directly or through the use of a corresponding
compression “filter” in HDF5. FPcrush, the approach de-
scribed in this paper, is meant as an alternative to using bzip2,
gzip, or parallel versions thereof. In particular, FPcrush is a
standalone tool for the lossless compression/decompression of
files that is specifically tuned to work well on hard-to-com-
press floating-point data (but also works on other files).

In environments where data files are accessed often, fast
decompression is important, preferably at the same or a higher
speed than obtained when reading the uncompressed data.
Fast compression is also desirable but conflicts with the goal
of achieving high compression ratios because better compres-
sion generally requires more computation. Therefore, an
asymmetric approach where compression takes substantially
longer than decompression is probably unavoidable when

aiming both for maximal compression and for fast decompres-
sion, which is the objective of our work.

Since data differ from each other and we want to compress
each file as much as possible, it is unlikely that a single algo-
rithm will suffice. This is why we propose customization, that
is, to compress each input with a different algorithm. Unfor-
tunately, only a handful of compression algorithms for float-
ing-point data exist in the current literature. Rather than de-
signing a few more algorithms, we created a framework that
is capable of synthesizing millions of data compression algo-
rithms [26]. From it, we derived FPcrush, which incorporates
key techniques to quickly identify promising algorithms in its
search space for compressing a given file. The resulting com-
pressed files include a few bytes of information to identify the
needed decompression algorithm.

At a high level, most data compression tools operate on a
linear sequence of values stored in an array and comprise two
main steps, a data model and a coder. Roughly speaking, the
goal of the model is to accurately predict the input values. The
residual (i.e., the difference) between each actual value and its
predicted value will be close to zero if the model is accurate
for the given data. This residual sequence of values is then
compressed with the coder by mapping the residuals in such a
way that frequently encountered values or patterns produce a
shorter output than infrequently encountered data. The inverse
operations are performed to decompress the data. For in-
stance, an inverse model takes a residual sequence as input
and generates the original sequence of values as output.

To be able to search for effective floating-point compres-
sion algorithms, we built a framework for synthesizing com-
pressors and the corresponding decompressors using the fol-
lowing approach. We started with an in-depth study of previ-
ously proposed floating-point compression algorithms, broke
them down into their constituent parts, rejected all parts that
could not be implemented to run in linear time, and general-
ized the remaining parts as much as possible. This yielded a
number of algorithmic components for building data models
and coders. We then implemented each component using a
common interface, i.e., each component can be given a block
of data as input, which it transforms into an output block of
data. This design makes it possible to chain the components,
allowing the framework to generate a large number of com-
pression-algorithm candidates from a set of components. Note

that each component comes with an inverse that performs the
opposite transformation. Thus, for any chain of components,
which represents a compression algorithm, it is always possi-
ble to synthesize the matching decompressor. Figure 1 illus-
trates this approach on the example of three components
named LVs, BIT, and LZ3 as well as a Cut. Section 2 explains
the operation of these components. Note that the order of the
components matters. Every permutation represents a distinct
algorithm that yields a potentially different compression ratio.

Fig. 1. Three chained components plus a Cut that represent a compression

algorithm along with the corresponding inverse components that make up

the decompression algorithm

Since we consider 29 algorithmic components, performing
an exhaustive search to identify the best algorithm is too ex-
pensive for chains with more than about three components,
i.e., algorithms with more than three stages. To speed up the
search, FPcrush employs two complementary techniques.
First, it uses a genetic algorithm (GA) to quickly find effective
compressors without visiting most of the search space. Sec-
ond, it extracts a short but representative segment from the
given input and uses only this segment to drive the GA. The
combination of these two approaches quickly yields a good
algorithm that is then used to compress the entire input.

To further accelerate FPcrush, the synthesis as well as the
resulting compression and decompression algorithms are par-
allelized using OpenMP. In particular, the GA evaluates the
individuals in its population (cf. Section 3.2) concurrently.
Moreover, the synthesized algorithms divide the input into
chunks and process them in parallel. Since the evaluated indi-
viduals and the processed chunks are independent, these com-
putations are embarrassingly parallel. As a consequence, their
parallelization is trivial and not the focus of this paper.

We implemented all algorithmic components using C++
templates, which makes it possible to support both single- and
double-precision data. Note that FPcrush uses a 4- and 8-byte
integer representation of the floating-point data (i.e., the bit
pattern representing the floating-point value is copied verba-
tim into an appropriately sized integer variable) and exclu-
sively uses integer operations to maximize performance and

to avoid the possibility of floating-point exceptions or round-
ing inaccuracies. In other words, FPcrush generates lossless
integer compression algorithms that are fed with and tuned for
floating-point data. This approach is also used by other float-
ing-point compressors [3, 20]. As a result, positive and nega-
tive zeros and infinities, NaNs, denormals, and all other values
are recreated bit-by-bit during decompression.

FPcrush’s goal is to maximize the compression ratio on
floating-point data while still providing high throughput, es-
pecially decompression throughput. This paper makes the fol-
lowing main contributions.

 It is the first work to demonstrate that superior
compression algorithms can be synthesized in real-
time and to present a combination of techniques that
make it possible to achieve such high synthesis speeds.

 It shows that customized algorithms can yield higher
compression ratios than pre-existing algorithms, both
on single- and double-precision floating-point data.

 It illustrates that the synthesized parallel algorithms
compress faster than parallel bzip2 and decompress
more quickly than parallel gzip, bzip2, and FPC.

 It makes FPcrush freely available on the computers
listed at cs.txstate.edu/~burtscher/research/FPcrush/.

The rest of this paper is organized as follows. Section 2
describes the algorithmic components used in FPcrush. Sec-
tion 3 explains their implementation. Section 4 summarizes
related work. Section 5 provides an overview of the evaluation
system and the input files. Section 6 studies and analyzes var-
ious aspects of FPcrush. Section 7 concludes with a summary.

II. ALGORITHMIC COMPONENTS

This section describes the 29 algorithmic components
available to FPcrush for synthesizing compression algorithms.
Many of them are generalizations or approximations of com-
ponents extracted from previously proposed algorithms. Each
component takes a sequence of values as input (i.e., an array),
transforms it, and outputs the transformed sequence. To or-
ganize the components, we grouped them into categories.

A. Mutators

Mutators are components that computationally transform
each value in the sequence. This is done independently of any
other value and does not change the length of the sequence.

The NUL component performs the identity operation, that
is, it simply outputs the input sequence. Its presence ensures
that chains with n components can also represent all possible
algorithms with fewer than n components. NUL has the high-
est priority, i.e., FPcrush gives preference to shorter chains
over longer chains with the same compression ratio.

The SMS component converts each value from sign-mag-
nitude (as used in the IEEE 754 floating-point format) into
signed twos-complement representation. It does this by invert-
ing all but the most significant bit if the most significant bit is

set. Since FPcrush processes all values using integer opera-
tions, this transformation may be beneficial.

B. Shufflers

Shufflers rearrange the order of the values in the sequence
but perform no computation on them. Some shufflers reorder
the bits or bytes within the values. None of them change the
length of the sequence. In some cases, they operate on chunks
of data that encompass multiple words.

The BIT component groups the values into chunks of as
many values as there are bits per value. It then transforms each
chunk independently by creating and emitting a word that con-
tains the most significant bits of the values, followed by a
word that contains the second most significant bits, etc. The
resulting sequence is easier to compress in cases where the bit
positions between consecutive input values exhibit a higher
correlation than the values themselves.

The ROTn component takes a parameter n that specifies
by how many units to rotate the bits of each word in the input
sequence. There are seven versions of this component. For
double-precision data, the values can be rotated by one to
seven bytes, for single-precision data by one to seven nibbles,
and for byte-sized data by one to seven bits. This rotation af-
fects the behavior of some of the other components.

The DIMn component takes a parameter n that specifies
the dimensionality of the input sequence and groups the values
accordingly. For example, a dimension of three changes the
linear sequence x1, y1, z1, x2, y2, z2, x3, y3, z3 into x1, x2, x3, y1,
y2, y3, z1, z2, z3. This may be beneficial as values belonging to
the same dimension often correlate more with each other than
with values from other dimensions. For single-precision in-
puts, we use n = 2, 3, 4, 5, 7, 8, 12, and 32. For double-preci-
sion inputs, we use n = 2, 3, 5, 7, 8, 12, and 64. Since a dimen-
sionality of k∙m can be represented by combining a DIMk with
a DIMm component, we primarily use small prime numbers
for the parameter n. To capture important non-prime values of
n in a single component (for performance reasons), we also
include the following: n = 12 is useful because twelve is the
least common multiple of 2, 3, 4, and 6 and therefore works
well on 2D, 3D, 4D, 6D, and 12D data. n = 8 is useful in com-
bination with the BIT component because there are eight bits
per byte and, in case of double-precision values, there are
eight bytes per word. The bytes per word is also the reason for
including n = 4 in case of single-precision data. The largest
included dimension reflects the number of bits per word, i.e.,
n = 32 for single precision and n = 64 for double precision.

C. Predictors

Predictors guess the current value based on previous val-
ues in the input sequence, subtract the predicted from the cur-
rent value, and emit the result of the subtraction, that is, the
residual sequence. If the predictions are close to the actual val-
ues, the residuals will cluster around zero, making them easier
to compress than the original sequence. Predictors do not
change the length of the sequence. The subtraction to compute

the residual can be performed at word granularity (using con-
ventional subtraction, denoted by a trailing ‘s’) or at bit gran-
ularity (using XOR, denoted by a trailing ‘x’).

The LVs and LVx components use the previous value in
the sequence as a prediction of the current value. This is com-
monly referred to as delta modulation.

For n-dimensional data, it may be useful to utilize the nth
prior value. However, this can be achieved by preceding the
LV component by a DIMn component. Hence, we do not in-
clude a last-n value predictor component.

D. Reducers

Reducers are the only components that can change the
length of the sequence and therefore compress it. They exploit
various types of redundancies to do so. The last component of
a chain must always be a reducer and there has to be at least
one reducer in each chain to form a useful compression algo-
rithm. FPcrush enforces this restriction automatically and
does not consider other chains.

The ZE component emits a bitmap that contains one bit
for each value in the input. Each bit indicates whether the cor-
responding value is a zero or not. Following the bitmap, ZE
emits all non-zero values from the input sequence. This com-
ponent’s effectiveness depends on the number of zeros, which
is why some of the previously described components aim at
generating as many zeros as possible.

The RLE component performs run-length encoding. In
particular, it counts how many times the current value appears
in a row. Then it counts how many non-repeating values fol-
low. Both counts are recorded in a single word, i.e., each count
gets half of the bits. This “count” is emitted first, followed by
the current value and finally the non-repeating values. This
procedure repeats until the end of the input is reached. We se-
lected this specific version of run-length encoding because it
proved particularly effective on hard-to-compress floating-
point data. Nevertheless, its effectiveness is contingent upon
the input containing many repeating values.

The LZn component implements a variant of the LZ77 al-
gorithm [27]. It incorporates tradeoffs that make it more effi-
cient than other LZ77 versions on floating-point data and op-
erates as follows. It uses a hash table to identify the location l
of the most recent prior occurrence of the current value. Then
it checks whether the n values immediately before location l
match the n values just before the current location. If they do
not, the current value is emitted and the component advances
to the next value. If the n values match, the component counts
how many values following the current value match the values
following location l. The length of the matching substring is
emitted and the component advances by that many values.
Smaller values of n yield more matches, which have the po-
tential to improve compression, but also result in a higher
chance of zero-length substrings, which hurt compression. We
consider n = 1, 2, 3, 4, 5, 6, and 7.

The LZ components contain a hash table. We use a con-
stant table size of 65,536 words throughout this paper, which

seems to work well and is reasonably fast. Note that larger
tables tend to increase the compression ratio while decreasing
the compression and decompression throughput. Smaller ta-
bles have the opposite effect.

E. The Cut

The │ pseudo component, called the Cut and denoted by
a vertical bar, is a singleton component that converts a se-
quence of words into a sequence of bytes. It is merely a type
cast and requires no computation or data copying. Every algo-
rithm produced by FPcrush contains exactly one Cut, which is
included because it is often more effective to perform com-
pression at byte rather than word granularity. Note, however,
that the Cut can appear before the first component, in which
case the data are treated as a sequence of bytes, after the last
component, in which case the data are treated as a sequence of
words, or between components, in which case the data are in-
itially treated as words and then as bytes.

F. Discussion

The components described above can all be implemented
to run in O(n) time, where n is the sequence length. We ex-
cluded more complex components such as move-to-front and
block-sorting components to make the synthesis, which has to
evaluate many different chains of components, as fast as pos-
sible. Nevertheless, as the results in this paper demonstrate,
the included components suffice to create algorithms that
compress better than preexisting tools in many cases.

Due to the Cut, FPcrush needs three versions of each com-
ponent: one for double-precision values (8-byte words), one
for single-precision values (4-byte words), and one for byte
values. We implemented all components in form of C++ tem-
plates to facilitate the generation of these different versions.

Each component requires a corresponding inverse compo-
nent that performs the reverse transformation. By chaining the
inverse components in the opposite direction, FPcrush can au-
tomatically synthesize the matching decompression algorithm
for any given chain of components, i.e., for any of the com-
pression algorithms in can generate (cf. Figure 1).

The seven LZ components utilize hash tables. For perfor-
mance reasons, their hash functions only use some of the bits
from the input values. This is why altering the location of bits
and bytes by other components affects the effectiveness of
these components. Note, however, that FPcrush is able to op-
timize which bits to use by the hash function, for example,
through the inclusion of an appropriate ROT component.

Not counting the Cut, FPcrush has 29 components at its
disposal, only nine of which are able to reduce the length of
the data. The purpose of the remaining 20 components is to
transform the values in such a way that the reducers become
maximally efficient. Thus, longer chains of components have
the potential to compress better but make the search for a good
algorithm take longer and decompression slower. For an algo-
rithm with k stages, that is, a chain with k components, the
search space encompasses (k+1) ∙ 29k–1 ∙ 9 possible algorithms
because there are k+1 locations for the Cut, k–1 stages that can

each hold any one of the 29 components, and a final stage that
can hold any one of the nine reducers. This amounts to over a
million possible four-stage algorithms and over 42 billion
seven-stage algorithms.

III. FPCRUSH IMPLEMENTATION

A. Representative Segments

Since there is not nearly enough time available to search
the entire input for a good compression algorithm, FPcrush
first determines a small representative segment and then per-
forms the search only on this segment. To identify a good seg-
ment, it breaks up the input into many segments and uses a
sliding-window approach where the window is advanced in
steps of one eighths of the segment size. The segment size is
selectable and expressed as a percentage of the entire file size.
Then, FPcrush computes the byte entropy of each segment and
selects the one whose entropy is closest to that of the entire
file. Shorter segments result in faster searches but may be less
representative. Moreover, there is no guarantee that a repre-
sentative segment exists at all. Once a good compression al-
gorithm for the selected segment has been found, this algo-
rithm is applied to the entire file.

B. Genetic Algorithm

The genetic algorithm (GA) [10, 11] employed by FPcrush
to quickly search for an effective compression algorithm uses
a fixed population size of twenty individuals. Each individual
(i.e., a chain of components representing a compression algo-
rithm) is initialized with a randomly selected reducer in the
last stage, randomly selected components in the other stages,
and a random location for the Cut. This population is then
evolved over a selectable number of generations in the follow-
ing way. First, the compression ratio (i.e., the fitness) of each
individual is evaluated on the chosen segment and the best-
performing algorithm is recorded. Then a new generation of
individuals is created using the following genetic approach.

A quarter of the new individuals are the result of a cross-
over operation, which selects two parents from the prior gen-
eration with a probability that is proportional to their fitness.
The components are taken from one parent up to a randomly
selected stage and the remaining components are taken from
the other parent. The Cut is randomly taken from the first or
the second parent. The next quarter of the new individuals are
also the result of a cross-over operation. However, this cross-
over picks the Cut and the components for each stage from
one or the other parent based on a random bitmask. The third
quarter of the new individuals are the result of mutating a sin-
gle clone, which is selected from the prior generation with a
probability proportional to its fitness. The mutation replaces
one randomly selected component or the Cut with a random
but legal alternative. The probability of a single mutation is
100%, a second mutation happens with 50% probability, a
third one with 25%, etc. The last quarter of the new individu-
als are also the result of mutations, but in this case they are
applied to a copy of the best algorithm found so far.

Genetic algorithms represent a heuristic search method
that is meant to quickly converge on some good solutions.
However, there is no guarantee that a genetic algorithm will
do so and it generally does not find the globally best solution
in large search spaces. However, the best identified solution
often performs nearly as well as the globally best solution.

IV. RELATED WORK

A. Floating-Point Compressors

This subsection summarizes related work on lossless float-
ing-point compression. We extracted the basic idea behind
many of our algorithmic components from these papers. Of
course, many more papers on the lossless compression of
floating-point data exist (cf. [19] and references therein).

Lindstrom and Isenburg discuss on-line compression of
floating-point grid data for speeding up I/O operations [20].
They use a Lorenzo predictor and map reals to unsigned inte-
gers. FPcrush also exclusively uses integer representation and
operations. Since the Lorenzo predictor is not particularly
suitable for linear sequences of values, FPcrush does not in-
clude a corresponding component.

Burtscher and Ratanaworabhan’s FPC algorithm targets
double-precision values [3]. It predicts the integer interpreta-
tion of the 64-bit values using an FCM and a DFCM predictor.
The two predictions are XORed with the true value. The result
with more leading zeros is compressed using leading-zero
byte counts. The authors also published a parallel version of
their compression algorithm, called pFPC [4], with which we
compare FPcrush in the result section. We include the XOR
idea in our study. We found the FCM and DFCM predictors
with leading-zero-byte-elimination to be outperformed by
chains with an LZ component, which is why we ended up not
including components for the two predictors.

Chen et al.’s work orders grid points of tetrahedral volume
data to improve compressibility [6]. Their approach separates
the “signed exponent” from the mantissa values. We include
a similar component (BIT) that groups the various bit posi-
tions from adjacent values so that all the sign bits, exponent
bits, etc. can be compressed together.

Bicer et al. describe a framework that XORs values and
leading-zero compresses the results [1]. As it operates at bit
granularity, their approach works for both single- and double-
precision data. The data are split into chunks, which are com-
pressed independently. FPcrush also supports both single- and
double-precision data and uses data chunks to facilitate paral-
lel compression and decompression.

Filgueira et al. focus on runtime compression of MPI mes-
sages, including floating-point messages [8]. They found lzop
to work best on their synthetic integer and floating-point data
that include a significant number of zeros because lzop is very
fast. The user can select which compression algorithm to use
for which data type. A later paper describes an extension that
dynamically selects the most appropriate algorithm based on

the data type, including none for short messages [9]. Our ap-
proach is orthogonal to theirs and could be used to find good
compression algorithms for various data types.

Schendel et al. introduce a pre-compression tool to im-
prove the performance of general-purpose compressors on
double-precision floating-point data. Their approach analyzes
the compressibility of the data at byte granularity, determines
the best compressor for the job, and identifies and removes
hard-to-compress sections before piping the remaining data to
the compressor [22]. FPcrush searches for effective algo-
rithms at word and byte granularity and produces customized,
standalone compression algorithms. However, it uses a similar
analysis of the input to find a good segment.

Jenkins et al. create a system for rapid indexing, storing,
and querying based on compressed metadata [17]. Their com-
pression approach is based on the idea that most double-pre-
cision data have similarity in the sign and exponent fields.
They discard the redundancies in the higher-order bits and
map the lower-order bytes to a bin according to distinct
higher-order bits. They then pass the separated data to bzip2.
FPcrush does not depend on such assumptions about the data,
but it does contain components to separate higher- and lower-
order bits so that they can be compressed separately.

B. Generating Compression Algorithms

This subsection describes prior techniques for synthesiz-
ing compression algorithms. FPcrush is a derivative of the
Crusher framework, which we previously used to synthesize
a floating-point compression algorithm that is GPU friendly
[26]. This prior work uses some of the same algorithmic com-
ponents to generate the compressor. However, it only employs
components that can easily be parallelized for GPUs. FPcrush
does not have this limitation, which is why its algorithms al-
most always compress the same files better, in some cases by
a large margin. More importantly, our prior work is not con-
cerned with the synthesis speed. It does not use a genetic al-
gorithm nor segments to accelerate the processing. In fact, it
is several orders of magnitude slower and unfit for real-time
synthesis. Furthermore, it only proposes a single algorithm. In
contrast, FPcrush generates a new algorithm for each file.

None of the remaining related works described in this sub-
section are designed for floating-point data. Instead, they tar-
get program execution traces, heterogeneous files, images,
and databases. Moreover, none of these approaches were de-
signed for or support real-time compression and none of them
employ segmentation to speed up the algorithm generation. As
a consequence, when including the synthesis time, they are
much slower than standard compression tools. Hence, we do
not compare FPcrush to these approaches in the result section.

Burtscher and Sam present TCgen, a tool that generates
customized trace compressors based on a user-provided con-
figuration of one or more predictors [5]. TCgen then translates
this description into C source code that is optimized for the
specified trace format and predictors. FPcrush supports a
larger number of components, in particular also non-predictor

components, and automatically determines good algorithms
without the need for a description from the user.

Kattan and Poli propose a system that employs genetic
programming to find optimal ways to combine standard com-
pression algorithms [18]. They group similar data chunks to-
gether and label each group with the best compression algo-
rithm for its chunks. We also utilize a genetic algorithm and
combine components. However, their components represent
entire compression algorithms whereas our components are
finer grained and represent parts of a compression algorithm.

Hsu and Zwarico present an automatic synthesis technique
for compressing heterogeneous files [12]. Each chunk of data
is compressed using a different algorithm, which is deter-
mined using a statistical method. A compression history, re-
quired for decompression, is automatically generated and
added in this phase. We use a similar approach to record the
needed decompression algorithm in the compressed output.

Mitra et al. propose a methodology for compressing fractal
images using a genetic algorithm [21]. Initially, fractal codes
are computed for each domain block. Then these blocks are
classified into two types based on the variability of the pixels
in each block. A block belongs to the smooth type if its vari-
ance is below a given threshold and is considered rough oth-
erwise. The purpose of this classification is to obtain higher
compression ratios and to reduce the encoding time. The final
step uses a genetic algorithm to find a good match for the
rough domain blocks. Wu and Lin use a similar approach with
three classes [25]. FPcrush also uses a genetic algorithm to
find an effective solution in its search space.

Several other papers have been published that employ a
genetic algorithm for image compression, primarily to speed
up the compression. Vences and Rudomin use it to compress
sequences of images [23], Wu et al. [24] improve upon
Vences and Rudomin’s approach, and Boucetta and Melkemi
describe how to transform the RGB planes of a color image
into more suitable spaces using a genetic algorithm [2].

Fang et al. investigate how to compress database infor-
mation using GPUs to overcome the transfer overhead [7].
They employ a compression planner along with a cost model
of the GPU to identify an optimal combination among nine
different compression schemes and use a rule-based method
to automatically prune the search space. They utilize fewer
components than we do and, as in Kattan and Poli’s work,
each component is an entire compression algorithm.

Chaining whole compression algorithms, as is proposed in
many of the above related works, is fundamentally different
from chaining algorithmic components to build a compression
algorithm, which is what we do. After all, the goal of a com-
pression algorithm is to maximally reduce the number of
bytes, which generally means that there are few exploitable
patterns left in the output. This makes it difficult for the next
compression algorithm in the chain to be effective. Our ap-
proach does not suffer from this problem. In fact, most of the
algorithmic components we use do not reduce the number of
bytes at all but transform the data to better expose patterns.

V. EVALUATION METHODOLOGY

We evaluated all tested compressors on a compute node of
the Maverick supercomputer at the Texas Advanced Compu-
ting Center. The node contains two 10-core Intel Xeon E5-
2680 v2 Ivy Bridge processors running at 2.8 GHz with a 20
MB L3 cache and 128 GB of main memory. The operating
system is CentOS 6.4. We used the icc compiler version 14.0.1
with the “-O3 -xhost” flags.

A. Compression Tools

We compare FPcrush in terms of compression ratio, com-
pression throughput, and decompression throughput to three
compressors from the literature: 1) pigz [16], a parallel version
of gzip, 2) pbzip2 [13], a parallel version of bzip2, and 3)
pFPC [15], a parallel version of FPC. The first two are widely
used general-purpose compressors, i.e., they are not specifi-
cally designed for floating-point data. pFPC is a special-pur-
pose compressor designed for double-precision floating-point
data. It does not support single-precision data. Since our pri-
mary objective is to obtain a high compression ratio and the
secondary objective is fast decompression, we use pigz with
the “-c9 -p20” flags, pbzip2 with the “-9 -p20” flags, and
pFPC with one million table entries, 20 threads, and 4096-el-
ement chunks, which are the recommended parameters.

B. FPcrush Parameter Space and Randomization

FPcrush is parameterizable along multiple dimensions.
We studied all combinations of 2, 4, 8, 16, 32, and 64 genera-
tions in the GA, 1, 2, 3, 4, 5, 6, and 7-stage algorithms, and
100% (i.e., the entire input), 10%, 1%, and 0.1% segments.
We use a fixed population size of 20 to match the number of
cores in our system (hyper-threading is turned off on Maver-
ick). Based on the results, we empirically selected sixteen gen-
erations, five-stage algorithms, and one percent segments as
the baseline configuration for our performance evaluation,
which yields good compression ratios and throughputs.

The genetic operations rely on a random-number genera-
tor. As a consequence, using different seeds can result in dif-
ferent synthesized algorithms even when otherwise using the
same configuration and the same input. To lower the impact
of the random seed, we repeated every experiment three times
with three different seeds and present the results from the run
that produced the median compression ratio. This should
make the results more representative of what can be expected
on average from our approach.

C. Throughput Measurements

For the special-purpose floating-point compressors pFPC
and FPcrush, the timing measurements are performed by add-
ing code to read a timer before and after the compression and
decompression code sections. For the general-purpose com-
pressors pbzip2 and pigz, we measure the runtime of compres-
sion and decompression when reading the input file from a
disk cache in main memory and writing the output to
/dev/null. In case of FPcrush, the compression time includes
the time to select a representative data segment, running the
genetic algorithm, and using the resulting best algorithm to

compress the entire file. In all cases, the decompressed data
are compared to the original to ensure that every bit is identi-
cal. This validation is not included in the timings.

D. Input Files

We use eight FPC data sets for our evaluation [14]. Each
file consists of a binary sequence of IEEE 754 double-preci-
sion floating-point values. They encompass numeric results
(num) and observational data (obs). For the single-precision
experiments, we simply converted the double-precision files.

The following 4 data sets stem from numeric simulations:

 num_brain: simulation of the velocity field of a human
brain during a head impact

 num_comet: simulation of the comet Shoemaker-Levy
9 entering Jupiter’s atmosphere

 num_control: control vector output between two min-
imization steps in weather-satellite data assimilation

 num_plasma: simulated plasma temperature evolution
of a wire array z-pinch experiment

The following 4 data sets stem from scientific instruments:

 obs_error: data values specifying brightness tempera-
ture errors of a weather satellite

 obs_info: latitude and longitude information of the ob-
servation points of a weather satellite

 obs_spitzer: data from the Spitzer Space Telescope
showing a slight darkening as an extrasolar planet dis-
appears behinds its star

 obs_temp: data from a weather satellite denoting how
much the observed temperature differs from the actual
contiguous analysis temperature field

Table I provides pertinent information about the double-
precision inputs. The first two data columns list the size in
megabytes and in millions of double-precision values. The
middle column shows the percentage of values that are
unique. The fourth column displays the first-order entropy of
the values in bits. The last column expresses the randomness
of each input in percent, i.e., it reflects how close the first-
order entropy is to that of a truly random data set with the same
number of unique values. We chose these files because they
contain real-world data and are large enough to demonstrate
the utility of our approach while making parameter-space

evaluations tractable. Note that FPcrush tends to be more ef-
ficient on larger files, especially the segmentation, which is
important as many real-world scientific applications produce
files that are much larger than our test files.

TABLE I. INFORMATION ABOUT THE DOUBLE-PRECISION INPUTS

VI. EXPERIMENTAL RESULTS

A. Compression Ratios

Table II shows the compression ratios on the 16 single-
and double-precision files as well as the geometric mean for
each compressor. FPcrush is run with the baseline configura-
tion of five stages, 1% segments, and 16 generations. pFPC
does not support single-precision data.

Except on obs_spitzer, FPcrush yields the highest com-
pression ratio on all tested inputs, in particular also on
num_plasma, the most compressible of the studied files. The
benefits of compression range from 11% to over a factor of
10. pbzip2 compresses the obs_spitzer file 26% and 41% bet-
ter, presumably due to its use of a block-sorting algorithm,
which is relatively slow and not synthesizable from the com-
ponents included in FPcrush.

The results in Table II demonstrate that FPcrush is able to
synthesize effective floating-point compression algorithms. In
fact, it often yields never-before-described algorithms that
compress better than some of the best available compressors.

B. Decompression Speed

Table III lists the decompression throughput in megabytes
per second on the 16 inputs as well as the geometric mean.
Again, FPcrush refers to the baseline configuration with five
stages, 1% segments, and 16 generations.

The automatically synthesized decompression algorithms
deliver the highest throughput on each tested file. The geomet-
ric mean is over one gigabyte per second, which is 5.4 and 5.7

TABLE II. COMPRESSION RATIOS (THE HIGHEST SINGLE- AND DOUBLE-PRECISION COMPRESSION RATIOS ARE SHADED)

size doubles unique values 1st order randomness

(megabytes) (millions) (percent) entropy (bits) (percent)

num_brain 135.3 17.73 94.9 23.97 99.9

num_comet 102.4 13.42 88.9 22.04 93.8

num_control 152.1 19.94 98.5 24.14 99.6

num_plasma 33.5 4.39 0.3 13.65 99.4

obs_error 59.3 7.77 18.0 17.80 87.2

obs_info 18.1 2.37 23.9 18.07 94.5

obs_spitzer 189.0 24.77 5.7 17.36 85.0

obs_temp 38.1 4.99 100.0 22.25 100.0

geomean num_brain num_comet num_control num_plasma obs_error obs_info obs_spitzer obs_temp

pigz 1.206 1.064 1.160 1.057 1.608 1.447 1.157 1.228 1.035

pbzip2 1.460 1.043 1.173 1.029 5.670 1.331 1.218 1.746 1.023

pFPC 1.440 1.148 1.151 1.038 7.042 1.542 1.215 1.022 0.997

FPcrush 1.665 1.194 1.285 1.127 10.547 1.672 1.403 1.237 1.114

pigz 1.524 1.113 1.117 1.043 8.652 1.338 1.327 1.391 1.049

pbzip2 1.510 1.113 1.117 1.043 8.781 1.337 1.219 1.389 1.048

FPcrush 1.667 1.302 1.203 1.157 10.189 1.613 1.606 1.106 1.128

d
o

u
b

le
si

n
gl

e

TABLE III. DECOMPRESSION THROUGHPUT [MB/S] (THE HIGHEST SINGLE- AND DOUBLE-PRECISION THROUGHPUTS ARE SHADED)

TABLE IV. COMPRESSION THROUGHPUT [MB/S] (THE HIGHEST SINGLE- AND DOUBLE-PRECISION THROUGHPUTS ARE SHADED)

times faster than pigz and 6.6 and 10.1 times faster than
pbzip2. pFPC is outperformed by a factor of 1.6. Note that
each of these compressors utilizes all 20 CPU cores.

For comparison, we also measured the memory copy
throughput of the built-in memcpy function on the same data.
It ranges from 3358 MB/s to 8707 MB/s. In other words,
simply copying the data from one memory location to another
is 2.4 to 6.5 times faster than the decompression speed of
FPcrush’s algorithms on our machine.

Clearly, the synthesized algorithms decompress quickly
and compress well. In fact, the benefit in decompression
throughput is higher than the benefit in compression ratio.

C. Compression Speed

Table IV shows the compression throughput in megabytes
per second on the 16 input files and the geometric mean. As
before, FPcrush refers to the baseline configuration with five
stages, 1% segments, and 16 generations. Note that the meas-
ured runtime of FPcrush includes the time to identify the best
segment, the time to run the genetic algorithm on this segment,
and the time to compress the entire file using the best algo-
rithm the GA found.

pFPC compresses the double-precision files the fastest.
Since it does not support single-precision data, pigz performs
best on those files. Surprisingly, FPcrush delivers well over
100 MB/s compression throughput even though it first has to
determine a suitable algorithm. This throughput is sufficient
for real-time compression on a gigabit-per-second channel.

On average, FPcrush is nine times slower than pFPC and
two to three times slower than pigz, but it is 1.6 and 1.9 times
faster than pbzip2. In addition to being faster than pbzip2 on
each tested input, it also compresses better and decompresses
more quickly, which underscores the benefit of our approach.

Figure 2 illustrates the relative breakdown of FPcrush’s
compression time on the double-precision files when using
five stages, 1% segments, and 16 generations. The bottom part
of each bar shows the time to find the best segment, the middle
part shows the time to run the genetic algorithm on this seg-
ment, and the top part shows the time to compress the entire
file using the best found algorithm.

Fig. 2. Breakdown of the double-precision compression time

Running the genetic algorithm dominates and takes on av-
erage 68% of the overall compression time. Determining a
good segment takes 22% of the runtime. It is relatively slow
because of calculating the entropy, which requires slow tran-
scendental floating-point operations whereas the compression
is performed exclusively with fast integer operations. The ac-
tual compression takes about 10% of the overall runtime.
Combined with the throughput results from Table IV, we find
the true compression to be about as fast as the decompression
(cf. Table III). The synthesis (the genetic algorithm) plus the
segmentation slow down compression by a factor of ten.

geomean num_brain num_comet num_control num_plasma obs_error obs_info obs_spitzer obs_temp

pigz 217.0 200.4 212.4 214.6 269.2 236.4 206.5 196.0 208.7

pbzip2 122.9 67.3 121.8 66.1 330.0 200.1 168.0 45.4 190.8

pFPC 786.3 883.2 808.0 791.2 1112.4 781.3 541.8 889.1 618.0

FPcrush 1247.5 1494.6 1464.5 1425.4 1231.2 1195.4 852.7 1335.5 1121.7

pigz 206.3 199.6 224.6 204.1 214.0 218.4 198.6 191.4 201.7

pbzip2 170.6 210.7 207.0 141.1 249.5 195.9 142.0 102.1 164.6

FPcrush 1121.7 1231.3 1214.3 1387.0 964.0 849.2 1333.1 1148.2 964.6

d
o

u
b

le
si

n
gl

e

geomean num_brain num_comet num_control num_plasma obs_error obs_info obs_spitzer obs_temp

pigz 384.3 423.8 362.3 451.0 537.1 264.9 381.2 300.6 421.8

pbzip2 75.6 87.2 101.1 87.3 20.8 99.1 73.8 113.4 80.5

pFPC 1080.4 1370.5 1262.4 1149.9 1310.4 1073.5 596.7 1395.4 796.7

FPcrush 122.0 132.0 130.8 149.8 111.7 130.3 74.9 144.1 120.9

pigz 304.5 358.8 410.8 419.7 401.8 143.4 289.8 212.5 336.5

pbzip2 70.3 85.8 87.6 74.6 22.7 89.2 73.0 96.2 74.7

FPcrush 134.2 133.3 142.5 166.1 127.1 115.2 89.1 178.7 142.8

d
o

u
b

le
si

n
gl

e

TABLE V. SYNTHESIZED ALGORITHMS

D. Synthesized Algorithms

Table V illustrates the most effective algorithm FPcrush
synthesized for each tested input when using five stages, 1%
segments, and 16 generations. The component names follow
the description in Section 2.

While not easy to understand, it is obvious that the algo-
rithms differ substantially from one input to another and, per-
haps more surprisingly, even between the single- and double-
precision versions of the same input. However, this is at least
in part due to performing an imperfect search using an imper-
fect segment. These imperfections are reflected, for example,
in the double-precision algorithm for num_brain, which con-
tains three ROT components in a row that should be replaced
by an equivalent single ROT component. Adding a post-pro-
cessing step to FPcrush could identify and eliminate such ar-
tifacts, which might improve the synthesis results, the conver-
gence of the GA, and the throughput of the algorithms.

Other observations of note include, for example, that two
of the single-precision algorithms contain a NUL component,
meaning that they really only have four stages. SMS, the other
mutator, also occurs twice. All shufflers (BIT, ROT, and
DIM) are very frequent. As mentioned, ROT is needed to ad-
just the hash function of the LZ components. Both the subtrac-
tion- and the XOR-based LV predictor appear in several algo-
rithms, through subtraction dominates. Finally, all reducers
are employed. RLE and ZE occur twice. At least one version
of LZ is included in every algorithm with up to three in a sin-
gle algorithm. Whereas all parameters of LZ are used, only
parameters 3 through 7 are frequent with 4 being the most fre-
quent. For DIM, the parameter 5 is not used. For ROT, param-
eters 3 and 6 do not occur.

Clearly, not all components are equally important. Elimi-
nating some components/parameters would speed up the ge-
netic algorithm and the synthesis, but it is unknown whether
these components are useful on other files. A more extensive
study is needed to determine if they are truly unnecessary.

The Cut never appears at the end, indicating that it is useful
to eventually process the data at byte granularity. Note that
most of the employed components are not reducers, i.e., do
not compress the data, demonstrating that transforming the
values to make them more amenable for the reducers is para-
mount in an efficient compression algorithm.

E. Segment Size

The key novelty of FPcrush is its ability to synthesize custom-
ized compression algorithms in real-time. This subsection
studies the use of segments, i.e., one of the main techniques
that make this possible. Since the single-precision results ex-
hibit the same trends, we only present double-precision re-
sults. We use exhaustive search as the baseline, which is very
slow. Hence, we can only show results for three-stage algo-
rithms, the largest chain length for which the exhaustive
search completes within the 12-hour job limit on Maverick.

Figure 3 shows the throughput results in megabytes per
second on a log-log plot. We ran the exhaustive search on the
entire input (100%) as well as with segments that are 10%,
1%, and 0.1% as long as the complete inputs.

Fig. 3. Double-precision compression throughput of exhaustive search with

three stages as a function of the segment size

The results show roughly linear scaling with the segment
size down to one percent. In fact, all eight inputs exhibit some
superlinear scaling in this range because the entire working set
does not fit in the processor’s L3 cache, but when using suffi-
ciently small segments it does. The scaling drops off when go-
ing to 0.1% segments because the search becomes so fast that
other work starts to dominate, most notably the ultimate com-
pression of the entire input with the best algorithm. For ex-
haustive search, the workload is exponential in the length of
the chains. Hence, even smaller segments are likely to be ben-
eficial with four or more stages. Having said that, care should
be taken not to make the segments too short. For example, the

 customized double-precision algorithm customized single-precision algorithm

num_brain | ROT1 ROT7 ROT1 DIM8 LZ5 | DIM4 ROT1 LZ6 DIM12 LZ7

num_comet BIT ZE RLE | ROT2 LZ6 | DIM12 SMS DIM7 SMS LZ4

num_control ROT2 LVx BIT DIM64 | LZ4 LVs BIT RLE | ROT7 LZ5

num_plasma ROT1 SMS LZ2 LZ6 | LZ3 LVs LZ7 | DIM8 LVx LZ4

obs_error LZ3 | DIM64 ROT1 DIM3 LZ6 DIM2 | NUL LZ7 DIM12 LZ5

obs_info LVs | DIM8 LZ3 ROT2 LZ7 | NUL DIM4 DIM2 ROT5 LZ3

obs_spitzer LZ1 LZ2 ZE BIT | LZ5 DIM32 BIT ROT5 DIM32 | LZ4

obs_temp BIT ROT4 DIM64 | LVx LZ4 DIM8 LVs BIT ROT2 | LZ4

0.1% segment of obs_info is only 18 kilobytes long. We em-
pirically determined that at least a few kilobytes are necessary
to obtain compression algorithms that work well on the full
inputs. This means very small segment percentages are only
prudent for large files to speed up the synthesis.

Using segments is clearly an effective approach to reduce
the algorithm synthesis time and therefore to increase the
compression throughput. However, using segments lowers the
compression ratio in cases where no representative segment
can be found. To investigate the magnitude of this potential
problem, Table VI shows the achieved compression ratio rel-
ative to that of exhaustive search on the whole inputs.

TABLE VI. HIGHEST COMPRESSION RATIO OF EXHAUSTIVE SEARCH

WHEN USING SEGMENTS RELATIVE TO USING THE ENTIRE FILE

10% and 1% segments yield essentially the same compres-
sion ratio on our eight double-precision files as using the
whole files does. 0.1% segments are also quite good except on
num_plasma, where no representative segment was found.
Nevertheless, with 0.1% segments, FPcrush is still able to de-
termine the best algorithm in its search space for half of the
studied inputs. Interestingly, on num_control, smaller seg-
ments yield better results than larger segments. This is possi-
ble because longer segments may be less representative of the
entire input than the finer-grained shorter segments.

F. Number of Generations

This subsection studies the number of generations in the
genetic algorithm, another key parameter that greatly affects
the synthesis speed. We again only present double-precision
results and use exhaustive search as the baseline.

Figure 4 shows the throughput on a log-log plot for the
genetic algorithm with 64, 32, 16, 8, 4, and 2 generations. In
all cases, the entire files were used rather than segments.

The throughput scales well with decreasing numbers of
generations. num_plasma is again an outlier and yields the
highest throughput because it is more compressible than the
other files. Clearly, reducing the number of generations is an-
other effective way to speed up the algorithm synthesis. How-
ever, doing so can hurt the quality of the best found algorithm,
as the results in Table VII illustrate.

As expected, Table VII shows that the algorithm quality
tends to decrease with fewer generations. While not severe for
three-stage chains, where the genetic algorithm quickly finds
the best compression algorithm in the search space, the quality

degrades more for longer chains of components. Since the
search space is exponential in the length of the chain, longer
chains require more generations for the genetic algorithm to
find high-quality solutions. Since exhaustive search is intrac-
table for long chains, using a genetic algorithm (or any other
fast search method) not only drastically speeds up the search
for effective multi-stage compression algorithms but is essen-
tial in that it makes such searches possible in the first place.

Fig. 4. Compression throughput of the genetic algorithm with three stages

and no segments as a function of the number of generations

TABLE VII. HIGHEST COMPRESSION RATIO WITH THREE STAGES FOR

VARIOUS NUMBERS OF GENERATIONS RELATIVE TO EXHAUSTIVE SEARCH

G. Number of Stages

Table VIII shows the compression ratios on the eight dou-
ble-precision files when running the genetic algorithm for 16
generations on 1% segments with various numbers of stages.

Expectedly, longer chains tend to perform better as they
can express supersets of the algorithms with fewer stages.
However, because the GA-based search is imperfect, this is
not always the case. For example, on obs_info, the best found
four- and six-stage algorithms are worse than the best three-
stage algorithm. The geometric mean compression ratio
climbs steadily up to five stages, beyond which the increase is
lower and even drops at six stages. Note that longer chains
result in lower compression and decompression throughput.
Five-stage algorithms seem to yield good compression ratios
without overly burdening the throughput. Nevertheless, if a
higher throughput is desired, using fewer stages is an obvious
approach to achieve that. Since more stages do help on some
inputs and the user does not know a priori how many stages

100% 10% 1% 0.1%

num_brain 1.00 1.00 1.00 1.00

num_comet 1.00 1.00 1.00 1.00

num_control 1.00 0.96 0.99 1.00

num_plasma 1.00 1.00 1.00 0.53

obs_error 1.00 1.00 0.99 0.99

obs_info 1.00 1.00 1.00 0.96

obs_spitzer 1.00 1.00 1.00 0.97

obs_temp 1.00 1.00 1.00 1.00

64 32 16 8 4 2

num_brain 0.99 0.99 1.00 0.99 0.99 0.99

num_comet 1.00 0.97 0.97 0.91 0.96 0.93

num_control 0.99 0.98 0.98 0.98 0.98 0.91

num_plasma 1.00 1.00 1.00 0.97 0.92 0.89

obs_error 0.99 1.00 0.99 0.93 0.98 0.92

obs_info 1.00 1.00 0.99 0.95 0.96 0.94

obs_spitzer 0.97 0.96 0.96 0.94 0.94 0.92

obs_temp 0.99 0.95 0.98 0.99 0.98 0.92

will suffice, we evaluated and recommend using FPcrush with
five stages or thereabouts.

TABLE VIII. COMPRESSION RATIO USING 16 GENERATIONS WITH 1%

SEGMENTS AS A FUNCTION OF THE NUMBER OF ALGORITHM STAGES

H. Other Parameters

We did not present an evaluation of the population size
used by the genetic algorithm, the size of the hash tables in the
LZ components, and the chunk size, in favor of more detailed
measurements and analysis of more important parameters. We
used a fixed population size of 20 to match the number of
cores in our system. This parameter is somewhat uninteresting
as larger populations hardly improve the final algorithms but
make the synthesis slower. We selected a constant hash-table
size of 65,536 words to maximize the compression ratio while
mostly hitting in the L2 cache. Larger tables increase the av-
erage compression ratio only a little but substantially decrease
the compression and decompression throughput while smaller
tables result in significantly lower compression ratios. We
chose a fixed chunk size of 131,072 words for similar reasons,
i.e., to fully exploit the L3 cache. Larger chunks only improve
the compression ratio a little while significantly lowering the
compression and decompression throughput. Smaller chunks
hurt the compression ratio considerably.

VII. SUMMARY AND CONCLUSIONS

This paper describes a high-speed approach to automati-
cally synthesize data compression and matching decompres-
sion algorithms. The key novelty of our work is to demon-
strate that superior compression algorithms can, in fact, be
synthesized in real-time. To the best of our knowledge, we are
the first to show that this is doable at all and to present a com-
bination of techniques that make it possible. This combination
is essential as the parallel genetic algorithm, the segmentation
approach, and the linear-time components are only fast
enough when used together to achieve real-time synthesis.

We implemented our approach in the FPcrush tool, which
is based on a set of algorithmic components that can be
chained to construct sophisticated compression algorithms.
FPcrush employs a genetic algorithm to quickly search for the
most effective chains of components, i.e., algorithms, and uses
small representative segments of the input data to further ac-
celerate the search. Together, these techniques make our com-
pression-algorithm-synthesis tool faster than the parallel
bzip2 compressor while compressing better in most cases. In

spite of FPcrush’s synthesis overhead, even compression op-
erates at over 100 megabytes per second.

There are several avenues for future work. For instance,
other fast search algorithms could be tried, as could other
mechanisms for identifying representative segments such as
sampling. The presented study could also be expanded to in-
clude more inputs, larger inputs, and non-floating-point in-
puts. Moreover, one could make it possible to trade off com-
pression ratio and throughput by allowing the end-user to
choose which components to include, what table and popula-
tion size to use, etc. Another interesting idea is to seed the GA
with promising algorithms rather than starting with a random
population. To support streaming data in FPcrush, the ap-
proach for determining a good segment would have to be
changed to not require all the data to be present or available.

We believe the FPcrush approach to be applicable to other
domains. All that is needed is for an expert to develop trans-
formations and inverses thereof for the new domain so that
corresponding components can be added to the database.
FPcrush will then automatically incorporate the new compo-
nents if they turn out to be useful. Aside from its direct appli-
cation to data compression, we hope that our work will inspire
others to build similar systems for other environments.

ACKNOWLEDGMENT

This work was supported by the U.S. National Science
Foundation under grants 1141022, 1217231, 1406304, and
1438963 as well as a REP grant from Texas State University.
The authors acknowledge the Texas Advanced Computing
Center for providing the HPC resources used in this study.

REFERENCES

[1] T. Bicer, J. Yiny, D. Chiuz, G. Agrawal, and K. Schuchardt. “Integrat-
ing Online Compression to Accelerate Large-Scale Data Analytics Ap-

plications.” International Parallel and Distributed Processing Sympo-
sium. 2013.

[2] A. Boucetta and K.E. Melkemi. “DWT Based-Approach for Color Im-

age Compression Using Genetic Algorithm.” 5th International Confer-
ence on Image and Signal Processing, pp. 476-484, June 2012.

[3] M. Burtscher and P. Ratanaworabhan. “FPC: A High-Speed Compres-

sor for Double-Precision Floating-Point Data.” IEEE Transactions on
Computers, 58(1):18-31. 2009.

[4] M. Burtscher and P. Ratanaworabhan. “pFPC: A Parallel Compressor

for Floating-Point Data.” Data Compression Conference, pp. 43-52.
2009.

[5] M. Burtscher and N.B. Sam. “Automatic Generation of High-Perfor-

mance Trace Compressors.” International Symposium on Code Gener-
ation and Optimization, pp. 229-240. 2005.

[6] D. Chen, Y.-J. Chiang, N. Memon, and X. Wu. “Lossless Geometry

Compression for Steady-state and Time-varying Irregular Grids.”
IEEE Symposium on Visualization, pp. 275-282. 2006.

[7] W. Fang, B. He, and Q. Luo. “Database Compression on Graphic Pro-

cessors.” Proceedings of the VLDB Endowment, 3(1-2):670-680. 2010.

[8] R. Filgueira, D.E. Singh, A. Calderón, and J. Carretero. “CoMPI: En-
hancing MPI-based Applications Performance and Scalability Using

Run-Time Compression.” EUROPVM/MPI. 2009.

[9] R. Filgueira, D.E. Singh, J. Carretero, A. Calderón, and F. Garcia.

“Adaptive-CoMPI: Enhancing MPI-based Applications - Performance

2 3 4 5 6 7

num_brain 1.19 1.19 1.17 1.19 1.20 1.20

num_comet 1.27 1.30 1.31 1.29 1.27 1.33

num_control 1.10 1.11 1.13 1.13 1.12 1.13

num_plasma 9.37 8.51 10.87 10.55 10.56 11.27

obs_error 1.36 1.53 1.49 1.67 1.69 1.68

obs_info 1.38 1.40 1.24 1.40 1.24 1.41

obs_spitzer 1.21 1.23 1.27 1.24 1.23 1.24

obs_temp 1.09 1.10 1.11 1.11 1.12 1.11

geomean 1.58 1.60 1.63 1.66 1.64 1.69

and Scalability by using Adaptive Compression.” International Jour-

nal of High Performance Computing Applications, 25(1):93-114. 2011.

[10] D.E. Goldberg. “Genetic algorithms in search, optimization, and ma-

chine learning.” Addison Wesley. 1989.

[11] J.H. Holland. “Adaptation in natural and artificial systems.” University
of Michigan press, 1:97. 1975.

[12] W.H. Hsu and A.E. Zwarico. “Automatic synthesis of compression

techniques for heterogeneous files.” Software: Practice and Experi-
ence, 25(10):1097-1116. 1995.

[13] http://compression.ca/pbzip2/

[14] http://cs.txstate.edu/~burtscher/research/datasets/FPdouble/

[15] http://users.ices.utexas.edu/~burtscher/research/pFPC/

[16] http://zlib.net/pigz/

[17] J. Jenkins, I. Arkatkar, S. Lakshminarasimhan, D.A. Boyuka II, E.R.
Schendel, N. Shah, S. Ethier, C.-S. Chang, J. Chen, H. Kolla, S.

Klasky, R. Ross, N.F. Samatova. “ALACRITY: Analytics-Driven
Lossless Data Compression for Rapid In-Situ Indexing, Storing, and

Querying.” Transactions on Large-Scale Data- and Knowledge-Cen-
tered Systems X, Lecture Notes in Computer Science, vol. 8220, pp. 95-

114. 2013.

[18] A. Kattan and R. Poli. “Evolutionary synthesis of lossless compression
algorithms with GP-zip3.” IEEE Congress on Evolutionary Computa-

tion, 1(8):18-23. 2010.

[19] P. Lindstrom. “Fixed-Rate Compressed Floating-Point Arrays.” IEEE
Transactions on Visualization and Computer Graphics, 20(12):2674-

2683. December 2014.

[20] P. Lindstrom and M. Isenburg. “Fast and Efficient Compression of

Floating-Point Data.” IEEE Transactions on Visualization and Com-
puter Graphics, 12(5):1245-1250. 2006.

[21] S.K. Mitra, C. A. Murthy, and K. Malay. “Technique for Fractal Image
Compression using Genetic Algorithm.” IEEE Transactions on Image

Processing, pp. 586-593. 1998.

[22] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C. S. Chang, S-H. Ku, S.
Ethier, S. Klasky, R. Latham, R. B. Ross, and N. F. Samatova.

“ISOBAR preconditioner for effective and high-throughput lossless
data compression.” 28th Annual IEEE International Conference on

Data Engineering, pp. 138-149. 2012.

[23] L. Vences and I. Rudomin. “Genetic Algorithms for Fractal Image and
Image Sequence Compression.” Comptacion Visual. 1997.

[24] M.S. Wu, J.H. Jeng, and J.G. Hsieh. “Schema genetic algorithm for

fractal image compression.” Engineering Applications of Artificial In-
telligence, 20(4):531-538. June 2007.

[25] M.S. Wu and Y.L. Lin. “Genetic algorithm with a hybrid select mech-

anism for fractal image compression.” Digital Signal Processing,
20(4):1150-1161. July 2010.

[26] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher. “MPC: A

Massively Parallel Compression Algorithm for Scientific Data.” IEEE
Cluster Conference, pp. 381-389. September 2015.

[27] J. Ziv and A. Lempel. “A Universal Algorithm for Data Compression.”
IEEE Transaction on Information Theory, Vol. 23, No. 3, pp. 337-343.

1977.

