
Choosing the Best Parallelization and Implementation Styles for
Graph Analytics Codes: Lessons Learned from 1106 Programs

Yiqian Liu
Department of Computer Science

Texas State University
San Marcos, TX, USA
y_l120@txstate.edu

Noushin Azami
Department of Computer Science

Texas State University
San Marcos, TX, USA

noushin.azami@txstate.edu

Avery VanAusdal
Department of Computer Science

Texas State University
San Marcos, TX, USA
arv107@txstate.edu

Martin Burtscher
Department of Computer Science

Texas State University
San Marcos, TX, USA
burtscher@txstate.edu

ABSTRACT
Graph analytics has become a major workload in recent years. The
underlying core algorithms tend to be irregular and data depen-
dent, making them challenging to parallelize. Yet, these algorithms
can be implemented and parallelized in many ways for CPUs and
even more ways for GPUs. We took 6 key graph algorithms and
created hundreds of CUDA, OpenMP, and parallel C++ versions of
each of them, most of which have never been described or stud-
ied. To determine which parallelization and implementation styles
work well and under what circumstances, we evaluated the result-
ing 1106 programs on 2 GPUs and 2 CPUs using 5 input graphs.
Our results show which styles and combinations perform well and
which ones should be avoided. We found that choosing the wrong
implementation style can yield over a 10× slowdown on average.
The worst combinations of styles can cost 6 orders of magnitude in
performance.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;
Parallel programming languages.

KEYWORDS
Graph analytics, parallelization and implementation styles

ACM Reference Format:
Yiqian Liu, Noushin Azami, Avery VanAusdal, and Martin Burtscher. 2023.
Choosing the Best Parallelization and Implementation Styles for Graph
Analytics Codes: Lessons Learned from 1106 Programs. In The International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC ’23), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3581784.3607038

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00
https://doi.org/10.1145/3581784.3607038

1 INTRODUCTION
With the rise of social networks, search engines, recommender
systems, GPS navigators, and data science, graph algorithms for
computing communities, shortest paths, frequent motifs, centrality,
and so on have become an important workload. However, many of
these algorithms exhibit irregular behavior, meaning the resulting
control-flow and memory-access patterns are data dependent [11].
As a consequence, their behavior cannot be statically predicted and
may change throughout the computation. This makes optimizing
and especially parallelizing irregular codes difficult as the amount
of parallelism depends on the input and can change dynamically.

Despite these challenges, there are numerous ways to parallelize
irregular programs. In fact, the complexities due to their irregular
nature create opportunities for dozens of implementation styles.
In this paper, we study the hundreds of resulting combinations
between parallelization and implementation styles and evaluate
how well they perform on various devices and inputs.

An example of different parallelization styles is using thread,
warp, or block granularity in GPU codes [48]. Each granularity has
benefits and drawbacks. Thread-based parallelization is typically
the easiest to implement butmay not performwell in the presence of
load imbalance. Switching to warps (a group of 32 threads) requires
more complex synchronization but enables the use of fast warp-
level primitives. Using blocks (a group of up to 1024 threads) further
complicates synchronization but can better exploit the fast “shared
memory”, a software-managed L1 data cache.

An example of different implementation styles is push versus
pull, which is common in both CPU and GPU codes [6]. When
updating the values stored in the vertices of a graph, a push-style
implementation will use the value of a vertex 𝑣 to compute a new
value with which to update a neighboring vertex. In contrast, a pull-
style implementation will use the value of a neighbor to compute a
new value with which to update vertex 𝑣 .

We differentiate code optimizations from parallelization/imple-
mentation styles as follows. Parallelization and implementation
styles are broadly applicable to many graph algorithms. In contrast,
code optimizations tend to be specific to individual programs or a
particular implementation of an algorithm. Due to this difference,

https://doi.org/10.1145/3581784.3607038
https://doi.org/10.1145/3581784.3607038

SC ’23, November 12–17, 2023, Denver, CO, USA Yiqian Liu, Noushin Azami, Avery VanAusdal, and Martin Burtscher

programmers are more likely to be able to apply a given paralleliza-
tion or implementation style when writing a new graph algorithm
than they are to be able to apply a given code optimization.

Most of the parallelization and implementation styles we study
(cf. Section 2) are orthogonal and can be combined. This yields a
large number of unique implementations for a given graph algo-
rithm. In this manner, we have written 100s of versions of 6 key
irregular graph algorithms for both CPUs and GPUs. The resulting
source codes are available in the Indigo2 benchmark suite [31, 32].

Several widely-used benchmark suites with parallel implemen-
tations of irregular graph algorithms already exist, including Lon-
estar [25] with 14 parallel implementations of 11 graph algorithms
and Gardenia [45], an extended version of GAP [7], with 126 paral-
lel implementations of 14 graph algorithms. These suites provide
a range of interesting algorithms and inputs to study. However,
none of them are designed to provide a large variety of each algo-
rithm, nor do they include enough variations to perform an in-depth
evaluation of parallelization and implementation styles.

Our Indigo2 suite fills this gap. We estimate that well over 90%
of the code versions it includes have never been studied before.
Our performance analysis of these codes reveals that parallelization
and implementation styles are an important factor to be taken into
account when writing parallel graph codes. This paper makes the
following main contributions.

• We describe 13 largely orthogonal parallelization and imple-
mentation styles for CPUs and GPUs.

• We combine these styles in hundreds of meaningful ways
and apply them to 6 graph analytics problems.

• We evaluate the over 1000 resulting codes on 2 GPUs, 2 CPUs,
and 5 input graphs from different domains.

• We provide guidelines for programmers on which styles and
combinations to use and under what conditions.

The rest of this paper is organized as follows. Section 2 describes
the parallelization and implementation styles we consider. Sec-
tion 3 summarises related work. Section 4 presents the experimental
methodology, including the codes, inputs, and systems used for the
measurements. Sections 5 evaluates and discusses the performance
of the various parallelization and implementation styles. Section 6
summarizes our findings and draws conclusions.

2 PARALLELIZATION AND
IMPLEMENTATION STYLES

The following subsections describe the styles we investigated. We
studied many parallel graph codes and the related literature to
extract these styles. Hence, we believe we captured many of the
frequently used styles, but more styles almost certainly exist.

We illustrate each style on the example of the Bellman-Ford
single-source-shortest-path (SSSP) algorithm [12]. Given an undi-
rected weighted graph with no negative cycles and a source ver-
tex, the algorithm computes the shortest distance (i.e., the sum
of the edge weights) from the source to every vertex. It starts by
setting the distance of the source vertex to 0 and all other dis-
tances to∞. For each 𝑒𝑑𝑔𝑒 (𝑢, 𝑣), a new distance is calculated (i.e.,
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [𝑢] +𝑤𝑒𝑖𝑔ℎ𝑡 (𝑢, 𝑣)) in each iteration. The distance of 𝑣 is
updated if the new distance is shorter. These edge relaxation opera-
tions repeat until the algorithm converges.

We wrote our graph codes using three parallel programming
models: CUDA, OpenMP, and C++ threads. CUDA programs op-
erate at multiple levels of parallelism. 32 contiguous threads form
a warp and execute the same instruction in the same cycle (or are
disabled). Sets of up to 32 warps (up to 1024 threads) form a block,
and the blocks are grouped into a grid. CUDA provides built-in
variables for the thread and block indices as well as the block and
grid dimensions. These values are often combined by computing
𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 .𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 to form a global index for
assigning work to each thread, which we call “gidx” in our codes.

OpenMP is based on 𝑝𝑟𝑎𝑔𝑚𝑎 compiler directives. Each such
directive consists of a name followed by optional clauses. For exam-
ple, a clause can specify the scheduling to be used or a reduction
operation. In Listing 12b below, it selects dynamic scheduling.

C++11 supports multithreading in the standard library. It in-
cludes built-in classes and functions for threading, atomics, mutual
exclusion, and more. For instance, std::this_thread::get_id() returns
the unique thread ID. It enables different scheduling policies (e.g.,
blocked and cyclic) to be implemented.

2.1 Vertex-based vs. edge-based
Since graphs consist of vertices and edges, we can iterate across
either the vertices or the edges [47]. Listing 1a shows vertex-based
code where every thread processes a different vertex 𝑣 and iterates
over all neighbors 𝑢. Listing 1b shows edge-based code that assigns
a different edge 𝑒 = (𝑣,𝑢) to each thread.

The algorithm to be implemented and the graph representation
(e.g., CSR format [21]) typically determine which style is preferable.
For instance, if the graph is represented by a set of adjacency lists,
it is more natural to employ the vertex-based style. To streamline
the discussion, we use this style in the following subsections.

(a) Vertex-based
v = g idx ;
i f (v < nodes) {

beg = nbr_ idx [v] ;
end = nbr_ idx [v + 1] ;
f o r (i = beg ; i < end ; i ++) {

u = n b r _ l i s t [i] ;
. . .

} }

(b) Edge-based
e = g idx ;
i f (e < edges) {

v = s r c _ l i s t [e] ;
u = d s t _ l i s t [e] ;
. . .

}

Listing 1: Vertex- and edge-based computations

2.2 Topology-driven vs. data-driven
This style describes two ways in which a program can process the
data-structure elements that need processing [41]. If all elements
are processed, the computation is topology-driven. In contrast, a
data-driven computation would only process the elements that
likely need to be updated, which are usually stored in a worklist.
For example, topology-driven SSSP applies the relaxation function
to all vertices of the graph in each iteration as shown in Listing 2a.
Data-driven SSSP only applies the relaxation function to the vertices
in the worklist as outlined in Listing 2b. Those vertices were placed
in the worklist because their distance changed in the prior iteration.

The topology-driven style tends to yield more parallelism and is
easier to implement. The data-driven style is more work efficient
and, therefore, often results in better performance, especially for
iterative algorithms that operate on high-diameter graphs.

Choosing the Best Parallelization and Implementation Styles for Graph Analytics Codes: Lessons Learned from 1106 Programs SC ’23, November 12–17, 2023, Denver, CO, USA

(a) Topology-driven
v = g idx ;
i f (v < nodes) {

. . .
}

(b) Data-driven
i d x = g idx ;
i f (i d x < w o r k l i s t _ s i z e) {

v = wo r k l i s t [i dx]
. . .

}

Listing 2: Topology- and data-driven computations

2.3 Duplicates in worklist vs. no duplicates in
worklist

This style, which only applies to data-driven implementations, speci-
fies whether or not duplicate items are allowed on the worklist [37].
In programs that allow duplicates, as shown in Listing 3a, each
thread can push a vertex onto the worklist regardless of whether
the worklist already contains that vertex. In programs that do not
allow duplicates, as shown in Listing 3b, the threads may only add
a vertex to the worklist if it is not already on the worklist.

Disallowing duplicates eliminates redundant work in the next
iteration. Moreover, it caps the size of the worklist. However, it
incurs more synchronization overhead and requires extra state
tracking to determine whether a vertex is already on the worklist.

(a) Duplicates in worklist
i d x = atomicAdd (& wo r k l i s t _ s i z e , 1) ;
w o r k l i s t [i dx] = v ;

(b) No duplicates in worklist
i f (atomicMax (& s t a t [v] , i t r) != i t r) {

i d x = atomicAdd (& wo r k l i s t _ s i z e , 1) ;
w o r k l i s t [i dx] = v ;

}

Listing 3: Duplicates and no duplicates in worklist

2.4 Push vs. pull
In programs that update the vertex data, the data flow can be either
push (from a vertex to its neighbors) or pull (from the neighbors to
the vertex) [8]. For example, in push-style SSSP, shown in Listing 4a,
a thread reads the vertex distance, adds the edgeweight, and updates
the neighbor if the new distance is shorter. In pull-style SSSP, shown
in Listing 4b, the thread reads the neighbor’s distance, adds the
edge weight, and updates the vertex distance if it is shorter.

Using the push style, different threads may update the same
neighboring vertex. In contrast, the pull style guarantees that there
is only a single writer per vertex. Moreover, it allows the update to
be factored out of the loop (not done in Listing 4b), thus reducing
(atomic) memory accesses. Having said that, push is sometimes a
more natural fit for the underlying algorithm and preferred in com-
bination with a data-driven approach because only the neighbors
that were actually updated need to be placed on the worklist.

(a) Push
for (i = beg ; i < end ; i ++) {

u = n b r _ l i s t [i] ;
new_d i s t = d i s t [v] + e_weight [i] ;
atomicMin (& d i s t [u] , new_d i s t) ;

}

(b) Pull
for (i = beg ; i < end ; i ++) {

u = n b r _ l i s t [i] ;
new_d i s t = d i s t [u] + e_weight [i] ;
atomicMin (& d i s t [v] , new_d i s t) ;

}

Listing 4: Push and pull data flow

2.5 Read-write vs. read-modify-write
Many graph algorithms conditionally update vertex data, that is, a
thread reads the current value, performs a computation with it, and

writes the new value if it meets a certain condition. For example, in
SSSP, the vertex distance is updated if the new distance is shorter.
Since other threads may be updating the same distance value in
parallel, simply reading and then independently writing, as is done
in the read-write style outlined in Listing 5a, only works in some
situations. In particular, the updates must be monotonic and the
algorithm must be resilient to temporary priority inversions [35].
The read-modify-write style shown in Listing 5b is more general
as it does not suffer from this problem, but it requires an atomic
read-modify-write operation, which may be slower and hamper
parallelism. Note that, throughout this paper, we assume the shared
data values (e.g., the distances) to be scalars and assume load and
store instructions to atomically read and write these values [10].

(a) Read-write
o l d _ d i s t = atomicRead (& d i s t [v]) ;
i f (new_d i s t < o l d _ d i s t)

a tomicWr i t e (& d i s t [v] , new_d i s t) ;

(b) Read-modify-write
atomicMin (& d i s t [v] , new_d i s t) ;

Listing 5: Read and write operations

2.6 Non-deterministic vs. deterministic
The unpredictability of thread timing can cause (internal) non-
determinism in some parallel codes [9]. For example, in the SSSP
code shown in Listing 6a, one threadwill read𝑑𝑖𝑠𝑡 [𝑣] whilemultiple
other threads may write that same memory location. Depending
on when the read takes place relative to the writes, it will load
a different value, resulting in the computation of a different new
distance with which the neighbors will be updated. This is not a
problem in SSSP as any non-final distance value will be overwritten
in a later iteration. Hence, the ultimate result of the computation
is deterministic, but it is unpredictable after how many iterations
the code will converge. Note that we only study programs in this
paper where the final result is deterministic.

Using two arrays, one that is only read (𝑑𝑖𝑠𝑡1[]) and another that
is updated (𝑑𝑖𝑠𝑡2[]), as shown in Listing 6b, makes the code inter-
nally deterministic. However, in this approach, the computation can
no longer take advantage of results generated in the same iteration,
which may slow down the execution. On the upside, the determin-
istic code will always require the same number of iterations for a
given input, which can simplify debugging [4].

(a) Non-deterministic
new_d i s t = d i s t [v] + edge_weight ;
atomicMin (& d i s t [u] , new_d i s t) ;

(b) Deterministic
new_d i s t = d i s t 1 [v] + edge_weight ;
atomicMin (& d i s t 2 [u] , new_d i s t) ;

Listing 6: Non-deterministic and deterministic updates

2.7 Persistent vs. non-persistent
This variation only applies to GPU codes. The persistent style
uses as many threads as the GPU can concurrently schedule on its
SMs [23]. Hence, a thread may have to process multiple vertices.
The non-persistent style launches at least as many threads as the
input has vertices and assigns no more than one vertex to each
thread. For graphs where the number of vertices exceeds the num-
ber of threads that can concurrently run on the SMs, the GPU will
automatically schedule batches of threads until all threads have exe-
cuted. The persistent style is a little more complex to implement but
may improve performance in cases where common subexpressions
can be precomputed or common data preloaded and then reused.

SC ’23, November 12–17, 2023, Denver, CO, USA Yiqian Liu, Noushin Azami, Avery VanAusdal, and Martin Burtscher

(a) Persistent
t h r e a d s = blockDim . x ∗ gridDim . x ;
for (v = g idx ; v < nodes ; v += t h r e a d s)

. . .

(b) Non-persistent
v = g idx ;
i f (v < nodes)

. . .

Listing 7: Persistent and non-persistent threads

2.8 Thread vs. warp vs. block
This variation only applies to GPU codes. It refers to the granularity
at which the program processes the vertices. Three frequently used
granularities in CUDA programs are threads, warps, and blocks.
For example, in thread-based SSSP, each thread is responsible for
processing all the neighbors of a vertex as shown in Listing 8a.
In warp-based SSSP, the𝑊𝑆 threads making up a warp together
process a single vertex by simultaneously operating on different
neighbors of that vertex as shown in Listing 8b. Block-based SSSP,
as outlined in Listing 8c, works similarly except the entire block pro-
cesses the neighbors of a single vertex. Both warp- and block-based
processing yields a two-level parallelization scheme: the vertices are
distributed across the warps or blocks while the neighbors are dis-
tributed across the threads within the warp or block. This approach
is useful for reducing load imbalance when processing high-degree
vertices in power-law graphs [2]. However, it is typically not useful
for low-degree graphs such as road networks.

(a) Thread
beg = nbr_ idx [v] ;
end = nbr_ idx [v + 1] ;
for (i = beg ; i < end ; i ++)

. . .

(b) Warp
l a n e = t h r e a d I d x . x % WS;
beg = nbr_ idx [v] ;
end = nbr_ idx [v + 1] ;
for (i = beg + l ane ; i < end ; i += WS)

. . .

(c) Block
beg = nbr_ idx [v] ;
end = nbr_ idx [v + 1] ;
for (i = beg + t h r e a d I d x . x ; i < end ; i += blockDim . x)

. . .

Listing 8: Thread, warp, and block parallelization

2.9 Atomic vs. CudaAtomic
This variation only applies to CUDA codes. To avoid data races,
CUDA provides a set of atomic functions. For example, Listing 9a
employs an 𝑎𝑡𝑜𝑚𝑖𝑐𝑀𝑖𝑛() to atomically update a memory location.
However, these atomics cannot be used in the host code running on
the CPU. As a remedy, CUDA recently introduced libcu++, a C++
Standard Library that can be used both in and between CPU and
GPU code [1]. The corresponding ‘CudaAtomic’ solution shown
in Listing 9b requires a data type as well as optional memory-
ordering and scope specifications, which were not available for
atomic operations before. The memory order restricts how the
surrounding memory accesses can be ordered with respect to the
atomic operation. The scope determines whether the operation is
atomic at the block, grid, or system level (including host code).

CudaAtomic’s default scope and memory ordering are chosen
to ensure program correctness in the most cases, which is also the
slowest setting. Hence, when using CudaAtomic, the programmer
may need to figure out a safe but narrower scope and a more relaxed
memory order to achieve good performance.

(a) Atomic
__g l o b a l _ _ type d i s t [. . .] ;
. . .
atomicMin (& d i s t [u] , new_d i s t) ;

(b) CudaAtomic
__g l o b a l _ _ cuda : : a tomic < type > d i s t [. . .] ;
. . .
d i s t [u] . f e t ch_min (new_d i s t) ;

Listing 9: Atomic and CudaAtomic

2.10 Reduction styles
Reductions combine multiple values into a single value using a
binary associative operator [30]. For example, multiple threads may
need to add the partial sums they computed to a global sum.

2.10.1 Global-add vs. block-add vs. reduction-add. We employ three
reduction styles in our GPU codes. The first approach performs
atomic operations that directly update the shared global variable
as shown in Listing 10a. The second approach makes use of the
faster block-level atomics. All threads of a block first compute a
block-local solution in the ‘shared memory’, and only one thread
updates the global solution as shown in Listing 10b. This minimizes
the number of slower global atomics. The third approach utilizes
not only shared-memory buffers for local results but also warp-
level primitives to quickly perform warp and block reductions as
outlined in Listing 10c. This implementation is more complex but
tends to be faster as it avoids most memory accesses.

(a) Global-add
atomicAdd (& c t r , v a l) ;

(b) Block-add
atomicAdd_b lock (& b l o c k _ c t r , v a l) ;
_ _ sync th r e ad s () ; / / b l o c k b a r r i e r
i f (t h r e a d I d x . x == 0)

atomicAdd (& c t r , b l o c k _ c t r) ;

(c) Reduction-add
warp_c t r = warp_reduc t i on (v a l) ;
_ _ sync th r e ad s () ; / / b l o c k b a r r i e r
b l o c k _ c t r = b l o c k _ r e du c t i o n (warp_c t r) ;
_ _ sync th r e ad s () ; / / b l o c k b a r r i e r
i f (t h r e a d I d x . x == 0)

atomicAdd (& c t r , b l o c k _ c t r) ;

Listing 10: Different reductions in CUDA

2.10.2 Atomic-reduction vs. critical-reduction vs. clause-reduction.
We also employ three reduction styles in our CPU codes. OpenMP
and C++ provide atomic operations as well, making it possible for
each thread to atomically update a shared variable as shown in List-
ing 11a. They also provide mutex support, allowing the programmer
to update the shared variable in a critical section as shown in List-
ing 11b. Finally, OpenMP provides a reduction clause as shown in
Listing 11c that can be used in certain cases. Using a critical section
typically results in substantial overhead and poor performance, but
it is the most general of the three approaches.

(a) Atomic reduction
#pragma omp p a r a l l e l for
for (i = beg ; i < end ; i ++) {

. . .
pragma omp atomic
sum += va l ;

}

(b) Critical reduction
#pragma omp p a r a l l e l for
for (i = beg ; i < end ; i ++) {

. . .
pragma omp c r i t i c a l
sum += va l ;

}

(c) Clause reduction
#pragma omp p a r a l l e l for r e du c t i o n (+ : sum)
for (i = beg ; i < end ; i ++) {

. . .
sum += va l ;

}

Listing 11: Different reductions in OpenMP

Choosing the Best Parallelization and Implementation Styles for Graph Analytics Codes: Lessons Learned from 1106 Programs SC ’23, November 12–17, 2023, Denver, CO, USA

2.11 Default scheduling vs. dynamic scheduling
OpenMP can automatically parallelize certain for loops with a “par-
allel for” directive. By default, shown in Listing 12a, it statically
assigns each thread a chunk of iterations. In contrast, the dynamic
schedule in Listing 12b assigns the loop iterations to the threads at
runtime. This improves the load balance but incurs overhead.

(a) Default scheduling
#pragma omp p a r a l l e l for
for (v = 0 ; v < nodes ; v ++) {

. . .
}

(b) Dynamic scheduling
#pragma omp p a r a l l e l for s chedu l e (dynamic)
for (v = 0 ; v < nodes ; v ++) {

. . .
}

Listing 12: Default and dynamic loop scheduling

2.12 Blocked vs. cyclic
When parallelizing the iterations of a for loop, a blocked schedule
assigns a contiguous chunk of iterations to each thread, as shown
in Listing 13a. If the iterations’ running times correlate with their
loop index, a block distribution can lead to load imbalance. The
cyclic schedule in Listing 13b assigns the iterations in a round-
robin fashion to the threads, which improves the load balance in
this scenario. A blocked schedule usually has better data locality in
CPUs because one thread accesses contiguous memory addresses.
However, a cyclic schedule has better data locality in GPUs because
of coalesced memory accesses (i.e., combining multiple memory
accesses into a single memory transaction).

(a) Blocked scheduling
beg = t i d ∗ nodes / t h r e a d s ;
end = (t i d + 1) ∗ nodes / t h r e a d s ;
for (v = beg ; v < end ; v ++) {

. . .
}

(b) Cyclic scheduling
for (v = t i d ; v < nodes ; v += t h r e a d s) {

. . .
}

Listing 13: Blocked and cyclic scheduling

3 RELATEDWORK
A plethora of prior publications on parallelizing irregular graph
codes exist. Many of them discuss and evaluate at least some imple-
mentation styles, but no systematic study of a large number of styles
exists. Becchi et al. propose workload consolidation schemes [44]
and different parallelization templates [28] to increase the GPU
utilization of programs with nested parallelism. Wang et al. charac-
terize dynamically formed parallelism and evaluate codes designed
to exploit them [43]. Nasre et al. present morph algorithms and
provide insights into how other morph algorithms can be efficiently
implemented for GPUs [39]. Similar to these works, we also study
general styles that are applicable to a wide range of algorithms.

Most if not all of the parallelization and implementation styles
we investigate have been described before. For example, Hong et
al. [24] propose a warp-centric programming method to improve
the performance of applications with heavily imbalancedworkloads.
Nasre et al. study data-driven and topology-driven implementations
to understand the tradeoffs [38] and investigate high-level methods
to eliminate atomics in irregular programs [36]. Pingali et al. discuss
different styles to process nodes (e.g., topology-driven and data-
driven) and operators that modify the graph (e.g., morphs and
local computations) [41]. Our work takes many of these styles and
combines them in hundreds of new ways.

3.1 Benchmark suites of irregular programs
There are many benchmark suites of irregular graph codes with pro-
grams that are optimized for CPUs or GPUs. Lonestar [26], which
contains 14 parallel C++ and CUDA implementations of 11 irregu-
lar algorithms, mostly aims to include fast implementations of as
many domains as possible. Pannotia [13] includes 8 graph codes
implemented in OpenCL from diverse domains. It was designed
to show that irregular codes can be parallelized and implemented
on GPUs. GraphBIG [34] selects representative data structures,
workloads, and data sets from 21 real-world use cases. GAPBS [7]
consists of OpenMP implementations of 6 important graph algo-
rithms. This benchmark suite aims to standardize the evaluation of
graph processing. GBBS [17] comprises scalable, provably-efficient
implementations of over 20 fundamental graph problems for shared-
memory multicore machines. Having primarily been designed with
performance and diversity in mind, these suites tend to be based
on highly optimized codes from various domains. They generally
do not include many different styles of the same algorithm.

Indigo [33] is the largest related benchmark suite and the pre-
decessor of the Indigo2 suite presented in this paper. It contains
thousands of parallel codes representing 6 common data-access
patterns that occur frequently in irregular graph computations.
However, they are all microbenchmarks that do not compute any-
thing useful, i.e., they are not complete graph algorithms. GAR-
DENIA [45] includes emerging graph-processing workloads. It is
an extended version of GAPBS and comprises 126 parallel imple-
mentations of 11 irregular graph algorithms written in OpenMP,
CUDA and OpenCL. With over one hundred implementations, it
covers the most parallelization and implementation styles of any
prior benchmark suite. However, the included implementations are
specifically tuned to optimize a given algorithm. The focus is not
on generic implementation styles that are applicable to a large body
of graph codes. In fact, many publications describe ways to opti-
mize the performance of specific parallel graph codes. For example,
focusing just on GPUs, there is work presenting high-performance
implementations of breadth-first search [18], single-source shortest
path [15], minimum spanning trees [42], community detection [29],
strongly connected components [5], graph coloring [3], triangle
counting [22], and PageRank [19] to name a few.

In contrast to most of the related work, our benchmark suite is
designed for comparing parallelization and implementation styles
that broadly apply to graph algorithms. Hence, our focus is on
providing a wide diversity of styles. This is why our suite includes
between 90 and 256 versions of each of 6 graph algorithms.

4 EXPERIMENTAL METHODOLOGY
4.1 Codes
We selected the 6 graph problems shown in Table 1 for our study.We
chose them because they are the most common graph codes in prior
benchmark suites (e.g., Lonestar [26] and GBBS [17]). Since not all
implementation styles are applicable to every problem, Table 2 lists
the included styles.

Since combining the applicable styles yields hundreds of varia-
tions, we automated the code-generation process and use configu-
ration files to select the desired versions (i.e., a subset of the codes)
as we have done in the predecessor Indigo suite [33].

SC ’23, November 12–17, 2023, Denver, CO, USA Yiqian Liu, Noushin Azami, Avery VanAusdal, and Martin Burtscher

Table 1: Graph problems used in our study

Category Name and abbreviation
Connectivity Connected Components (CC)
Covering Maximal Independent Set (MIS)
Eigenvector PageRank (PR)
Substructure Triangle Counting (TC)

Shortest path Breadth-First Search (BFS),
Single Source Shortest Path (SSSP)

Table 2: Included implementation styles
Styles CC MIS PR TC BFS SSSP
Vertex-based, edge-based +, + +, + +, - +, + +, + +, +
Topology-driven, data-driven +, + +, + +, - +, - +, + +, +
Duplicates in WL, no duplicates in WL +, + -, + -, - -, - +, + +, +
Push, pull +, + +, + +, + +, - +, + +, +
Read-write, read-modify-write +, + -, + -, + -, + +, + +, +
Deterministic, non-deterministic +, + +, + +, + +, - +, + +, +
Persistent, non-persistent +, + +, + +, + +, + +, + +, +
Thread, warp, block + + + + + + +, +, + +, +, + +, +, + +, +, +
Atomic, CudaAtomic +, + +, + +, - +, + +, + +, +
Global-add, block-add, reduction-add -, -, -, -, -, - +, +, + +, +, + -, -, - -, -, -
Atomic-red., critical-red., clause-red. -, -, -, -, -, - +, +, + +, +, + -, -, - -, -, -
Default scheduling, dynamic scheduling +, + +, + +, + +, + +, + +, +
Blocked, cyclic +, + +, + +, + +, + +, + +, +

Table 3: Number of code versions (32-bit data type)

Language CC MIS PR TC BFS SSSP Total
CUDA 168 112 54 72 180 168 754
OpenMP 36 36 18 12 38 36 176
C++ threads 36 36 18 12 38 36 176

To keep the running times and the number of code versions man-
ageable, we tested our suite only with 32-bit data types (int, float).
However, the 64-bit data-type versions are included in Indigo2. Ta-
ble 3 shows the breakdown of the 1106 CUDA, OpenMP, and C++
programs we evaluated. Each code verifies its computed solution
by comparing it to the solution of a simple serial algorithm.

4.2 Inputs
Since the control-flow and memory-access patterns of irregular pro-
grams are input dependent, we selected 5 graphs of various types,
origins, sizes, and degree-distributions as inputs. The graph names
and other information about them are shown in Tables 4 and 5.
We picked these graph sizes to keep the running times reasonable.
The majority of them exceed the cache sizes of all tested CPUs
and GPUs (Section 4.3). The smaller graphs (USA-road-d.NY and
2d-2e20) have a large diameter, which increases the running time of
some graph algorithms. The Indigo2 suite contains more and larger
graphs. We obtained these inputs from the Center for Discrete
Mathematics and Theoretical Computer Science at the University
of Rome (Dimacs) [20], the Galois framework (Galois) [40], the Stan-
ford Network Analysis Platform (SNAP) [27], and the SuiteSparse
Matrix Collection (SMC) [16]. For all of our vertex-based codes,
the graphs are stored in compressed-sparse-row (CSR) format [21].
For the edge-based codes, they are stored in coordinate (COO) for-
mat [14]. Every undirected edge is represented by two directed
edges in both formats.

Table 4: Graph information

Name Type Origin Vertices Edges Size (MB)
2d-2e20.sym grid Galois 1,048,576 4,190,208 37.7
coPapersDBLP publication SMC 540,486 30,491,458 124.1
rmat22.sym RMAT Galois 4,194,304 65,660,814 542.1
soc-LiveJournal1 community SNAP 4,847,571 85,702,474 362.2
USA-road-d.NY road map Dimacs 264,346 730,100 6.9

Table 5: Graph degree information

Name 𝑑𝑎𝑣𝑔 𝑑𝑚𝑎𝑥 𝑑 ≥ 32 𝑑 ≥ 512 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2d-2e20.sym 4.0 4 0.0% 0.000% 2047
coPapersDBLP 56.4 3,299 52.5% 0.092% 24
rmat22.sym 15.7 3,687 12.4% 0.045% 19
soc-LiveJournal1 17.7 20,333 14.0% 0.125% 21
USA-road-d.NY 2.8 8 0.0% 0.000% 721

4.3 Hardware
We present results from 2 systems, i.e., 2 CPUs and 2 GPUs. System
1 has a 3.5 GHz Ryzen Threadripper 2950X CPU with 16 hyper-
threaded cores, a 32 MB L3 cache, and 64 GB of main memory. It
houses a 1.2 GHz TITAN V GPU with 12 GB of global memory, a
4.5 MB L2 cache, and 5120 processing elements distributed over 80
streaming multiprocessors (SMs). System 2 has dual 2.9 GHz Xeon
Gold 6226R CPUs with a total of 32 hyperthreaded cores, two 22
MB L3 caches, and 64 GB of main memory. It houses a 1.74 GHz
RTX 3090 GPU with 24 GB of global memory, a 6 MB L2 cache,
and 10,496 processing elements distributed over 82 SMs. We use 16
threads for the OpenMP and C++ codes on the first system and 32
threads on the second system. We do not employ hyperthreading
as it tends to hurt or not improve the performance of our codes.

4.4 Software
On both machines, the operating system is Fedora Linux 34. We
used GCC 11.3.1 with the “-O3 -fopenmp” flags to compile the
OpenMP codes and the “-O3 -pthread1” flags for the C++ codes on
both systems. On System 1, we compiled the GPU programs using
NVCC 11.7 with the “-arch=sm_70” flag. On System 2, we compiled
the GPU programs using NVCC 11.6 with the “-arch=sm_86” flag.

4.5 Metrics
We ran each of our 1106 programs on the 5 input graphs, resulting
in a total of 5530 tests. If a program takes less than 10 minutes for a
given input, we ran it 9 times and use the median for computing the
throughputs. For the few longer-running codes, we only measured
one run. To improve readability, we report the throughputs in giga-
edges per second. This is the number of edges in the input graph
divided by the runtime and then divided by one billion.

In many cases, we compute ratios of the throughputs to investi-
gate how the different styles affect performance. To visualize the
thousands of resulting ratios, we use a boxen plot to show the dis-
tribution and other pertinent information. It recursively divides the
dataset into halves and presents different quantile values. Thicker
boxes indicate more data points in the given range. For example, in
Figure 1a, the thickest box represents the middle 50% of the ratios

1We are not using pthreads per se, but this flag is required by the C++ threading library.

Choosing the Best Parallelization and Implementation Styles for Graph Analytics Codes: Lessons Learned from 1106 Programs SC ’23, November 12–17, 2023, Denver, CO, USA

and the line indicates the median. Any outliers that differ substan-
tially from the other ratios are plotted as circles. The dashed blue
line in the chart indicates a ratio of 1.0 on the y-axis.

5 RESULTS
Each of the following subsections compares the performance of two
or three alternative styles while keeping the other styles fixed. For
example, assume we only had the push vs. pull and thread vs. warp
vs. block styles. To contrast the push and pull styles, we would com-
pare the throughput of thread-level push with that of thread-level
pull, warp-level push with warp-level pull, and block-level push
with block-level pull. To visualize the results, we divide the through-
puts to compute pairwise ratios where applicable. A ratio above 1.0
means the first-named style is faster. We start our discussion with
the styles that make the largest performance difference.

5.1 Atomic and CudaAtomic
This subsection compares the conventional Atomic to the recently
released CudaAtomic style. Figure 1 summarizes the resulting 1750
throughput ratios obtained on the our two GPUs. No results are
included for PR because CudaAtomic does not yet support floats.

(a) RTX 3090 GPU (b) Titan V GPU

Figure 1: Throughput ratios of Atomic over CudaAtomic

The ratio is above 1.0 in almost all cases, implying that the
Atomic versions are generally faster than the CudaAtomic versions.
In fact, the median ratio is around 10 on the RTX 3090 (Figure 1a)
and roughly 100 on the Titan V (Figure 1b) for CC, MIS, BFS, and
SSSP, which means Atomic is one to two orders of magnitude faster.
The largest ratios we have observed are nearly 100 on the RTX 3090
and well over 1000 on the Titan V. The CudaAtomic throughputs,
but not the Atomic throughputs, are much lower on the older Titan
V, which is why the ratios are so much higher. On both GPUs, the
ratios are markedly lower for TC because TC only contains an
atomic add operation whereas the other programs make frequent
use of CudaAtomic’s 𝑙𝑜𝑎𝑑 () and 𝑠𝑡𝑜𝑟𝑒 () operations.

Overall, CudaAtomic is a nascent library that is easy to use
but can slow down programs drastically when employed with the
default settings. The programmer needs to explicitly specify the re-
laxedmemory order and the device scope to get similar performance
to the Atomic versions (results not shown). As the CudaAtomic
codes are so slow, we exclude them from the following subsections
to narrow down the ranges of the presented throughput ratios.

5.2 Vertex-based and edge-based
This subsection compares twoways of iterating over graphs, namely
vertex- and edge-based codes. Figure 2a summarizes the correspond-
ing throughput ratios obtained on our GPUs. Figure 2b shows the

same set of results but from our CPUs. We separately highlight
the ratios of the thread-based subset of TC codes in Figure 2c (i.e.,
excluding the warp- and block-based versions).

(a) CUDA (b) OpenMP and C++ (c) Thrd TC

Figure 2: Throughput ratios of vertex- over edge-based

On the GPUs, all 6 graph codes have cases where a vertex-based
code achieves better performance than its edge-based counterpart.
BFS, CC, TC, and SSSP also have cases where an edge-based ver-
sion performs better than vertex-based. With the median ratio
being approximately 1, we cannot say in general that either edge-
or vertex-based performs better. However, MIS achieves a higher
throughput with the vertex-based style on all of our implementa-
tions. Its median is close to a factor of 10 in favor of vertex-based.
This is because the MIS code typically only visits a few neighbors
per vertex, making the vertex-based approach quite load balanced.

The majority of TC codes are faster on the GPUs with the edge-
based style. In fact, TC is up to 100 times faster than vertex-based
on the socLiveJournal input. The results from Figure 2c highlight
that edge-based is essentially always better on the thread-level
TC implementations. This is expected because warp- and block-
level parallelization mostly helps alleviate load imbalance between
vertices with different numbers of neighbors. Edge-based codes
do not suffer from such load imbalance because each edge takes
roughly the same amount of time to process.

On the CPUs,MIS again receives themost benefit from the vertex-
based style. Interestingly, all other codes now have a median that
is significantly above 1, suggesting that CPU codes tend to prefer
vertex-based implementations, which is not the case for GPUs.

Overall, the speedup (or slowdown) between vertex- and edge-
based computations can reach two orders of magnitude on both
GPUs and CPUs. We find that some codes like MIS generally fare
better with a vertex-based implementation. Many codes seem to
prefer a vertex-based style on the CPU but not on the GPU. In par-
ticular thread-based codes running on the GPU exhibit a preference
for an edge-based implementation, which enhances load balancing.

5.3 Topology-driven and data-driven
In this subsection, we compare the topology- and data-driven styles.
Since the data-driven style can be implemented both with and with-
out allowing duplicates on the worklist, but there is no counterpart
for the topology-driven style, we separately compare topology-
to data-driven with duplicates in Section 5.3.1 and topology- to
data-driven without duplicates in Section 5.3.2.

5.3.1 Topology-driven vs. data-driven with duplicates on the worklist.
Figure 3a shows the GPU throughput ratios of topology-driven
CC, BFS and SSSP over their data-driven versions with duplicates.
Figure 3b shows similar results for the OpenMP and Figure 3c for
the C++ programs. MIS only works with the no-duplicates style,
and TC and PR do not have data-driven versions.

SC ’23, November 12–17, 2023, Denver, CO, USA Yiqian Liu, Noushin Azami, Avery VanAusdal, and Martin Burtscher

(a) CUDA (b) OpenMP (c) C++ Threads

Figure 3: Throughput ratios of topology-driven over data-
driven with duplicates on the worklist

The GPU codes prefer the data-driven over the topology-driven
implementation. The same is true for OpenMP but not for C++. The
big discrepancy in the CPU behavior is because of max and min
operations, which must be implemented with slow critical sections
in OpenMP but can be done with fast atomics in C++.

5.3.2 Topology-driven vs. data-driven without duplicates on the
worklist. Figure 4a compares the topology-driven codes with their
data-driven versions without duplicates on the worklist. Figures 4b
and 4c show the corresponding results for the CPU codes.

(a) CUDA (b) OpenMP (c) C++ Threads

Figure 4: Throughput ratios of topology-driven over data-
driven without duplicates on the worklist

The median ratio of topology-driven over data-driven is less
than 1 for all measured GPU codes and above 1 for the C++ codes. It
is below 1 for the CC, BFS, and SSSP OpenMP codes. Interestingly,
the MIS OpenMP code prefers the topology-driven style. These
OpenMP codes have a larger ratio range than any other styles we
investigated. In some cases, topology-driven is over 100 times faster.
In other cases, data-driven is over a million times faster, especially
on high-diameter graphs where a topology-driven implementation
may perform huge amounts of useless work in each iteration.

Based on the results from both subsections, we find that the data-
driven style, with and without duplicates in the worklist, tends to
be the better choice for GPUs. However, all measured programs
on all tested devices exhibit some cases where the topology-driven
style yields high speedups (e.g., low-diameter graphs) and other
cases where the data-driven style is much faster (e.g., high-diameter
graphs). Using a topology- or data-driven implementation can result
in two orders of magnitude difference in performance for both GPUs
and CPUs. We conclude that the graph type in particular should be
taken into account when selecting between these two styles.

5.4 Push and pull
This subsection analyzes the effect of the data-flow direction, i.e.,
push and pull, on the performance. Figures 5a, 5b, and 5c summarize
the throughput ratios of push-style over pull-style for 5 graph
problems. TC does not support this style.

(a) CUDA (b) OpenMP (c) C++ Threads

Figure 5: Throughput ratios of push over pull

The median ratios are consistently above 1 for CC, MIS, BFS,
and SSSP on all devices. In contrast, the PR medians are a little
below 1. Note that the push-style CC, MIS, BFS, and SSSP codes
include non-deterministic versions where no synchronization is
used, whereas the PR push-style codes only include deterministic
versions. Furthermore, the push-style codes combine better with
data-driven versions as they simplify the population of the worklist
and tend to place fewer useless items on the worklist. We do not
have data-driven codes for PR, which may be another contributing
factor as to why PR does not follow the ratio trend of the other
codes. We conclude that, typically, push is preferential to pull. In
extreme cases, the push style can yield 100× speedup in CUDA and
C++ programs and 1000× speedup in OpenMP codes.

5.5 Read-write and read-modify-write
We show the throughput ratios of CC, BFS, and SSSP with read-
write over their read-modify-write counterparts running on the
GPUs in Figure 6a and on the CPUs in Figures 6b and 6c.

(a) CUDA (b) OpenMP (c) C++ Threads

Figure 6: Throughput ratios of read-write over read-modify-
write

The read-write style is slightly faster than read-modify-write in
most cases on both GPUs and CPUs. The speedup of read-write
can reach up to a factor of 3 on GPUs and over 1000 on CPUs. This
difference might be because atomics tend to be slower on CPUs
(where they go through the shared L3 cache) than on GPUs (where
they go through the shared L2 cache). Since the read-modify-write
style applies to more algorithms and typically performs nearly as
well, we believe it to be a good choice in most cases.

5.6 Deterministic and non-deterministic
This section evaluates the performance differences of deterministic
and internally non-deterministic codes. Figures 7a, 7b, and 7c show
the resulting throughput ratios of the CUDA, OpenMP, and C++
CC, MIS, PR, BFS, and SSSP codes.

Aside from PR, the internally non-deterministic style yields
higher throughputs for all codes with just a few exceptions. PR be-
haves differently because it does not include the non-deterministic
style for half of its implementations (i.e., the push-style codes). The

Choosing the Best Parallelization and Implementation Styles for Graph Analytics Codes: Lessons Learned from 1106 Programs SC ’23, November 12–17, 2023, Denver, CO, USA

(a) CUDA (b) OpenMP (c) C++ Threads

Figure 7: Throughput ratios of deterministic over internally
non-deterministic

general preference for the internally non-deterministic style is not
surprising since the deterministic counterparts usually require ex-
tra synchronization and memory. Hence, we recommend using the
internally non-deterministic style for performance.

5.7 Persistent and non-persistent
This section analyzes the throughput of persistent and non-persistent
codes. As this variation only applies to GPUs, Figure 8 only shows
results for the CUDA versions.

Figure 8: Throughput ratios of persistent over non-persistent

Most of the ratios and the medians are very close to 1. This is
because the advantage of the persistent style (e.g., precomputing
sub-expressions) cannot be exploited in our codes. Hence, the more
complex persistent style is only recommended when there is signif-
icant work that can be performed once and then used for multiple
vertices or edges, such as pre-loading the shared memory with data.

5.8 Thread, warp, and block
Since there are 3 parallelization styles in this category, present-
ing pairwise ratios would be complicated. Instead, we plot the
throughputs of each style to visualize and compare the perfor-
mance. Figures 9a and 9b plot the throughput of the three styles on
the RTX 3090 for the NY roadmap and the soc-Livejournal graph,
respectively. The throughput of thread-based parallelization is red,
warp-based is blue, and block-based is yellow.

The throughputs of thread-, warp-, and block-based paralleliza-
tion are highly correlated with the degree distribution of the input
graph. The thread-based codes provide the highest performance
on graphs with low degrees and relatively uniform degree distribu-
tions such as the NY roadmap. For scale-free graphs such as social
networks, where a few vertices have a very high degree, the warp-
based implementations yield the highest throughputs. Block-based
parallelization tends to be the slowest because none of our inputs
have a significant number of vertices with a degree of over 512 (see
Table 5) to match the number of threads per block.

(a) NY road map

(b) Social network graph

Figure 9: GPU throughputs of the thread, warp, and block
parallelization on the NY and soc-LiveJournal graphs

5.9 Global-add, block-add, and reduction-add
In this subsection, we compare three methods of performing sum
reductions. Figure 10 shows the results for the GPUs. We again
present throughputs instead of ratios because we are comparing
three styles. The red dots show the throughputs for global-add, the
blue dots for block-add, and the yellow dots for reduction-add. This
variation only applies to the TC and PR codes.

TC achieves a higher throughput than PR because the PR codes
perform many more sum reductions. The block-add style tends to
be the slowest, and the reduction-add style is the fastest for PR. This
indicates that the block-scope atomicAdd() operations cannot offset
the overhead of the global-scope atomicAdd(). Since the reduction-
add useswarp primitives forwarp and block reduction, it is expected
to perform well and is the recommended style.

Figure 10: Throughputs of re-
duction styles on GPUs

Figure 11: Throughputs of re-
duction styles on CPUs

5.10 Atomic-, critical-, and clause-reduction
This subsection repeats for CPUs what the previous subsection did
for GPUs, except the three reduction styles are different. Again,
only the PR and TC codes have such reductions. Figure 11 shows
the results, where red dots refer to atomic-reduction, blue dots to
critical-reduction, and yellow dots to clause-reduction.

Similar to the GPU results above, TC achieves a higher through-
put for the three versions than PR. Expectedly, the use of a critical
section yields the lowest performance on both codes, and the reduc-
tion clause achieves the highest throughput of the three versions.

SC ’23, November 12–17, 2023, Denver, CO, USA Yiqian Liu, Noushin Azami, Avery VanAusdal, and Martin Burtscher

We recommend programmers avoid using critical sections and even
atomics if a reduction clause is supported by the library.

5.11 Default and dynamic scheduling
This subsection analyzes the effects of scheduling loop iterations us-
ing OpenMP pragmas. We revert back to showing throughput ratios
of the default schedule over the dynamic schedule in Figure 12.

There is almost no difference in throughput for PR, BFS, and
SSSP. However, MIS is always faster with the default schedule.
CC and TC also prefer the default schedule but have cases that
perform better with a dynamic schedule. Overall, we found default
scheduling to yield between two orders of magnitude speedup and
10× slowdown in our experiments. The dynamic schedule provides
load balancing but has runtime overhead. Since there is not much
load imbalance formost of our inputs, load balancing is unnecessary,
and the overhead makes the dynamic schedule slower.

Figure 12: Ratio of default
over dynamic scheduling

Figure 13: Ratio of blocked
over cyclic scheduling

5.12 Blocked and cyclic scheduling
This subsection investigates the type of schedule in C++ parallel
codes. Figure 13 shows the throughout ratios of a blocked schedule
over a cyclic schedule for all inputs on both CPUs.

The choice of schedule does not affect performance much on
CC, MIS, BFS, and SSSP. However, PR prefers a blocked schedule
whereas TC prefers a cyclic schedule (i.e., 75% of the ratios are
below 1). Selecting blocked vs. cyclic scheduling causes between a
10× speedup and a 10× slowdown in the C++ programs. Thus, it
is important to select an appropriate scheduling style, but which
schedule is best depends on the loop characteristics.

5.13 Correlation with graph properties
As the behavior of our codes is input-dependent, we correlated
the throughputs with various graph properties, including the size,
average and maximum degree, percentage of the vertices having
degrees less than 32 and 512, and the diameter. We found no cor-
relation greater than 0.5 or less than −0.5, indicating that these
properties do not significantly affect performance. The highest
correlation of 0.44 is between warp-based parallelization and the
average degree, showing that the warp-based style tends to yield
better performance with higher-degree inputs, which is expected.

5.14 Best-performing styles
Figure 14 categorizes the best-performing code versions over all
inputs, algorithms, and programming models along 6 pairs of di-
mensions. We selected these 6 pair-dimensions because they are ap-
plicable to all three studied programming models. Each row shows,

for a particular model, what percentage of the best-performing
codes uses the style of that column. For example, the CUDA row
presents the best-performing CUDA codes (i.e., the highest through-
put code for every algorithm and input from 30 code versions), and
the vertex-based column shows that 80% thereof are vertex-based.
Percentages above 50 are shaded red and below 50 are shaded blue.

There are 3 columns in Figure 14 that are entirely red, indicating
that the vertex-based, push, and non-deterministic styles dominate
the best performing codes across different programming models.
Additionally, C++ Threads strongly prefers topology-driven while
the other two models prefer data-driven for best performance.

5.15 Style combinations
Since our CUDA programs include the most versions and their
style preferences are similar to OpenMP, we further analyze which
style combines better with which style in Figure 15. Every matrix
entry presents the performance improvement/loss (i.e., larger/s-
maller than 1.0) when combining the style of the row with that of
the column. A “warmer” shading indicates a higher performance
improvement. For example, the 1.63 in the vertex-based row and
push-style column is the throughput ratio of the median of all ver-
tex styles that include push over the median of all vertex styles that
do not include push. The resulting matrix is asymmetric because
the baseline (i.e., the median throughputs of 𝑠𝑡𝑦𝑙𝑒𝑥 without 𝑠𝑡𝑦𝑙𝑒𝑦)
differs for each entry.

The push, non-deterministic, and non-persistent columns are
mostly red, which suggests combining them with any style may
improve performance. The warp column is also red because warp-
based processing yields higher throughputs for high-degree graphs.
Vertex/edge-based and topo/data-driven are mixed and dup/non-
dup and read-write/read-modify-write are mostly blue, indicating
that there is no general preference for these pairs.

Figure 14: Percentage of each style in best performing codes

Figure 15: Ratio of the median throughputs of 𝑠𝑡𝑦𝑙𝑒𝑥 with
𝑠𝑡𝑦𝑙𝑒𝑦 over 𝑠𝑡𝑦𝑙𝑒𝑥 without 𝑠𝑡𝑦𝑙𝑒𝑦 for the CUDA codes

Choosing the Best Parallelization and Implementation Styles for Graph Analytics Codes: Lessons Learned from 1106 Programs SC ’23, November 12–17, 2023, Denver, CO, USA

5.16 Programming guidelines
Based on the results of all prior sections, we arrived at the following
general guidelines and recommendations.

• High-degree inputs preferwarp-based parallelization in CUDA.
Otherwise, the style preference is not significantly correlated
with the input graph properties.

• We recommend using the non-deterministic and push styles
for CUDA, OpenMP, and C++.

• When possible, avoid using default CudaAtomic in GPU
codes and critical sections in OpenMP and C++ programs.

• Whether to use a vertex- or edge-based implementation de-
pends on the algorithm.

• Edge-based tends to yield better performance when com-
bined with a topology-driven approach in CUDA.

• As using persistent threads in CUDA rarely improves per-
formance, we recommend a non-persistent implementation.

• Since default and blocked scheduling are relatively safe for
CPUs but dynamic and cyclic scheduling may improve the
performance, we suggest using default/blocked during de-
velopment and then testing other schedules.

• C++ prefers the topology-driven style because the worklist
overhead often cannot offset the work-efficiency benefit.

5.17 Comparison with third-party codes
To demonstrate that our unoptimized codes yield reasonable perfor-
mance, we compare them to the optimized Lonestar [26] CPU and
Gardenia [46] GPU codes. We refer to these Lonestar and Gardenia
codes as “baseline” codes. For this comparison, we use the best-
performing style (the style that has the highest average throughput
over all inputs) for each of our codes and plot the speedups over
the baseline codes in Figure 16. Speedups above 1 (i.e., the dashed
blue line) mean our codes are faster. Figure 16a does not show MIS
results since MIS is not included in Gardenia [46].

Our PR and TC codes outperform the CPU baselines but are
slower on the GPUs because the Gardenia codes include an opti-
mization that removes redundant edges. The performance of CC is
on par with the baselines across the different devices and program-
ming models. Our BFS codes are faster on the GPUs and similar
to the baseline on the CPUs. Lastly, our SSSP codes are generally
slower. This is because both Lonestar and Gardenia include worklist
optimizations. Gardenia employs two extra arrays that make the
code as efficient as the data-driven approach but without the over-
head of maintaining a worklist. Lonestar combines the data-driven
approach with a priority scheduler that processes the vertices in
ascending distance to reduce the total amount of work.

Table 6 lists the average speedup of the best-performing style
over the baseline for each algorithm. For example, the “1.97” in the
CUDA row and BFS column means our BFS CUDA codes are 1.97×
faster on average (i.e., geometric mean). The right-most column
presents the geometric mean for each programming model.

Overall, we find that, even though our codes do not include opti-
mizations, they still yield reasonable performance. The optimized
baselines do not outperform our codes in many cases, indicating
that choosing the right implementation style is at least as important
as incorporating program-specific code optimizations.

(a) CUDA

(b) OpenMP (c) C++ Threads
Figure 16: Throughput ratio to baseline codes

Table 6: Average speedup over baseline codes

Language BFS SSSP CC MIS PR TC Geomean
CUDA 1.97 0.40 1.11 N/A 0.45 0.43 0.70
OpenMP 0.90 0.10 0.89 6.55 2.86 5.11 1.54
C++ threads 1.14 0.07 0.51 21.14 12.47 3.04 1.80

6 SUMMARY AND CONCLUSIONS
We study 13 sets of parallelization and implementation styles for ir-
regular graph codes (cf. Table 2). Each set includes 2 or 3 alternatives.
Since the styles are largely orthogonal, they can be combined in
many unique ways. We applied them to 6 graph analytics problems
to create the 2212 codes in the Indigo2 benchmark suite [31, 32].

We evaluate half of these codes (the 32-bit data-type programs)
on 2 GPUs and 2 CPUs using 5 graphs from various domains. The
results show that selecting the right parallelization/implementation
styles is key, especially on GPUs. For example, choosing the wrong
style can yield a 10× slowdown on average. The worst combinations
of styles can cost 6 orders of magnitude in performance.

Our findings can serve as guidelines to help programmers write
efficient parallel code. For example, we found that the push, read-
modify-write, and clause-reduction styles are typically preferential
to their alternatives. Programmers should avoid using critical sec-
tions and CudaAtomics with the default settings. The deterministic
and global/block-add styles make it easier to write and debug code
but hurt performance somewhat. The best way to process the graph
(vertex-based or edge-based), decide what to compute (topology-
driven or data-driven), and choose a granularity (thread, warp, or
block) depends on the code as well as the input graph’s degree
distribution and diameter. We show that scheduling can signifi-
cantly affect performance on CPUs, but the default and blocked
schedules are relatively safe choices. We hope the release of our In-
digo2 benchmark suite will open up research opportunities to study
additional aspects of parallelization and implementation styles.

ACKNOWLEDGMENTS
This work has been supported in part by the National Science
Foundation under Award Number 1955367 and by an equipment
donation from NVIDIA Corporation. We thank Ganesh Gopalakr-
ishnan, John Jacobson, and the anonymous reviewers for their help
and feedback to improve this paper.

SC ’23, November 12–17, 2023, Denver, CO, USA Yiqian Liu, Noushin Azami, Avery VanAusdal, and Martin Burtscher

REFERENCES
[1] 2021. NVIDIA, libcu++. https://nvidia.github.io/libcudacxx/. Accessed: 2022-11-

09.
[2] Lada A Adamic, Rajan M Lukose, Amit R Puniyani, and Bernardo A Huberman.

2001. Search in power-law networks. Physical review E 64, 4 (2001), 046135.
[3] Ghadeer Alabandi, Evan Powers, and Martin Burtscher. 2020. Increasing the

parallelism of graph coloring via shortcutting. In Proceedings of the 25th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 262–275.

[4] Amittai Aviram, Shu-ChunWeng, Sen Hu, and Bryan Ford. 2012. Efficient system-
enforced deterministic parallelism. Commun. ACM 55, 5 (2012), 111–119.

[5] Jiri Barnat, Petr Bauch, Lubos Brim, and Milan Ceška. 2011. Computing strongly
connected components in parallel on CUDA. In 2011 IEEE International Parallel
& Distributed Processing Symposium. IEEE, 544–555.

[6] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing
breadth-first search. In SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE, IEEE, New York,
NY, USA, 1–10.

[7] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

[8] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten
Hoefler. 2017. To push or to pull: On reducing communication and synchroniza-
tion in graph computations. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing. 93–104.

[9] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Julian Shun. 2012.
Internally deterministic parallel algorithms can be fast. In Proceedings of the 17th
ACM SIGPLAN symposium on Principles and Practice of Parallel Programming.
181–192.

[10] Hans-J Boehm. 2011. How to miscompile programs with" benign" data races. In
3rd USENIX Workshop on Hot Topics in Parallelism (HotPar 11).

[11] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. 2012. A quantitative study of
irregular programs on GPUs. In 2012 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 141–151.

[12] Federico Busato and Nicola Bombieri. 2015. An efficient implementation of the
Bellman-Ford algorithm for Kepler GPU architectures. IEEE Transactions on
Parallel and Distributed Systems 27, 8 (2015), 2222–2233.

[13] Shuai Che, Bradford M. Beckmann, Steven K. Reinhardt, and Kevin Skadron.
2013. Pannotia: Understanding irregular GPGPU graph applications. In 2013 IEEE
International Symposium on Workload Characterization (IISWC). IEEE, New York,
NY, USA, 185–195. https://doi.org/10.1109/IISWC.2013.6704684

[14] Hoang-Vu Dang and Bertil Schmidt. 2012. The sliced coo format for sparse
matrix-vector multiplication on cuda-enabled gpus. Procedia Computer Science 9
(2012), 57–66.

[15] Andrew Davidson, Sean Baxter, Michael Garland, and John D Owens. 2014. Work-
efficient parallel GPU methods for single-source shortest paths. In 2014 IEEE 28th
International Parallel and Distributed Processing Symposium. IEEE, 349–359.

[16] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011), 25 pages. https:
//doi.org/10.1145/2049662.2049663

[17] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun.
2020. The Graph Based Benchmark Suite (GBBS). In Proceedings of the 3rd Joint
International Workshop on GRADES and NDA (Portland, OR, USA) (GRADES-
NDA’20). Association for Computing Machinery, New York, NY, USA, Article 11,
8 pages. https://doi.org/10.1145/3398682.3399168

[18] Rongyu Dong, Huawei Cao, Xiaochun Ye, Yuan Zhang, Qinfen Hao, and Dongrui
Fan. 2020. Highly Efficient and GPU-Friendly Implementation of BFS on Single-
node System. In 2020 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Communi-
cations, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom).
IEEE, 544–553.

[19] Nhat Tan Duong, Quang Anh Pham Nguyen, Anh Tu Nguyen, and Huu-Duc
Nguyen. 2012. Parallel pagerank computation using gpus. In Proceedings of the
Third Symposium on Information and Communication Technology. 223–230.

[20] Center for Discrete Mathematics and Theoretical Computer Science. 2010. DI-
MACS. http://www.diag.uniroma1.it//challenge9/download.shtml. Accessed:
2022-10-21.

[21] Alan George, JosephWH Liu, et al. 1981. Computer solution of large sparse positive
definite systems. Vol. 134. Prentice-Hall Englewood Cliffs, NJ.

[22] Oded Green, Pavan Yalamanchili, and Lluís-Miquel Munguía. 2014. Fast triangle
counting on the GPU. In Proceedings of the 4th Workshop on Irregular Applications:
Architectures and Algorithms. 1–8.

[23] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. 2012. A study of Persistent
Threads style GPU programming for GPGPU workloads. In 2012 Innovative
Parallel Computing (InPar). IEEE, San Jose, CA, USA, 1–14. https://doi.org/10.
1109/InPar.2012.6339596

[24] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. 2011.
Accelerating CUDA Graph Algorithms at Maximum Warp. In Proceedings of the
16th ACM Symposium on Principles and Practice of Parallel Programming (San

Antonio, TX, USA) (PPoPP ’11). Association for Computing Machinery, New York,
NY, USA, 267–276. https://doi.org/10.1145/1941553.1941590

[25] Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali. 2009. Lon-
estar: A suite of parallel irregular programs. In 2009 IEEE International Symposium
on Performance Analysis of Systems and Software. IEEE, 65–76.

[26] Milind Kulkarni, Martin Burtscher, Calin Cascaval, and Keshav Pingali. 2009.
Lonestar: A suite of parallel irregular programs. In 2009 IEEE International Sym-
posium on Performance Analysis of Systems and Software. IEEE, New York, NY,
USA, 65–76. https://doi.org/10.1109/ISPASS.2009.4919639

[27] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[28] Da Li, Hancheng Wu, and Michela Becchi. 2015. Nested Parallelism on GPU:
Exploring Parallelization Templates for Irregular Loops and Recursive Compu-
tations. In 2015 44th International Conference on Parallel Processing. IEEE, New
York, NY, USA, 979–988. https://doi.org/10.1109/ICPP.2015.107

[29] Guo Li, Dafang Zhang, Kun Xie, Tanlong Huang, and Yanbiao Li. 2015. A gpu
based fast community detection implementation for social network. In Interna-
tional Conference on Algorithms and Architectures for Parallel Processing. Springer,
688–701.

[30] Richard J Lipton. 1975. Reduction: A method of proving properties of parallel
programs. Commun. ACM 18, 12 (1975), 717–721.

[31] Yiqian Liu, Noushin Azami, Avery VanAusdal, and Martin Burtscher. 2023. In-
digo2 Git Repository. https://github.com/burtscher/Indigo2Suite. Accessed:
2023-08-18.

[32] Yiqian Liu, Noushin Azami, Avery VanAusdal, and Martin Burtscher. 2023. In-
digo2 Website. https://cs.txstate.edu/~burtscher/research/Indigo2Suite/. Ac-
cessed: 2023-08-18.

[33] Yiqian Liu, Noushin Azami, Corbin Walters, and Martin Burtscher. 2022. The
Indigo Program-Verification Microbenchmark Suite of Irregular Parallel Code
Patterns. In 2022 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, New York, NY, USA, 24–34. https://doi.org/10.1109/
ISPASS55109.2022.00003

[34] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin. 2015.
GraphBIG: understanding graph computing in the context of industrial solu-
tions. In SC ’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, New York, NY, USA, 1–12.
https://doi.org/10.1145/2807591.2807626

[35] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Atomic-free irregular
computations on GPUs. In Proceedings of the 6th Workshop on General Purpose
Processor Using Graphics Processing Units. 96–107.

[36] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Atomic-Free Irregular
Computations on GPUs. In Proceedings of the 6th Workshop on General Purpose
Processor Using Graphics Processing Units (Houston, Texas, USA) (GPGPU-6).
Association for Computing Machinery, New York, NY, USA, 96–107. https:
//doi.org/10.1145/2458523.2458533

[37] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-driven versus
topology-driven irregular computations on GPUs. In 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing. IEEE, 463–474.

[38] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-Driven Versus
Topology-driven Irregular Computations on GPUs. In 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing. IEEE, New York, NY, USA, 463–
474. https://doi.org/10.1109/IPDPS.2013.28

[39] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Morph Algorithms
on GPUs. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Shenzhen, China) (PPoPP ’13). Association for
Computing Machinery, New York, NY, USA, 147–156. https://doi.org/10.1145/
2442516.2442531

[40] ISS The University of Texas at Austin. 2010. Galois. https://iss.oden.utexas.edu/
?p=projects/galois. Accessed: 2022-10-21.

[41] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M Amber
Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich,
Mario Méndez-Lojo, et al. 2011. The tao of parallelism in algorithms. In Proceed-
ings of the 32nd ACM SIGPLAN conference on Programming language design and
implementation. 12–25.

[42] Scott Rostrup, Shweta Srivastava, and Kishore Singhal. 2013. Fast and memory-
efficient minimum spanning tree on the GPU. International Journal of Computa-
tional Science and Engineering 8, 1 (2013), 21–33.

[43] Jin Wang and Sudhakar Yalamanchili. 2014. Characterization and analysis of
dynamic parallelism in unstructured GPU applications. In 2014 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, New York, NY, USA,
51–60. https://doi.org/10.1109/IISWC.2014.6983039

[44] Hancheng Wu, Da Li, and Michela Becchi. 2016. Compiler-Assisted Workload
Consolidation for Efficient Dynamic Parallelism on GPU. In 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE, New York,
NY, USA, 534–543. https://doi.org/10.1109/IPDPS.2016.98

[45] Zhen Xu, Xuhao Chen, Jie Shen, Yang Zhang, Cheng Chen, and Canqun Yang.
2019. Gardenia: A graph processing benchmark suite for next-generation accel-
erators. ACM Journal on Emerging Technologies in Computing Systems (JETC) 15,

https://nvidia.github.io/libcudacxx/
https://doi.org/10.1109/IISWC.2013.6704684
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3398682.3399168
http://www.diag.uniroma1.it//challenge9/download.shtml
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1145/1941553.1941590
https://doi.org/10.1109/ISPASS.2009.4919639
http://snap.stanford.edu/data
https://doi.org/10.1109/ICPP.2015.107
https://github.com/burtscher/Indigo2Suite
https://cs.txstate.edu/~burtscher/research/Indigo2Suite/
https://doi.org/10.1109/ISPASS55109.2022.00003
https://doi.org/10.1109/ISPASS55109.2022.00003
https://doi.org/10.1145/2807591.2807626
https://doi.org/10.1145/2458523.2458533
https://doi.org/10.1145/2458523.2458533
https://doi.org/10.1109/IPDPS.2013.28
https://doi.org/10.1145/2442516.2442531
https://doi.org/10.1145/2442516.2442531
https://iss.oden.utexas.edu/?p=projects/galois
https://iss.oden.utexas.edu/?p=projects/galois
https://doi.org/10.1109/IISWC.2014.6983039
https://doi.org/10.1109/IPDPS.2016.98

Choosing the Best Parallelization and Implementation Styles for Graph Analytics Codes: Lessons Learned from 1106 Programs SC ’23, November 12–17, 2023, Denver, CO, USA

1 (2019), 1–13.
[46] Zhen Xu, Xuhao Chen, Jie Shen, Yang Zhang, Cheng Chen, and Canqun Yang.

2019. GARDENIA: A Graph Processing Benchmark Suite for Next-Generation
Accelerators. J. Emerg. Technol. Comput. Syst. 15, 1, Article 9 (jan 2019), 13 pages.
https://doi.org/10.1145/3283450

[47] P Zhang and G Chartrand. 2006. Introduction to graph theory. Tata McGraw-Hill.

[48] Yang Zhang, Jie Shen, Zhen Xu, Shikai Qiu, and Xuhao Chen. 2019. Architectural
Implications in Graph Processing of Accelerator with Gardenia Benchmark Suite.
In 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Computing & Communications, Social
Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, 1329–
1339.

https://doi.org/10.1145/3283450

	Abstract
	1 Introduction
	2 Parallelization and implementation styles
	2.1 Vertex-based vs. edge-based
	2.2 Topology-driven vs. data-driven
	2.3 Duplicates in worklist vs. no duplicates in worklist
	2.4 Push vs. pull
	2.5 Read-write vs. read-modify-write
	2.6 Non-deterministic vs. deterministic
	2.7 Persistent vs. non-persistent
	2.8 Thread vs. warp vs. block
	2.9 Atomic vs. CudaAtomic
	2.10 Reduction styles
	2.11 Default scheduling vs. dynamic scheduling
	2.12 Blocked vs. cyclic

	3 Related work
	3.1 Benchmark suites of irregular programs

	4 Experimental methodology
	4.1 Codes
	4.2 Inputs
	4.3 Hardware
	4.4 Software
	4.5 Metrics

	5 Results
	5.1 Atomic and CudaAtomic
	5.2 Vertex-based and edge-based
	5.3 Topology-driven and data-driven
	5.4 Push and pull
	5.5 Read-write and read-modify-write
	5.6 Deterministic and non-deterministic
	5.7 Persistent and non-persistent
	5.8 Thread, warp, and block
	5.9 Global-add, block-add, and reduction-add
	5.10 Atomic-, critical-, and clause-reduction
	5.11 Default and dynamic scheduling
	5.12 Blocked and cyclic scheduling
	5.13 Correlation with graph properties
	5.14 Best-performing styles
	5.15 Style combinations
	5.16 Programming guidelines
	5.17 Comparison with third-party codes

	6 Summary and conclusions
	Acknowledgments
	References

