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Abstract
Subgraph Counting (SGC) is a fundamental component of many
important applications, including cybersecurity, drug discovery,
social network analysis, and natural language processing. However,
current SGC approaches can only handle very small patterns (aka
subgraphs) because the computational load increases exponentially
with the size of the pattern. To overcome this limitation for certain
patterns, we introduce a new technique and algorithm called Fringe-
SGC for counting the exact number of times a subgraph occurs in
a larger graph. Our approach conventionally searches only for the
“core” of the subgraph and then uses set-based methods to compute
the number of occurrences that the “fringes” add. Our evaluation
shows that Fringe-SGC is able to count the instances of many
subgraphs that are too large for state-of-the-art SGC frameworks.
Furthermore, Fringe-SGC running on a GPU outperforms the state-
of-the-art GPU-based SGC frameworks by up to 20× on average,
especially on patterns with many fringes.

CCS Concepts
• Mathematics of computing → Graph enumeration; • Com-
puting methodologies→Massively parallel algorithms.
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1 Introduction
Subgraph counting (SGC) is the process of counting all occurrences,
often called embeddings, of a connected subgraph in a larger graph.
Such subgraphs, which are also referred to as patterns or motifs,
typically only encompass a few vertices and edges. Fig. 1 shows
some examples. Counting how often a pattern appears can help
shed light on pattern importance, make predictions, and discover
insights. For instance, SGC is used in biological network analysis
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to study protein-protein interaction networks [15], in disease pro-
tein prediction [14], and in chemoinformatics to classify chemical
compounds [7].

Moreover, SGC algorithms have been used for mapping human
brain networks [9], fraud detection [6], natural language process-
ing [27], cybersecurity [23], social network analysis [8], recom-
mender systems [1], and drug discovery [25]. SGC has gained sig-
nificant attention in recent years, and many SGC frameworks have
been proposed (e.g., [12, 26, 28]). However, these frameworks only
support small subgraphs due to the exponentially increasing com-
putational complexity. For example, extending a pattern by just one
vertex and one edge generally greatly increases the running time to
find and count the pattern. The exponential nature is particularly
pronounced for patterns with low-degree “fringe” vertices such as
the ones highlighted in orange in Fig. 1. A fringe vertex (or just
“fringe” for short) is a vertex that is only connected to the core of
the subgraph but not to any other fringe vertices. Adding just a
few fringes to a pattern quickly makes counting the occurrences
intractable for existing SGC approaches.

u
u

u
u u

u
u

u
u u

u u
u

u u
u

u
u

u u
u

u

u u u
u

u u
u
u

𝐶 𝐷 𝐶 𝐷 𝐶 𝐷 𝐶 𝐷

𝐵 𝐶 𝐵 𝐶 𝐶 𝐷 𝐶 𝐷

𝐴 𝐵 𝐴 𝐵 𝐴 𝐵 𝐴 𝐵

𝐴 𝐴 𝐴 𝐵 𝐴 𝐵

Tailed Triangle 4-cycle Diamond 4-clique

Wedge Triangle 3-star 4-path

Figure 1: All possible connected 3- and 4-vertex patterns; the
“core” is black and the “fringes” are orange

To see why, consider the graph in Fig. 2. There is only one
triangle in this graph (formed by vertices 0, 1, and 2), but there are
five unique tailed triangles. By unique we mean that none of the
matched patterns encompass the same set of vertices. In a relatively
small real-world Internet graph with 124,651 vertices and 193,620
edges, there are only 19,523 triangles but 880,555 tailed triangles
and 21,095,445 2-tailed triangles (see Fig. 3).

These examples show that extending a pattern can drastically
increase the number of occurrences and, concomitantly, the running
time of SGC algorithms. Note that tails are the simplest type of
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fringes. The same trend applies to other types and is exacerbated
when there are multiple fringes. Since every possible pattern with
two or more vertices contains at least one fringe, it is important to
develop techniques that can count such patterns efficiently.
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Figure 2: A small graph in which to count patterns
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Figure 3: Three examples of 𝑘-tailed triangles

This paper presents a new method for counting patterns with
fringes called Fringe-SGC. Our approach accomplishes this by con-
ventionally searching only for the core of the pattern (i.e., the
pattern without any fringes) and then mathematically accounting
for the number of occurrences that the fringes add. Consequently,
the performance advantage of Fringe-SGC tends to increase with
increasing numbers of fringes for a fixed core. For example, the pat-
tern shown in Fig. 4 with 16 vertices and 25 edges is far beyond the
capabilities of other SGC frameworks. However, because the core
is small (it only consists of three vertices), Fringe-SGC can count
the number of occurrences of this pattern even in large graphs.

This paper makes the following main contributions.
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Figure 4: An example pattern with many fringes

• It introduces Fringe-SGC, a framework for counting the num-
ber of occurrences of user-defined patterns in graphs, which
it decomposes into core and fringe vertices.

• It presents a general formula to compute the occurrences of
arbitrarily many fringes and fringe types.

• It presents a GPU-friendly parallelization strategy for algo-
rithms like Fringe-SGC to maintain parallelism in codes with
deeply-nested conditional statements.

• It demonstrates that our parallel GPU implementation can
be orders of magnitude faster than prior SGC frameworks
and handle much larger patterns.

Our Fringe-SGC CUDA code is freely available in open source
at https://github.com/burtscher/Fringe-SGC.git

The rest of this paper is organized as follows. Section 2 provides
background information. Section 3 explains our approach in detail.
Section 4 summarizes related work. Section 5 describes the eval-
uation methodology. Section 6 presents and discusses the results.
Section 7 concludes the paper with a summary.

2 Background
The goal of Fringe-SGC is to count the number of embeddings
of a user-provided pattern within a user-provided graph that are
isomorphic to the pattern. Important note: by adding a simple print
statement, we can change Fringe-SGC to not only count the pattern
but also list all identified core locations and the number of patterns
that surround each core. Doing so basically changes the code into
a subgraph matching application. In this paper, we use Fringe-SGC
and all evaluated third-party codes in counting mode only because
outputting the matches can be slow and may require a lot of storage.

SGC includes a variety of algorithms such as Triangle Count-
ing (TC) [24] and Clique Finding (CF) [11] and is related to Motif
Counting (MC) [17] and Frequent Subgraph Mining (FSM) [10]. TC
counts the number of triangles in the input. CF enumerates com-
plete subgraphs (cliques). MC counts the frequency of each possible
pattern up to a given size. FSM identifies all frequent patterns that
occur at least a specified number of times, which is called “support”.

SGC algorithms handle duplicate embeddings or automorphisms
by selecting a canonical embedding and recording statistical data,
such as the total number of these embeddings. However, determin-
ing the canonical embedding can be computationally demanding.
Similarly, enumerating embeddings in a graph is an exponential
process that can be memory-intensive and slow [4]. Additionally,
each embedding must undergo a subgraph isomorphism test to
confirm whether it is identical to the pattern, which is NP-complete.
Consequently, some SGC algorithms rely on heuristics and ap-
proximations to efficiently enumerate embeddings [5]. In contrast,
Fringe-SGC is an exact approach.

Most SGC frameworks are based on one of two types of embed-
dings: vertex induced or edge induced. Vertex-induced embeddings
are generated by selecting a group of vertices and identifying the
subgraph of interest that contains these vertices, along with the
edges that link them in the input graph. In contrast, edge-induced
embeddings are created by selecting a set of edges and including all
endpoint vertices of those edges in the subgraph. The conventional
search for either embedding type is done in a depth-first manner,

https://github.com/burtscher/Fringe-SGC.git
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starting with single-edge graphs and adding an extra edge in each
step. This paper targets edge-induced embeddings.

3 Fringe-SGC Approach
Fringe-SGC is based on the observation that it is possible to compute
the instances of a 𝑘-star pattern, rather than match each instance
of the subgraph individually. A 𝑘-star is a pattern with a central
vertex that is connected to 𝑘 other vertices. For example, Fig. 1
shows both a 2-star (the wedge) and a 3-star. It is well-known that
the number of 𝑘-stars in a graph can be determined without visiting
the 𝑘 “spoke” vertices [16, 21]. We only need to visit the central
vertex and query its degree to compute the number of occurrences.
For instance, to determine the number of 3-stars in the graph from
Fig. 2, we visit each vertex and find that only Vertex 0 can be such a
central vertex as all other vertices have a degree below 3. Moreover,
we can compute that Vertex 0 is the central vertex of

(7
3
)
= 35 3-stars,

where the 7 is the degree of Vertex 0 and the 3 is the number of
spokes. More generally, for 𝑘 > 1, every vertex 𝑣 in any graph is
the central vertex of exactly

(𝑑
𝑘

)
𝑘-stars, where 𝑑 is the degree of 𝑣 .

Our Fringe-SGC approach generalizes this idea to larger patterns
with more than one “central” vertex and more complex “spokes”.
In particular, the core takes the role of the central vertex and the
fringes take the role of the spokes, meaning we only visit the core
and compute how many occurrences the fringes add. The core and
fringes of an arbitrary connected pattern are defined as follows.

Definition 3.1 (Core). A core of a pattern is a minimal connected
subset of the vertices such that all non-core vertices are only con-
nected to core vertices.

Definition 3.2 (Fringe vertex). A fringe vertex of a pattern is a
vertex that is not part of the core.

Note that every pattern vertex either belongs to the core or is a
fringe vertex. Moreover, the core is not unique. For example, in the
triangle in Fig. 1, the core could just as well have been 𝐴𝐶 or 𝐵𝐶 .

To simplify the discussion, it is helpful to define the anchors of
the fringes as follows.

Definition 3.3 (Anchors). The anchors, anchor set, or anchor
vertices of a fringe are the core vertices to which the fringe is
connected.

Fringe-SGC starts with a depth-first search for the core of the
pattern. Whenever an instance of the core has been found in the
graph, it computes the number of distinct instances of the full
pattern with fringes around the core instance. This number is a
function of the neighbors of the matched core vertices. We first
illustrate what this function looks like on the example of a core
with 2 vertices to which we progressively add more fringes.

3.1 2-Vertex Core
The simplest pattern with a 2-vertex core (i.e., an “edge” core) is
the triangle. It contains a new type of fringe that we call “wedge”
fringe. Wedge-fringe vertices have degree 2 whereas tail-fringe
vertices have degree 1. To compute how many wedge fringes a
matched edge core has, we need to know how many neighbors
the two core vertices have in common, which can be computed
in linear time (see Sec. 3.5). With 𝑐 common neighbors, there are

(𝑐
1
)
= 𝑐 possibilities for the wedge fringe. If we have two wedge

fringes, that is, a diamond pattern (see Fig. 1), then there are
(𝑐
2
)

possibilities. These formulas are well known [16, 21]. It is easy to
see that, with𝑚 wedge fringes, there will be

( 𝑐
𝑚

)
possibilities.

If we use this formula verbatim, we will overcount the number
of patterns because of automorphisms, that is, because the pattern
appears multiple times in itself. For example, the vertices of a trian-
gle can be rotated into three different configurations (ABC, BCA,
and CAB), and each configuration can be mirrored (ACB, CBA, and
BAC). Hence, a triangle has six automorphisms. There are two ways
to handle the overcounting: we can either divide the final count
by the number of automorphisms, or we can introduce symmetry
breaking [3], for instance by enforcing that the unique vertex ID of
A must be smaller than B’s, and B’s must be smaller than C’s. In
the rest of this section, we assume that automorphisms are handled
in one way or another.

The above formulas for 𝑘-stars, triangles, diamonds, etc. are al-
ready published in the literature. However, the following extensions
and generalizations are new as far as we know.

Consider the tailed triangle, which has a 2-vertex core, a wedge
fringe, and a tail fringe (see Fig. 1). The tail can be any non-core
neighbor of the core vertex that has the tail, whereas the wedge
fringe must be a common neighbor of both core vertices. The prob-
lem is that the two sets of neighbors overlap. If we use one of the
common neighbors for the tail, we have one fewer option for the
wedge fringe. This is the case because fringes are not allowed to
share a vertex. If they did, we would detect a different pattern with
fewer vertices. Hence, we must exclude all shared-vertex cases.

Assume we found a match for the 2-vertex core, that the two core
vertices are 𝑢 and 𝑣 , and that the tail is attached to 𝑢. It is helpful to
compute the sizes 𝑛𝑢 and 𝑛𝑢𝑣 of the two disjoint vertex sets 𝑠𝑢 and
𝑠𝑢𝑣 . This is done with the function 𝑒 (𝑥), which returns the external
neighbors of 𝑥 , that is, the neighbors that are not vertices of the
matched core:

𝑠𝑢 = 𝑒 (𝑢) \ 𝑒 (𝑣), 𝑛𝑢 = |𝑠𝑢 |
𝑠𝑢𝑣 = 𝑒 (𝑢) ∩ 𝑒 (𝑣), 𝑛𝑢𝑣 = |𝑠𝑢𝑣 |

Here, 𝑛𝑢 is the number of non-core neighbors of 𝑢 that are not
neighbors of 𝑣 , and 𝑛𝑢𝑣 is the number of non-core neighbors that
are common to 𝑢 and 𝑣 . These two set sizes (note that we do not
need the sets, only their sizes) are sufficient to compute the number
of possibilities for the tailed triangle:(

𝑛𝑢

1

) (
𝑛𝑢𝑣

1

)
+
(
𝑛𝑢𝑣

1

) (
𝑛𝑢𝑣 − 1

1

)
The first term reflects the number of possibilities when the tail is

chosen from 𝑠𝑢 , that is,
(𝑛𝑢
1
)
choices for the tail times

(𝑛𝑢𝑣
1
)
choices

for the wedge fringe. The second term reflects the number of pos-
sibilities when the tail is chosen from 𝑠𝑢𝑣 , that is,

(𝑛𝑢𝑣
1
)
choices

for the tail times
(𝑛𝑢𝑣−1

1
)
choices for the wedge fringe. Note that

picking the tail from 𝑠𝑢𝑣 leaves one fewer choice for picking the
wedge fringe, i.e., only 𝑛𝑢𝑣 − 1.

It is immaterial that we first picked the tail and then the wedge
fringe because doing it the other way around yields the same result
due to the following equality:(

𝑛

𝑎

) (
𝑛 − 𝑎
𝑏

)
=

(
𝑛 − 𝑏
𝑎

) (
𝑛

𝑏

)
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Adding more wedge fringes is easy as these fringes can only
be selected from one set, namely 𝑠𝑢𝑣 . Thus, the total number of
possibilities for an edge core with 1 tail and𝑚 wedge fringes is:(

𝑛𝑢

1

) (
𝑛𝑢𝑣

𝑚

)
+
(
𝑛𝑢𝑣

1

) (
𝑛𝑢𝑣 − 1
𝑚

)
However, adding additional tails to the anchor of the first tail is

more complicated because some of the tails may be selected from
𝑠𝑢 and the rest from 𝑠𝑢𝑣 . With 𝑘 tails attached to vertex 𝑢, we can
select all 𝑘 tails from 𝑠𝑢 and none from 𝑠𝑢𝑣 , or we can select 𝑘 − 1
tails from 𝑠𝑢 and 1 tail from 𝑠𝑢𝑣 , and so on. This yields the following
number of possibilities for an edge core with 𝑘 tails attached to one
core vertex and𝑚 wedge fringes (where we choose 𝑖 tails from 𝑠𝑢𝑣 ):

𝑘∑︁
𝑖=0

(
𝑛𝑢

𝑘 − 𝑖

) (
𝑛𝑢𝑣

𝑖

) (
𝑛𝑢𝑣 − 𝑖
𝑚

)
Next, let us add 𝑙 > 0 tails to the other core vertex. This requires

the size 𝑛𝑣 of a third disjoint vertex set 𝑠𝑣 :

𝑠𝑣 = 𝑒 (𝑣) \ 𝑒 (𝑢), 𝑛𝑣 = |𝑠𝑣 |
Here, 𝑛𝑣 is the number of non-core neighbors of 𝑣 that are not
neighbors of 𝑢. The relationship between the now three sets can be
visualized in a Venn diagram:

𝑛𝑢 𝑛𝑢𝑣 𝑛𝑣

𝑒 (𝑢) 𝑒 (𝑣)

We can select the 𝑘 tails of 𝑢 from either 𝑛𝑢 or 𝑛𝑢𝑣 , the 𝑙 tails
of 𝑣 from either 𝑛𝑢𝑣 or 𝑛𝑣 , and the𝑚 wedge fringes only from 𝑛𝑢𝑣 .
Using the approach from above, where we sum over all possible
ways to draw the tails from two sets, yields the following number
of possibilities:

𝑘∑︁
𝑖=0

(
𝑛𝑢

𝑘 − 𝑖

) (
𝑛𝑢𝑣

𝑖

) 𝑙∑︁
𝑗=0

(
𝑛𝑣

𝑙 − 𝑗

) (
𝑛𝑢𝑣 − 𝑖

𝑗

) (
𝑛𝑢𝑣 − 𝑖 − 𝑗

𝑚

)
The first two binomials choose the 𝑘 tails of 𝑢 as before, the next
two binomials choose the 𝑙 tails of 𝑣 in a similar manner except the
size of 𝑠𝑢𝑣 has been reduced by 𝑖 , and the last binomial chooses the
𝑚 wedges as before except the size of 𝑠𝑢𝑣 has been further reduced
by 𝑗 . Note that this formula is general and works for all patterns
with a 2-vertex core, independent of the values of 𝑘 , 𝑙 , and𝑚, that
is, it works for infinitely many patterns just like the 𝑘-star formula
does for 1-vertex cores.

3.2 3-Vertex Cores
There are two distinct 3-vertex cores, the wedge core and the trian-
gle core. For example, the 4-cycle in Fig. 1 has a wedge core and
the 4-clique has a triangle core. Aside from some differences in
automorphisms, the two types of 3-vertex cores can be handled
similarly. Note that 3-vertex cores introduce a new type of fringe,
which we call “tri-fringe”. Vertices 𝑂 and 𝑃 in Fig. 4 are examples
of tri-fringes. They have degree 3.

Assuming the 3 core vertices are 𝑢, 𝑣 , and 𝑤 , we now need to
consider the sizes of the 7 disjoint vertex sets that 𝑒 (𝑢), 𝑒 (𝑣), and
𝑒 (𝑤) can form, which are visualized in the following Venn diagram:

𝑛𝑤

𝑛𝑢

𝑛𝑢𝑣𝑤

𝑛𝑣𝑛𝑢𝑣

𝑛𝑢𝑤 𝑛𝑣𝑤

𝑒 (𝑤)

𝑒 (𝑢) 𝑒 (𝑣)

This gives us four sets from which to draw tails (e.g., 𝑠𝑢 , 𝑠𝑢𝑣 , 𝑠𝑢𝑤 ,
and 𝑠𝑢𝑣𝑤 for the tails of vertex 𝑢), two sets from which to draw
wedge fringes (e.g., 𝑠𝑢𝑣 and 𝑠𝑢𝑣𝑤 for the wedge fringes between
vertices 𝑢 and 𝑣), and one set (𝑠𝑢𝑣𝑤 ) from which to draw tri-fringes,
where the sets are defined as above. Hence, our formula for comput-
ing the number of occurrences of the pattern has three summations
and four binomials for each vertex with tails, one summation and
two binomials for each edge with wedge fringes, and one binomial
for the tri-fringes. As the formula is lengthy, we describe how the
terms look on a few examples.

Since we can start with any fringe type, let us begin with the 𝑘
tails of vertex 𝑢, which yields the following terms:

𝑘∑︁
𝑎=0

(
𝑛𝑢

𝑎

) 𝑘−𝑎∑︁
𝑏=0

(
𝑛𝑢𝑣

𝑏

) 𝑘−𝑎−𝑏∑︁
𝑐=0

(
𝑛𝑢𝑤

𝑐

) (
𝑛𝑢𝑣𝑤

𝑘 − 𝑎 − 𝑏 − 𝑐

)
...

The last binomial does not require a sum as it must handle whatever
number of tails remain.

We can continue with any other fringe type, but we must first
subtract the already used elements from the shared sets. For in-
stance, let us continue with the𝑚 wedge fringes between 𝑢 and 𝑣 .
In this case, the next terms of the formula are:

...

𝑚∑︁
𝑑=0

(
𝑛𝑢𝑣 − 𝑏
𝑑

) (
𝑛𝑢𝑣𝑤 − (𝑘 − 𝑎 − 𝑏 − 𝑐)

𝑚 − 𝑑

)
...

We subtract 𝑏 from 𝑛𝑢𝑣 since we already used 𝑏 vertices for the tails
of 𝑢. We subtract 𝑘 − 𝑎 − 𝑏 − 𝑐 from 𝑛𝑢𝑣𝑤 for the same reason.

This procedure continues for all remaining fringe types. For
example, the next binomial that uses 𝑛𝑢𝑣 must subtract 𝑏 and 𝑑 to
account for the already used elements by earlier fringe types.

3.3 Larger Cores
Our approach supports arbitrary core sizes as follows. Assuming
a matched core with 𝑞 vertices, we start by computing the Venn
diagram based on the 𝑞 sets of external neighbors. This yields 2𝑞 −1
disjoint set sizes.

Next, we iterate over all present fringe types. For each type, we
perform a summation as described above over every Venn diagram
entry that covers the corresponding anchor set and subtract the
number of used entries before moving on to the next fringe type.
We describe this process in more detail in the next subsection.

We also tried an alternative approach, called the inclusion - ex-
clusion principle, that first overcounts and then subtracts the over-
counted amount [18]. Although IEP is very efficient in simpler
cases, its complexity increases as we apply it to a pattern with
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multiple fringe types. IEP also proved incompatible with several of
our optimizations, resulting in us not seeing a benefit.

3.4 Implementation
Our Fringe-SGC code operates as follows. It starts by analyzing the
user-provided pattern and separating it into core and fringe vertices.
It employs the following serial heuristic to do this. It first processes
all unprocessed degree-1 vertices and marks each of them as a tail
fringe and the adjacent vertex as a core vertex. Then, it processes all
unprocessed degree-2 vertices and similarly marks them as wedge
fringes and their two adjacent vertices as belonging to the core. It
continues in this manner until all vertices have been processed. If
the resulting core ends up being disconnected, it moves a minimal
number of fringe vertices into the core to make it connected. We do
this by finding the shortest path between connected components of
the core and adding vertices along this path to the core. The result
is recorded in a so-called “matching order” that prescribes which
core vertex to search for first, which core vertex is next, and so on.
All of this work is not performance critical as it only needs to be
done once per pattern and is independent of the graph.

Fringe-SGC invokes specialized code for patterns with small
cores. If the pattern contains a single vertex, it returns the number
of vertices in the input graph. If the pattern contains two vertices, it
returns the number of undirected edges in the graph. If the pattern
has a 1-vertex core, it uses the 𝑘-star formula on each graph vertex
to count the number of occurrences. If the pattern has two or three
core vertices, it applies the appropriate formula outlined above with
specialized code to handle automorphisms and optimized code to
compute the Venn diagram entries. For larger cores, it employs a
general implementation.

The general Fringe-SGC code starts by searching for the core
of the pattern using a conventional approach that is similar to
STMatch [26]. Assuming the core has 𝑝 vertices of which 𝑞 ver-
tices appear in at least one anchor set, Fringe-SGC proceeds by
computing the Venn diagram for the 𝑞 matched vertices. To boost
performance, we only do this for the needed 𝑞 vertices instead of
for all 𝑝 vertices.

Fringe-SGC stores the resulting 2𝑞 − 1 disjoint set sizes in an
array with 2𝑞 elements, where the first element is unused. Each
element has a 𝑞-bit index. We interpret this index as a bitset in
which each ‘1’ bit indicates the presence and each ‘0’ the absence of
the corresponding vertex. For example, in case of 𝑞 = 3 with core
vertices 𝑢, 𝑣 , and𝑤 , the array holding the Venn diagram looks as
follows, where bit position 0 of the index corresponds to 𝑢, position
1 to 𝑣 , and position 2 to𝑤 :

Binary Index Array Element
000 -
001 𝑛𝑢
010 𝑛𝑣
011 𝑛𝑢𝑣
100 𝑛𝑤
101 𝑛𝑢𝑤
110 𝑛𝑣𝑤
111 𝑛𝑢𝑣𝑤

We chose this assignment to simplify the implementation. In
particular, for each fringe type, the formula needs to sum over all

Venn diagram entries that cover the anchor set, which can now
easily be determined. For example, in case of a wedge fringe with an
anchor set of 𝑢 and𝑤 , which corresponds to the bitset 101, Fringe-
SGC must sum over all array entries whose index has a ‘1’ bit in
positions 0 and 2, that is, the elements at indices 101 (𝑛𝑢𝑤 ) and 111
(𝑛𝑢𝑣𝑤 ).

To efficiently find the needed indices for any fringe type while
skipping over all other indices, we start with a bitset 𝑖𝑑𝑥 that cor-
responds to the anchor set 𝑎𝑛𝑐ℎ of the fringe type. Then, in each
iteration, we compute the next bitset as 𝑖𝑑𝑥 = (𝑖𝑑𝑥 + 1) | 𝑎𝑛𝑐ℎ,
where the vertical bar indicates a bit-wise OR operation (i.e., set
addition). Fringe-SGC terminates the iteration when all bits are ‘1’
in the bitset, i.e., when reaching the last element of the array. This
final set is a superset of all fringe types and must always be visited.
Recall that this set is special because no summation is needed for
it. It simply handles all remaining fringes of the current type.

Fringe-SGC implements this approach using an iterative imple-
mentation of the recursive code shown in Listing 5. Whereas the
recursive code is shorter and more elegant, we use iterative code
because recursion is not well supported on GPUs as each of the
many threads only has a very small stack. Before the code executes,
the following variables must be computed: 𝑞 (the number of core
vertices that belong to an anchor set), 𝑣𝑒𝑛𝑛 (the Venn diagram),
𝑠 (the number of distinct anchor sets, i.e., fringe types), 𝑎𝑛𝑐ℎ (an
array holding 𝑠 bitsets specifying the anchor sets), and 𝑘 (an ar-
ray holding 𝑠 counts specifying how many fringes of this type are
present). Note that 𝑞, 𝑠 , 𝑎𝑛𝑐ℎ, and 𝑘 are pattern specific and only
need to be computed once. Only 𝑣𝑒𝑛𝑛 needs to be computed for
each match of the core in the input graph.

In Listing 5, the variable 𝑝𝑜𝑠 iterates over the 𝑠 fringe types, 𝑟𝑒𝑚
is the remaining number of fringes of the current type that still
need to be drawn from a set, and 𝑖𝑑𝑥 iterates over all sets that cover
the current fringe type as described above.

The fringe-counting 𝑓 𝑐 function is called on Line 27 for the
first fringe type. The recursion stops on Line 5 when all fringe
types have been processed. For each fringe type, the summation
is performed in the loop between Lines 17 and 21. Line 19 in the
body of this loop moves on to the next Venn diagram entry that
covers the current fringe type. The last Venn diagram entry is
handled separately on Lines 8 through 14 as it does not require a
summation. Instead, it moves on to the next fringe type. Whenever
the code draws fringes from a set, the corresponding entry in the
Venn diagram is decremented accordingly (Lines 10 and 18) before
the next recursive call and then incremented again (Lines 12 and
20) to undo the change after the recursive call returns.

We verified Fringe-SGC’s correctness by comparing the number
of occurrences it returns to the corresponding number returned by
the other codes we evaluate in the results section. The numbers
match on all tested inputs and patterns. Furthermore, we exhaus-
tively tested Fringe-SGC on all possible patterns with up to 5 ver-
tices on all possible graphs with up to 5 vertices (as well as some
larger graphs).

3.5 Optimization
The code in Listing 5 contains several optimizations. For example,
Line 6 moves on to the next fringe type as soon as no more fringes
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1 long nCk(int n, int k); // computes "n choose k"

2

3 long fc(int pos , int rem , int idx)

4 {

5 if (pos == s) return 1; // end of recursion

6 if (rem == 0) return fc(pos + 1, k[pos + 1], anch[pos

+ 1]); // next fringe type

7 int vc = venn[idx];

8 if (idx == (1 << q) - 1) { // last entry of array

9 if (rem > vc) return 0; // no solution

10 venn[idx] -= rem;

11 long cnt = nCk(vc, rem) * fc(pos + 1, k[pos + 1],

anch[pos + 1]); // next fringe type

12 venn[idx] += rem;

13 return cnt;

14 }

15 long cnt = 0;

16 int top = std::min(rem , vc);

17 for (int i = 0; i <= top; i++) { // summation loop

18 venn[idx] -= i;

19 cnt += nCk(vc, i) * fc(pos , rem - i, (idx + 1) |

anch[pos]); // next Venn entry

20 venn[idx] += i;

21 }

22 return cnt;

23 }

24 ...

25 // start of recursion

26 long count = fc(0, k[0], anch [0]);

Figure 5: Recursive Fringe-SGC pattern-counting code

of the current type are needed, even before all sets that cover the
current type have been visited. Line 9 stops the recursion if not
enough elements are available rather than continuing and multiply-
ing the return value on Line 11 by zero. Instead of summing over
all 𝑟𝑒𝑚 values on Line 17, we only sum over the available values
(Line 16) if it is smaller, again minimizing the number of recursive
calls. Line 19 skips over non-matching sets as described above.

Note that Fringe-SGC never accesses any fringe vertices in the
input graph. It only accesses the core vertices and their adjacency
lists, which should improve locality. Moreover, it only reads the
graph and adjacency lists while counting patterns. It does not store
any information in the graph.

Many SGC frameworks incrementally search for the pattern [4].
They record where in the input graph the first part of the pattern
can be found and then gradually “grow” the matches to the full
pattern size, deleting any occurrences that do not match. This pro-
cess is very memory intensive and, therefore, does not work for
large patterns, including patterns with many fringes. So as not
to run out of memory, Fringe-SGC adopts the stack approach of
STMatch [26]. It tries to match the entire pattern for a given starting
vertex in the graph before moving on to the next starting vertex.
As a consequence, Fringe-SGC only requires enough memory to
hold the input graph plus a fixed amount of memory per running
thread that is a function of the pattern (see Section 3.7). Importantly,
Fringe-SGC’s memory consumption does not increase dynamically
while it counts patterns.

3.6 Parallelization
Fringe-SGC is implemented in CUDA. Each thread counts the num-
ber of occurrences of the pattern when starting from some distinct
graph vertices. These counts are then sum-reduced to obtain the
total number of occurrences. Since the search for the core and the
execution of the 𝑓 𝑐 function can stop at any point and their running
times as well as that of computing the Venn diagrams depend on
the degrees of the matched vertices, we employ a dynamic schedule
to balance the load between the threads.

We studied different ways to compute the needed set sizes (i.e.,
the Venn diagram entries) on a GPU and settled on the following
approach, which seems to deliver good performance. For each an-
chor vertex on the stack, we use an entire warp (i.e., a group of 32
contiguous threads), to process the entries in its adjacency list. For
each entry of the Venn diagram, we search the adjacency lists of the
anchor vertices that appear later in the stack to determine which of
them also contain the entry. Since the adjacency lists are sorted, we
can do so with binary search. This approach is surprisingly efficient
because all warp threads search the same adjacency list in parallel
and typically search it for similar values (since the values stem
from a chunk of another sorted adjacency list). Hence, many of
the logarithmic steps of the binary search yield coalesced memory
accesses. Once the Venn diagram has been populated with the re-
sulting counts, we computationally correct them to account for the
fact that we only compared to adjacency lists of vertices that appear
later in the stack. This is about twice as fast as always checking all
adjacency lists. Finally, we subtract the counts for the core vertices
(i.e., the vertices on the stack) since they are not external neighbors.
Note that, for performance reasons, Fringe-SGC does not generate
any vertex sets, it only computes their sizes.

Each thread starts from a distinct graph vertex and tries to match
the core of the pattern by following the matching order. To speed
up the process, the matching order is sorted from most to least
constrained core vertex (while maintaining connectivity). This en-
sures that the matching fails as soon as possible (if at all), which
minimizes wasted work. As a simple example, consider the tailed
triangle from Fig. 1. Of the two core vertices, vertex 𝐷 has the
higher degree, so we first try to match the current graph vertex
to pattern vertex 𝐷 . This is more likely to fail than first matching
the current vertex to pattern vertex 𝐴, which has a lower degree.
There are other constraints, too. For instance, vertices appearing
later in the matching order must be adjacent to one or more ear-
lier vertices, and the matched vertices must all be distinct. This
stack-based method is tantamount to a set of nested conditional
statements where the probability of reaching a given nesting level
decreases with each additional level. Listing 6 provides an excerpt
of such code.

This poses a performance problem on GPUs because it causes
thread divergence and, consequently, loss of parallelism. To main-
tain parallelism in such code structures, Fringe-SGC employs the
strategy outlined in Listing 7.

In each level, the 32 warp threads concurrently process 32 ver-
tices. Next, they check which threads in the warp (called “lanes”)
have a vertex that meets the requirements and, crucially, all lanes
process the first such vertex together, then the next such vertex,
etc. In this manner, the code maintains parallelism at each level and
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1 for (v1 = adj[v0]. start; v1 < adj[v0].end; v1++) {

2 if (v1 meets requirements r1) {

3

4 for (v2 = adj[v1].start; v2 < adj[v1].end; v2++) {

5 if (v2 meets requirements r2) {

6 ...

7 }

8 }

9 }

10 }

Figure 6: Nested code structure for finding patterns

all lanes reach the innermost level if at least one core match exists.
We found this approach to greatly improve performance on GPUs.

When the code reaches the innermost level, the entire warp
populates the Venn diagram as described above. The warp does this
for up to 32 vertices, creating up to 32 Venn diagrams. Then, each
lane runs the iterative 𝑓 𝑐 function that computes the number of
possibilities for the fringes based on the counts in the Venn diagram.
In summary, all steps of the Fringe-SGC code execute in parallel
using a mixture of warp-based and thread-based parallelization.

If the input does not fit on a single GPU, it would have to be
partitioned. Each partition would need a ghost region that is as
wide as the diameter of the search pattern, which is at most the size
of the pattern. This way, multiple GPUs can process the partitions
independently and at the same time.

3.7 Storage and Work Complexity
In addition to the shared input graph and the shared 𝑘 array, each
thread in Fringe-SGC requires a stack, 𝑣𝑒𝑛𝑛 array, and a local copy
of the 𝑘 array that the thread can modify. The storage requirement
is 𝑂 (2𝑞), which is exponential in the pattern size, but real-world
patterns are so small (up to a dozen vertices or so) that the thread-
local storage tends to be small in comparison to the memory needed
to hold the input graph. In all tested cases, the combined memory
consumption of the Venn diagrams across all GPU threads is under
5 MB, irrespective of the size of the input graph, which is a tiny
fraction of the GPU’s global memory size.

The work complexity of Fringe-SGC is exponential in the pat-
tern size just like all other SGC approaches we are aware of. At
first glance, this appears to be no improvement over conventional
SGC approaches. However, Fringe-SGC provides a key benefit: its
exponent is lower for patterns with multiple fringes of the same type.
Whereas other approaches are exponential in the number of pattern
vertices, Fringe-SGC is exponential in the number of core vertices
plus the number of fringe types, which is necessarily less than or
equal to the number of pattern vertices. In other words, Fringe-SGC
is exponentially faster than prior approaches on some patterns. For
example, its running time remains nearly stable when adding more
wedge fringes to the pattern in Fig. 4.

4 Related Work
Chen et al. [4] present Pangolin, the first SGC system that provides
high-level abstractions for GPU processing. It targets both shared-
memory CPUs and GPUs. Pangolin uses an “extend-reduce-filter”

execution model to process embeddings. During the extend phase,
the embeddings are expanded, and the resulting embeddings form
the output worklist. The reducer phase extracts pattern-based sta-
tistical information, such as pattern frequency or support, and the
filter phase removes irrelevant embeddings to improve efficiency.
Pangolin uses an optimized structure of arrays (SoA) to take advan-
tage of locality when storing embeddings. This approach eliminates
the need for creating temporary embeddings, and by blocking the
schedule of embedding exploration, it reduces thememory footprint.
Additionally, Pangolin utilizes inspection-execution and scalable
memory allocation techniques to address the overheads associated
with dynamic memory allocation.

Chen et al. [3] further proposed a two-level framework for min-
ing graph patterns, called Sandslash, which is included in Graph-
Miner. The high-level component autonomously conducts a search
for a graph-pattern-mining problem specification, without requir-
ing user input. The low-level component offers an API that allows
users to customize the search strategy and improve the efficiency
of the framework. At the high level, Sandslash employs a match-
ing order and vertex extension to prune the search tree and avoid
expensive isomorphism tests. The framework also uses a standard
technique for symmetry breaking to prevent over-counting. To
efficiently navigate the search space and identify subgraphs and
patterns, Sandslash employs parallel depth-first search (DFS) explo-
ration and degree filtering to terminate the search earlier. It also
uses memorization of neighborhood connectivity to avoid repeat-
ing lookups in the search graph. At the low level, users only need
to understand the subgraph tree abstraction and how to prune it,
without needing to know the actual implementation.

It is sometimes possible to compute the number of occurrences
of a pattern from the counts of other patterns. This technique is
called local counting. It works by decomposing the pattern into
smaller subpatterns, each of which can be counted independently.
For example, the number of 2-stars (wedges) can be counted based
on the number of triangles and the degrees of two adjacent vertices.
The counts are then combined mathematically to obtain the final
count of the subgraph pattern in the original graph. Sandslash
supports local counting at the lower level, though the user has to
provide the formula to be used [3]. Suganami et al. [21] published
over 20 such formulas, and ESCAPE [16] employs local counting
for all patterns with up to 5 vertices. Note that local counting does
not target fringes and is orthogonal to our approach. It is, however,
similar in that it computes the number of occurrences of a pattern
rather than counting them.

Xiang et al. [28] proposed a new subgraph isomorphism frame-
work called cuTS, which works for both directed and undirected
graphs. Their approach involves constructing a partial path by
adding vertices from the actual graph that match the vertices in the
pattern, starting with the vertex that has the maximum degree. To
store intermediate results efficiently, they propose a space-efficient
CSF-based data structure that allows for reusing prefix paths multi-
ple times. They also use a hybrid approach of BFS and DFS to scan
partial paths efficiently. For efficient neighbor intersection, they
load all children of a vertex into a buffer and use a warp to read
them in a coalesced manner from global to shared memory.

Shi et al. [12] proposed a parallel CPU graph-pattern-matching
framework called Dryadic. It utilizes a computation tree, i.e., a
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1 for (v1 = adj[v0]. start + lane; v1 < adj[v0].end; v1 += warpSize) { // warp -based

2 active1 = (v1 meets requirements r1);

3 bal1 = __ballot_sync (~0, active1); // determines which lanes have a vertex that meets the requirements

4 while (bal1 != 0) {

5 old1 = bal1;

6 bal1 &= bal1 - 1; // removes least -significant set bit

7 who = __ffs(bal1 ^ old1) - 1; // determines location of removed bit

8 if (who == lane) stack [1] = v1; // saves v1 of the currently selected lane of the warp

9 __syncwarp (); // forces remaining lanes to wait for stack update to be visible

10

11 x = stack [1];

12 for (v2 = adj[x].start + lane; v2 < adj[x].end; v2 += warpSize) { // warp -based

13 active2 = (v2 meets requirements r2);

14 bal2 = __ballot_sync (~0, active2); // determines which lanes have a vertex that meets requirements

15 while (bal2 != 0) {

16 old2 = bal2;

17 bal2 &= bal2 - 1; // removes least -significant set bit

18 who = __ffs(bal2 ^ old2) - 1; // determines location of removed bit

19 if (who == lane) stack [2] = v2; // saves v2 of the currently selected lane of the warp

20 __syncwarp (); // forces remaining lanes to wait for stack update to be visible

21 ...

22 }

23 }

24 }

25 }

Listing 7: Modified nested code structure for finding patterns that maintains parallelism

tree-structured intermediate representation, to enable the detec-
tion of multiple patterns simultaneously. The computation tree
serves as the foundation for Dryadic’s three main components: tree
construction, tree optimization, and execution. Dryadic’s pattern
matching process computes a matching order and restrictions to
break symmetry. The matching order identifies the dependencies
of computations to find the vertices in an embedding, while the
restrictions enforce “ID-is-larger” relations between some vertices
to avoid identifying the same embedding multiple times. To mini-
mize redundant computations, Dryadic merges computation trees
of different patterns. To eliminate the redundancy completely, they
move the set operations to the upper level of the tree, which they
refer to as operation motion. Moreover, they employ a 3-field data
structure. The data structure consists of the in-field, which includes
all pattern vertices connected to vertex 𝑖 that appear before 𝑖 in the
matching order, the out-field, which contains all pattern vertices
disconnected from vertex 𝑖 that appear before 𝑖 in the matching
order, and the res-field, which contains the ID of the pattern ver-
tices restricting vertex 𝑖 . Dryadic supports DFS to minimize the
memory footprint and improves load balance by using fine-grained
work-stealing based on the computation tree and embedding tree
abstraction. It also offers two modes for executing the computa-
tion tree: “Galois-based Interpretation” and “Code Generation for
Parallel and Distributed Execution”.

Wei et al. [26] recently presented STMatch, the first stack-based
GPU graph-pattern-matching system that requires no synchroniza-
tion during the search and avoids the memory consumption issues
of previous systems. Its stack-based approach simulates a recursive
procedure and maintains three arrays to store candidate vertices,
candidate sizes, and loop iterations. It also employs a pre-processing
technique called backward search, which reduces the search space

and improves overall performance. In STMatch, each GPU warp
runs a while loop independently, and a two-level work-stealing
technique is used to balance the workload among the warps. They
use two-level stealing because selecting the best target to steal from
all warps is expensive, whereas finding a good target within the
thread block is much easier. Since each warp will perform one while
loop at a time, each loop might not have enough operations for all
threads in the warp, which may cause some or most of the threads
to be idle. To improve thread utilization, loop unrolling is used to
allow threads to perform operations together. The operation motion
technique from Dryadic is also implemented to reduce redundancy.

Yuan et al. [29] improved upon STMatch. Their approach, called
T-DFS, decomposes the computation into tasks and distributes them
in parallel. The tasks are initially distributed evenly across all warps.
Straggler tasks are then assigned based on a timeout mechanism.
T-DFS also improves upon the task queue of STMatch by making
enqueue and dequeue operations atomic and lock-free.

Shi et al. [19] recently proposed GraphSet, a CPU and GPU
supported set-based approach. It employs the inclusion-exclusion
principle (IEP) to more efficiently count the instances of patterns
rather than iterating through all nested loops. In order to accomplish
this on a general SGC application, GraphSet leverages set properties
to generate a transformation-friendly schedule based on the entire
input pattern. Then, with dependence analysis, GraphSet performs
rescheduling and extracts loop variables that can be reduced. These
loop variables are vertices in the input pattern that are not directly
connected and are said to not require an intersection operation in
their innermost loops. The control flow of these vertices is then
transformed into set operations that result in better performance
for patterns with many opportunities for this optimization. This
extraction of unconnected loop variables is a step in the direction
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Table 1: Information about the input graphs

Graph name Type Source Vertices Edges d_avg d_max
amazon0601 co-purchases SNAP 403,394 2,443,408 12.1 2,752
coPapersDBLP publication citations SMC 540,486 30,491,458 56.4 3,299
delaunay_n22 triangluation SMC 4,194,304 25,165,738 6.0 23
in-2004 web links SMC 1,382,908 13,591,473 19.7 21,869
internet Internet topology SMC 124,651 193,620 3.1 151
kron_g500-logn20 Kronecker SMC 1,048,576 89,238,804 85.1 131,503
rmat16.sym RMAT Galois 65,536 483,933 14.8 569
soc-LiveJournal1 journal community SNAP 4,847,571 85,702,474 17.7 20,333
uk-2002 Web links SMC 18,520,486 523,574,516 28.3 194,955
USA-road-d.NY road map Dimacs 264,346 730,100 2.8 3

of our fringe vertices, making GraphSet probably the most closely
related work. However, our approach is more general and often
yields higher performance, as our results show.

We compare the performance of Fringe-SGC to several of the
above frameworks in the result section. We omit Dryadic because
its code is not open-sourced. There are many additional SGC frame-
works in the literature, including AutoMine [13], Kaleido [31], G-
miner [2], Arabesque [22], and GSI [30]. They either only support
predefined patterns or have been shown to be slower than the codes
we do compare with. For example, GraphSet has been shown to be
faster than Sandslash [3], GraphPi [20], cuTs [28], and G-Miner [2].
As is commonly done in most of the related work, Fringe-SGC also
employs a matching order, symmetry breaking, and degree filtering
to speed up the search. Its engine that searches for the pattern’s core
is based on STMatch’s stack-based approach to minimize memory
usage. However, no prior work incorporates a formula to quickly
count the fringes of patterns.

5 Evaluation Methodology
We compare the performance of Fringe-SGC with that of the GPU
implementations of STMatch [26], GraphSet [19], and T-DFS [29].
We instrumented each code to measure the subgraph counting time,
excluding reading in the graph. We evaluated the codes on an RTX
3080 Ti with 10,240 cores distributed over 80 multiprocessors. Each
multiprocessor has 128 kB of L1 cache, and all have access to 6 MB
of shared L2 cache. The global memory has a capacity of 12 GB.
We also experimented with other GPU generations, which yielded
consistent results. Hence, we only show results for the 3080 Ti.

We use the evaluated SGC codes to count all edge-induced sub-
graphs that are isomorphic to the search pattern in a given input
graph. All codes that we compare to only count instances of these
subgraphs, and do not list their embeddings. Given a core of ver-
tices, fringe vertices are added in additional user-defined subgraphs
for tests with incrementally larger subgraphs. We start with a single
core vertex, and add fringes until there are 6 fringe-vertices, and
a total of 7 in the subgraph. We then move to a 2-vertex core that
is connected, and add fringes to all anchor sets incrementally, and
observe how runtimes change as we count larger subgraphs. We
do this for all connected cores with up to 3 vertices. We are limited
in the number of vertices in a subgraph for these tests, the other
codes place a hard limit to 7 vertices. We use the 10 graphs shown
in Table 1 as inputs. We selected them because they represent a
range of types, sizes, average degrees, and maximum degrees.

6 Results
In this section, we evaluate the performance of Fringe-SGC and
compare it to that of the leading GPU codes from the literature.
We show throughputs (i.e., the number of edges in the input graph
divided by the measured running time) to normalize the results
and because throughput is a higher-is-better metric, which is more
intuitive. Some throughputs are not shown, as these codes did not
finish counting a given subgraph in the allotted time of half an hour
per graph input.

6.1 Performance Comparison
First, we compare our Fringe-SGC code to STMatch, T-DFS, and
GraphSet, the fastest GPU codes from the literature. Figure 8 shows
the results for patterns with a 1-vertex core, i.e., for 𝑘-stars. The x-
axis lists the subgraphs and the y-axis the geometric-mean through-
puts across our 10 graph inputs. Note that the y-axis uses a loga-
rithmic scale to account for the large differences in throughput. We
do not show results for codes where more than one input times out.
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Figure 8: Throughputs for Patterns with a Vertex Core

Our approach consistently outperforms the other three GPU
codes on the 𝑘-stars. Moreover, the throughput of Fringe-SGC is ap-
proximately constant whereas the throughputs of GraphSet, T-DFS
and STMatch decrease as 𝑘 (the number of spokes in the stars) in-
creases. Hence, the performance advantage of Fringe-SGC increases
with increasing number of fringes. The resulting geometric-mean
speedups over GraphSet range from 1.64× with 2-stars to 18.76×
with 6-stars. The speedup over STMatch is 164.99×with 2-stars and
1064× on 4-stars. The speedup over T-DFS ranges from 5.99× to
516.23×. Looking at the individual inputs (results not shown), we
find that the performance advantage of Fringe-SGC increases for
larger graphs. On our largest input, it is over an order of magnitude
faster than any other tested code.

Figure 9 shows throughputs for patterns with a 2-vertex core.
We systematically add fringe vertices until the 7-vertex limit of
the other codes is reached. The x-axis lists the subgraphs, and the
y-axis displays the throughputs in the millions of edges per second.

The trends are the same as for the 𝑘-stars. Fringe-SGC delivers
a near-constant throughput when we add more fringe vertices to
the 2-vertex core, whereas the other codes’ performance drops.
Note that we could add more fringe vertices without significantly
affecting Fringe-SGC’s throughput, but the other codes do not
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Figure 9: Throughputs for Patterns with an Edge Core

support larger patterns. The geometric-mean speedups range from
1.07× to 4.7× compared to Graphset, 41.72× to 465.25× compared
to STMatch, and 1.96× to 664× compared to T-DFS.

Figure 10 shows throughputs for patterns with a triangle core.
The geometric-mean speedups compared to GraphSet range from
0.6× (a slowdown) for the 4-clique, which only has a single fringe,
to a speedup of 2.89× for the 3-tailed 4-clique, which has 4 fringe
vertices. The speedups compared to STMatch range from 10.37× to
158.39×. Compared to T-DFS, the speedups range from 2.2× to 49×.
It is important to note that, although the speedups are lower than
with a single-core vertex, we are now testing a larger core with
fewer fringe vertices due to the other codes’ limit of 7 vertices per
subgraph. We would expect to see higher speedups if we were able
to run the third-party codes with more fringe vertices.
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Figure 10: Throughputs for Patterns with a Triangle Core

Figure 11 shows throughputs for patterns with a wedge core. We
see similar results to the triangle core, inwhich speedups range from
0.6× to 4.35× compared to GraphSet, 88.77× to 534.95× compared
to STMatch, and 40.64× to 155.97× compared to T-DFS. Again, the
performance benefit increases with increasing fringe counts.

In summary, the results in this subsection show that Fringe-SGC
is often faster than GraphSet and always faster than STMatch and T-
DFS. Importantly, the performance advantage of Fringe-SGC tends
to increase with increasing numbers of fringes. When more fringe
vertices are added to a pattern, GraphSet’s, T-DFS’s, and STMatch’s
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Figure 11: Throughputs for Patterns with a Wedge Core

throughputs tend to decrease whereas Fringe-SGC’s throughput
remains roughly stable as expected.

6.2 Systematic Addition of Fringes
The key strength of Fringe-SGC is that its performance degrades
exponentially less when adding more fringes of the same type com-
pared to any other state-of-the-art SGC approach. Unfortunately,
this benefit mostly manifests on patterns that are too large for
other SGC frameworks. Hence, we can only show throughputs for
Fringe-SGC in this subsection.

To study this behavior, we systematically add more and more
fringes of a specific type to a triangle core. We start with the sub-
graph from Figure 4, a pattern that is already too large to be counted
by any other state-of-the-art SGC code, and progressively add dif-
ferent types of fringe vertices. Figure 12 shows the throughputs
when adding more tails, Figure 13 when adding more wedge fringes,
and Figure 14 when adding more tri-fringes.
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Figure 12: Throughput when Adding Tail Fringes

In all three cases, the throughput only changes marginally when
adding up to 10 additional vertices to the pattern, demonstrating
that Fringe-SGC’s performance remains largely stable when in-
cluding more fringes. This is in contrast to other SGC frameworks,
where the performance drops so much that they do not support
patterns of this size. In fact, these codes do not even support the
starting subgraph from Figure 4 because it already has 16 vertices.
Fringe-SGC is easily able to support 10 more vertices without an
exponential change in runtime. Nevertheless, its performance does
drop a little when adding more fringes. This is because, for exam-
ple, adding a fringe vertex to the pattern from Figure 4 requires
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Figure 14: Throughput when Adding Tri-Fringes

an additional iteration when performing the summation over the
corresponding anchor sets. In the case of adding tails, the 10 extra
fringes lower the performance by under a factor of 3.5, which is
less than the drop due to adding just 4 fringe vertices with any of
the other studied SGC codes (see Section 6.1). Adding 10 wedge
fringes results in an even smaller drop, and adding 10 tri-fringes
yields a speedup of 1.56× as there are fewer core matches.

6.3 Per-Input Results
In this subsection, we present detailed results for kron_g500-logn20
in Figure 15. We selected this input because it has the highest aver-
age degree, the widest degree distribution, and one of the largest
sizes of all evaluated inputs. These features help expose weaknesses
and highlight optimizations. The figure combines results for pat-
terns containing vertex, edge, and triangle cores.

Across all codes, the throughput drops whenever we add a vertex
to a search pattern. For GraphSet, STMatch, and TDFS, this happens
regardless of whether the added vertex is a core or fringe vertex.
However, for Fringe-SGC, a significant throughput drop only occurs
when adding a core vertex, showcasing the benefit of our approach.

On this input, Fringe-SGC is at least 1.06×, 7.78×, and 1.99×
faster and at most 240.1×, 2334.0×, and 961.1× faster than Graph-
Set, STMatch, and TDFS, respectively. The geometric-mean speedup
over these codes is 15.66×, 134.8×, and 43.82×. Note that there is
not a single pattern where Fringe-SGC is slower. This is in con-
trast to our inputs with smaller average and maximum degrees,
especially on patterns with few fringe vertices, where other codes
are sometimes faster. On such inputs, there is often not enough
parallelism for an entire warp due to the lower degrees. Moreover,
any advantage of using Fringe-SGC’s summations is lost on vertices
with insufficient degree to match a vertex in the search pattern’s
core. On higher-degree inputs like kron_g500-logn20, hub vertices

introduce combinatorial explosions for fringe vertices, making it
the ideal topology to demonstrate the strengths of Fringe-SGC.

7 Conclusion
Subgraph Counting (SGC) is an important graph analysis that has
broad applications in various domains. Most existing SGC algo-
rithms incrementally search for the pattern, which is memory inten-
sive and has exponential work complexity. This problem is particu-
larly pronounced for patterns with fringes. As a consequence, most
existing frameworks only support standard patterns like triangles,
cliques, and small motifs. In this paper, we introduce Fringe-SGC,
a framework for efficiently counting patterns with fringes. Our
approach accomplishes this by conventionally searching only for
the core of the pattern and employing a formula to compute the
occurrences that the remaining pattern vertices add, which we call
fringes. We evaluated Fringe-SGC both on standard patterns as well
as on several special patterns with fringes. Note that all patterns
with at least 2 vertices have at least one fringe vertex. The exper-
imental results show that our approach outperforms the leading
GPU implementations on various kinds of patterns. When counting
patterns with multiple fringes, Fringe-SGC outperforms the three
fastest GPU implementations by an average of 21.91×. We can-
not evaluate the speedup on more complex patterns with fringes
because none of the other frameworks support them. However,
Fringe-SGC is not only able to process them but does so at near
constant throughput, regardless of how many fringes are present.
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