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ABSTRACT
Over the last nearly 20 years, lossy compression has become an

essential aspect of HPC applications’ data pipelines, allowing them

to overcome limitations in storage capacity and bandwidth and, in

some cases, increase computational throughput and capacity. How-

ever, with the adoption of lossy compression comes the requirement

to assess and control the impact lossy compression has on scientific

outcomes. In this work, we take a major step forward in describing

the state of practice and by characterizing workloads. We examine

applications’ needs and compressors’ capabilities across 9 different

supercomputing application domains. We present 24 takeaways

that provide best practices for applications, operational impacts

for facilities achieving compressed data, and gaps in application

needs not addressed by production compressors that point towards

opportunities for future compression research.

CCS CONCEPTS
• Software and its engineering → Requirements analysis; •
Theory of computation→ Data compression; • Computing
methodologies→Massively parallel and high-performance
simulations; • General and reference→ Surveys and overviews.
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1 INTRODUCTION
Scientific simulations, experiments, and observations are producing

increasing volumes of data due to the change of supercomputer

generation (from petascale to exascale) and the update of large

scientific instruments (accelerators, light sources, and telescopes).

In many situations, the data produced is too large to be commu-

nicated on a network, stored in storage systems, and analyzed

with user tools. The scientific community’s response to this chal-

lenge is data reduction. Reduction can take many forms, such as

compression, triggering, sampling/filtering, quantization, and di-

mensionality reduction. This report focuses on a specific technique:

lossy compression. Compared with other data reduction techniques,

lossy compression keeps all data points. It leverages the correlations

between data points and the reduction of data point accuracy to

reduce the scientific data. To preserve the same opportunities for

scientific discoveries from lossy compressed data as from noncom-

pressed data, compression techniques need to respect user quality

constraints that generally concern the preservation of quantities of

interest (QoIs) to a certain accuracy. In addition, to be useful, a lossy

compression technique needs to satisfy user requirements in terms

of compression ratio (by what factor the data has been reduced

compared with the original version) and compression speed (how

fast and at what throughput the scientific data can be compressed).

While many papers have been published on lossy compression

techniques and reference datasets have been shared by the com-

munity [72], there is a lack of detailed specifications of application

needs that can guide research and development of lossy compres-

sion techniques. This paper fills this gap by reporting on the require-

ments and constraints of nine scientific applications covering a large

spectrum of domains (climate, combustion, cosmology, fusion, light

sources, molecular dynamics, quantum circuit simulation, seismol-

ogy, and system logs). For every application, the report details the

motivations for compression, the current uses of compression, the

compression requirements, the analysis and quality requirements,

the performance requirements, the constraints on sustainability,

integration, and installation, the special needs, and the expected

changes to compression needs. Table 1 summarizes these needs for

the nine applications.

Our contributions are: First, we present the most comprehensive

and detailed study of 9 application domains’ needs for compression

ever conducted. Second, we significantly extend the state of the art
for benchmarking in compression efforts by holistically describing

a series of applications with requirements for specific compres-

sion ratio, throughput, and quality, along with datasets for each

application area, instead of just available datasets lacking these

requirements with generic quality metrics unrelated to application

needs. This significantly improves the quality of benchmarking

results for application scientists by making results more accurately

reflect their use cases. Third, we consider practical barriers to

adoption not extensively studied before for compression, including

sustainability, needed integrations (e.g., language and library sup-

port), application-specific gaps in compression functionality that

significantly affect performance or usability, and expected changes

to these requirements. Finally, we identify 24 takeaways for Appli-
cation Scientists, Compression Researchers, and Facilities to guide

the adoption and future research of lossy compression.

The remainder of the paper is laid out as follows: In Section 2, we

provide some basic terminology for compression. In Section 3, we

describe the requirements gathering process used to perform the

gap analysis. In Section 4, we survey the data collected for the appli-

cation requirements and motivate their needs for compression and

describe their quantities of interest. In Section 5, we describe the

compression technologies investigated. Next, we present a gap anal-

ysis for the state of practice for error-bounded lossy compressors for

Application Scientists in Section 6, for Compression Researchers

in Section 7, and for Facilities in Section 8. We then present re-

lated studies and efforts in Section 9 and conclude with high-level

takeaways from our efforts in Section 10.

2 BACKGROUND
Here we define a few key terms used in the remainder of the report.

Compression refers to a process that reduces the footprint of data

(i.e., how much space it occupies in memory or on disk). Data that

is compressed can then be decompressed to restore the data to

https://doi.org/10.1145/3712285.3759856
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its original footprint. If there is no difference between the original

input/dataset, the operation is said to be lossless; otherwise, it
is lossy. Lossless compressors tend not to achieve high enough

compression ratios for scientific floating-point datasets to address

the compression needs of applications, causing scientists to increas-

ingly turn to lossy compression. However, to adopt compression,

they need to ensure that the results of their scientific analyses are

preserved. The most frequent way that modern lossy compressors

accomplish this is with an error bound, a user-defined setting that
controls or bounds the amount of allowed difference between the

input data and the decompressed data. When we evaluate compres-

sors in this report, we consider three key aspects. Compression
Ratio refers to the size of the data before compression divided by

the size of the data after compression. Compression Throughput
refers to the rate at which a compressor can process an input dataset.

Quantity of Interest (QoI) refers to the value or distribution of

values that an application scientist wishes to preserve, such as a

descriptive statistic, distribution, conservation law, or a visualiza-

tion. It could refer to the raw data (e.g., maximum decompression

error), but more often, QoIs are derived from the differences in or

compared between the raw and decompressed data.

3 METHODOLOGY
The data for this report was collected over three days during an in-

person meeting in February 2025. 38 Experts from 9 application do-

mains and 8 compressor technologies presented their applications

and the constraints and requirements regarding lossy compression.

The compression experts presented their technologies in detail. The

general presentation of the applications and compression technolo-

gies was followed by a series of one-to-one interviews between the

application and compression experts to refine the specification of

the requirements and constraints and to identify needs that were

not expressed during the application presentation.

During these meetings, application and compression develop-

ers explored a consistent set of questions relating to the motiva-

tion for compression, current uses of compression in the field, key

quantities of interest to preserve, key performance requirements

in terms of compression ratio and bandwidth, data sustainability

needs, key integrations needed for adoption (e.g., programming

language bindings and I/O library plugins), specialized needs for

particular applications, and expected changes in these needs. Like-

wise, each compressor developer team was surveyed to determine

key operating principles, error control features, hardware support,

unique features, and the impact of each compressor on applications.

This report is a condensed version highlighting takeaways de-

rived from these interactions in collaboration with the application

and compression technology experts. The report reflects the state

of the art for application needs in March 2024 and the lossy com-

pression technologies as of April 14, 2025. A more detailed version

(38 pages) of this report is available on ArXiv.
1

4 APPLICATION REQUIREMENTS
In this section, we provide a high-level motivation for each applica-

tion, its need for compression, and its performance requirements,

1
The latest version of the full report can be found at https://arxiv.org/abs/2503.20031

including bandwidth, compression ratio, and quantities of inter-

est as specified by the application scientist during the interviews.

A summary of the properties can be found in Table 1. A visual

summary of each quantity of interest can be found in Figure 1.

For justification and explanation of these requirements as well as

additional application-specific detail, please see our full report.

Climate Understanding the Earth’s climate system has long

been of interest, particularly as a requirement for better predicting

future climate states. Climate simulation models have become in-

creasingly complex over the decades as computing resources have

grown in power and sophistication [24, 67]. While these advances

are desirable for more accurate and realistic simulations, the associ-

ated data storage requirements are often prohibitively large, since

supercomputing storage capacities have not increased as rapidly

as computational power and financial constraints limit the storage

capacity available at many institutions [31]. Computational and

storage costs were so high for the initial DYAMOND atmosphere-

only model experiments that simulations were limited to 40 days,

and 3D variable output was scant—in some cases outputted 12×
less often compared with 2D data. The DYAMOND contribution

from SCREAM (Simple Cloud-Resolving E3SM Model [58]), run at

3.25 km resolution, was nearly 4.5 TB of data per simulated day [9].

The reality is that climate scientists are often unable to store all

of the simulation output that they would like, and this limitation

directly impacts climate science research investigations. A key qual-

ity metric for Climate is dSSIM [59] (see Figure 1a). For climate

data, a compression ratio that is 2-3× higher than what lossless

compression can achieve is desired with a bandwidth exceeding

that of CPU-based lossless compressors. A distinguishing aspects

of climate applications are the number of tools used to interact with

climate data and the indefinite longevity of the data.

Combustion While turbulent fluid motion is a common thread

through computational fluid dynamics (CFD) applications, the mul-

tiphysics coupled with fluid motion spans many different subdisci-

plines, including chemistry in the gas phase and at surface inter-

faces, plasma physics critical to energy-efficient chemical manu-

facturing and fusion energy, aerosol growth and coagulation, and

spray atomization and evaporation. CFD at the exascale on DOE

leadership-class supercomputers runs on thousands of computa-

tional nodes powered by GPUs and generates massive volumes of

primary data, requiring large amounts of storage and analysis of

quantities of interest (QoIs). It is infeasible to store data at suffi-

cient frequencies to capture highly intermittent phenomena that

occur in these transient simulations. Key qualities of interest in

combustion data are topological features representing superadia-

batic regions (see Figure 1b), which are challenging to preserve. A

compression ratio of 2-5× is important but, notably, the runtime of

the compressor is not critical.

Cosmology The study of the universe on its largest scales and

across its entire history explores some of the most exciting ques-

tions in fundamental physics: the nature of dark energy and dark

matter, the origin of primordial fluctuations, the origin and evo-

lution of galaxies, and the intergalactic medium. Interpreting the

ongoing and future sky surveys involves solving an inverse problem:

deducing underlying physics from observational data. Here, the nu-

merical simulations play an essential role as a forward model, since

they are the only accurate way to model the nonlinear evolution

https://arxiv.org/abs/2503.20031
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Table 1: Summary of Application Requirements (an 𝑙 means compared to the best lossless compressor; an → indicates an
expected change in requirements, a ★ or ★★ represents mature and very mature domains)

Application Needs Device Target CR Target
Band-
width

Longevity Mechanism Installation Special
Needs

Format

Climate★★ storage CPU→GPU 2 − 3 × 𝑙 > 1 × 𝑙 indefinite Python,

Julia,

R, HDF5,

pnetcdf

site mod-

ules,

pip/conda,

spack

uncorrelated

dims

Dense→
unstruc-

tured grid

Combustion storage GPU 2 × −5× not urgent 5-10 years C++,

Python,

HDF5

manual,

pip

high accu-

racy for

feature

preserva-

tion

Dense

Cosmology★ storage

+through-

put

GPU > 10× > 1 × 𝑙 to be deter-

mined

HDF5,

C++,

Python

manual hardware

portable

Dense

Fusion storage

+through-

put

GPU > 5× not urgent

→ > 1 × 𝑙

ephemeral HDF5→
Python

manual,

site mod-

ules, pip

streaming,

provence

2D dense

Light

Sources★

throughput

+storage

CPU→
GPU,

FPGA

> 10× real-time

1 TB/s

10 Years Python,

C++

conda→
spack

uncorrelated

dims, hard-

ware

portable

Dense

Seismology throughput

+storage

GPU, CPU > 20× > 1 × 𝑙 ephemeral Fortran90,

CUDA,

Python

manual asynchronous

batching

Dense

Molecular

Dynamics★

storage CPU > 3 > 1× 10 Years C, C++,

HDF5

spack,

manual

random

block

access

Particles

System

Logs

throughput CPU > 10× > 10 × 𝑙 ephemeral Python pip, conda,

spack

queries (à

la SQL)

2D tables

Quantum

Circuit

memory

capacity

GPU, CPU 2 × −10× real-time

25 GB/s

ephemeral Python pip high di-

mensional

20-30D

dense

of the universe. Storage capacity requirements drive cosmology’s

needs for compression. On current exascale machines like OLCF’s

Frontier, a 16,384
3
-element simulation is doable based on reported

Nyx [5, 42, 51] code efficiency and scalability. However, storage

requirements are holding back the Nyx team from facilitating such

a simulation, as a single double-precision array of 16,384
3
elements

is 32 TB in size. One checkpoint requires a minimum of 14 arrays,

and a science case requires at least 20 time snapshots saved, result-

ing in a total storage requirement of almost 10 PB. For cosmology,

a key quantity of interest is the Halo features in the data (see Fig-

ure 1c). A compression ratio greater than 10× at speeds faster than

existing lossless compressors is desired. Notably, cosmology re-

quires hardware portable decompression (e.g, compress on GPUs

and decompress on CPUs).

FusionThis kind of energy holds the promise of a clean, baseload

generation source of electricity in a decarbonized future. Magnetic

confinement is one approach for achieving viable fusion energy, and

tokamaks are the predominant experimental direction for magnetic

confinement fusion today. The ITER tokamak, currently under con-

struction in France, aims to demonstrate the technical feasibility of

a burning plasma with a tenfold (𝑄 ≥ 10) power gain. Experimental

tokamaks, although smaller than ITER, generate vast quantities of

data through their extensive instrumentation. These datasets are

multimodal and can accumulate over years of research campaigns,

making data management a significant challenge. One major data

source is electron cyclotron emission imaging (ECEi), used in toka-

maks such as DIII-D in San Diego, CA. ECEi captures snapshots

of electron temperature fluctuations at a high temporal frequency

of 1 MHz and a spatial resolution of 20 × 8 grid points. The sheer

volume of data generated by ECEi, especially considering that mea-

surements are continuous and span extended periods, results in

large datasets that can be difficult to store and manage without

compression. For fusion, the quantity of interest to preserve is the

spikes/peaks in disturbances (see Figure 1d). A compression ratio
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(a) Climate: LDCPY [47] output for the av-
erage daily surface temperature (TS) field
of CESM [27] including DSSIM [59] on 3
levels of compression

(b) Combustion: Small, fast-moving fea-
tures representing superadiabatic regions
with high combustion rates (orange) in in-
stantaneous volume rendering of hydroxyl
radical from simulation

(c) Cosmology: Location, size, and proper-
ties of Halos identified by the Halo Finder
from simulation

(d) Fusion: Presence, magnitude, and tim-
ing of a disruptions during an ECEi data
trace from a fusion experiment

(e) Light sources: Reconstruction of
SAX/WAX light source reconstruction data

(f) Molecular dynamics: Water-to-water hy-
drogen bond distance distribution. A sen-
sitive measure that is disrupted for posi-
tional precision worse than 0.001 nm.

(g) Seismology: Wavefield snapshots used
for kernel calculation.

(h) System logs: Distributions and trends
in resource usage in a cosmology workflow
executed with Parsl [7]

𝐹 (𝑜𝑟, 𝑑𝑒) = |⟨𝜓𝑜𝑟 |𝜓𝑑𝑒⟩|

(i) Quantum circut: Preserving the fidelity
of the circuit

Figure 1: Visual Summary of Example Quantities of Interest for each Application Class

greater than 5× is desired, and while runtimes are currently not

critical, that is expected to change and will need to be faster than

lossless compressors. Fusion applications need streaming support

and strong provenance support to track changes to data.

Light Sources Devices like the Linac Coherent Light Source

(LCLS) operated at the SLAC National Accelerator Laboratory

(SLAC) and the Advanced Photon Source (APS) operated at Ar-

gonne National Laboratory allow scientists to improve their un-

derstanding of the materials that make up our universe, as well

as improving our understanding and ability to construct advanced

electronics, pharmaceuticals, and nanoscale technologies and to

study the makeup of living things. Although the two facilities have

significant differences, they both produce enormous volumes of

data and are expected to produce more as upgrades are completed,

which will result in dramatically increased X-ray pulse rates. For

LCLS-II, the repetition rate will increase to 1 MHz compared to

120 Hz for LCLS-I. Over the next few years, the LCLS-II project at

SLAC and APS-U at Argonne will deploy new area detectors for

these high-rate ultrafast X-ray shots. At SLAC, the devices with the

highest data volume are 16 megapixel area detectors running at 35

kHz, producing ∼1 TB/s in just one experimental hutch. Facilities

like the APS have over 70 such hutches. While each beamline differs

(in some cases dramatically), compression ratios greater than 10

are desired at real-time bandwidths of up to 1TB/s. An example

quantity of interest from a small-angle/wide-angle scattering at

LCLS is the reconstruction (see Figure 1e).

Molecular Dynamics MD simulations examine the movement

of particles within physical space to uncover the system’s dynamic

progression based on particle interactions. These simulations have

become a crucial research tool across numerous scientific fields,
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including physics, biology, and materials science. In biophysics and

structural biology, MD simulations are widely used to investigate

the behavior of macromolecules such as proteins and nucleic acids,

facilitating the interpretation of biophysical experimental data and

the modeling of molecular interactions [1, 3]. In materials science,

MD simulations enable researchers to model and predict the struc-

tural, thermal, and mechanical properties of materials at the atomic

level. This capability helps in understanding phenomena such as

material deformation, fracture mechanics, and phase transitions,

providing insights that are often inaccessible through direct ex-

perimental observation [61]. MD simulations have applications in

numerous domains, where the generated data typically consists of

particle coordinates as a function of time. The size of uncompressed

binary coordinate trajectory files depends on the system size and

simulation settings but is ordinarily tens to hundreds of gigabytes,

emphasizing the need for efficient lossy compression algorithms—

system sizes of biomolecular MD simulations commonly range from

100,000 atoms to a few million atoms, while the simulation time

scales are often tens of nanoseconds to tens of microseconds, with

trajectory frame writing intervals often in the range of 1 frame per

10 picoseconds to 1 frame per nanosecond [43, 54]. MD simulations

need to preserve bonds and sequences as well as the radial distribu-

tion function (see Figure 1f). They need a compression ratio greater

than 3 while not slowing down the application. MD simulations

are notable in that they contain particle data.

Seismology This is a technology that creates high-fidelity im-

ages of the Earth’s subsurface by analyzing the propagation and

reflection of seismic waves. In energy industries, companies such as

Saudi Aramco utilize seismic imaging to optimize resource (e.g., oil)

extraction while minimizing environmental impact [26, 44]. Seis-

mic imaging is also essential in various other domains [16, 19, 35],

such as assessing the stability of tunnels and bridges [29], and

even in planetary sciences [70], where it helps study the internal

structures of celestial bodies such as the moon and Mars. Given

its wide-ranging applications, improving the efficiency and accu-

racy of seismic imaging is critical for both scientific advancements

and industrial applications. However, large-scale FWI workflows

generate massive data volumes, since wavefield snapshots must

be stored and retrieved during adjoint computations. Because of

memory constraints, these snapshots are written to disk, creating

significant I/O bottlenecks when reading and writing volumetric

data, especially when processing multiple seismic events concur-

rently. Seismology workflows need high compression ratios (>20×)
while achieving performance exceeding that of lossless compres-

sion. The quantity to preserve is the visualization of the stacking

image (see Figure 1g). Seismology is notable in that some important

applications still depend on Fortran 90.

System Logs Large-scale parallel and distributed applications

generate enormous volumes of logging and monitoring data that

must be aggregated and interpreted to understand the progress

and performance of applications. One common example is the use

of scientific workflows to orchestrate various scientific applica-

tions. Parsl [7], Ray [46], TaskVine [52], and Globus Compute [13]

are examples of systems that coordinate the execution of many

different tasks on parallel and distributed infrastructure. One chal-

lenge with task-based parallel and distributed applications, such

as workflows and function-as-a-service platforms, is the need to

monitor the execution performance of various tasks on parallel

and distributed systems. Monitoring information is used both in-

teractively in real time and after execution to investigate how an

application performed, detect anomalies, and guide scheduling de-

cisions. Providing rich monitoring information can represent a

significant amount of data, as monitoring information is captured

at a subsecond granularity from each worker in the system. Work-

flows running on a supercomputer may therefore have hundreds

of thousands of workers concurrently capturing resource use. This

presents a significant overhead for performance monitoring. For

example, Parsl workflows have incurred up to an order of mag-

nitude throughout degradation when monitoring is enabled [30].

Further, loss of monitoring information or delayed transmission

can affect scheduling decisions, leading to reduced workflow per-

formance. System logs are a new application for compression. They

are expected to need a compression ratio of at least 10 to adopt

compression while maintaining a bandwidth of the workflow man-

ager exceeding 10× what is achievable with lossless compression.

What is notable about system logs is that compression needs to

preserve the values of queries that may be specified at runtime.

Quantum Circuit This kind of simulation is essential for ad-

vancing quantum computing, a rapidly growing field at the inter-

section of physics and computer science. Quantum physics enables

the design of devices that have the potential to solve problems

infeasible for classical computers. To develop and verify these tech-

nologies, quantum circuit simulators play a crucial role by allowing

researchers to test quantum devices and evaluate quantum algo-

rithms without requiring physical quantum hardware. These simu-

lations help researchers optimize existing algorithms and explore

new approaches. These simulations typically have one of two goals:

finding a value of some observable and finding the probability of

some set of states. The fundamental building block of a quantum

computer is called a qubit. A quantum system of 𝑁 qubits requires

2
𝑁

numbers to fully specify its state. The simulation of a quantum

system then involves applying a sequence of operations or “gates”

to the state. State vector simulators face several significant bottle-

necks that limit their scalability and efficiency in simulating large

quantum circuits. The most prominent bottleneck is the exponen-

tial growth of memory needed to store the quantum state vector.

This scaling quickly exhausts available resources as the number

of qubits increases, typically limiting state vector simulations to

about 45 qubits on existing supercomputers. Quantum circuits use

compression to increase memory capacity. They need real-time

compression at 25 GB/s for current simulations at a compression

ratio of between 2 to 10×. While doing so, they need to preserve

conservation and distribution laws such as fidelity (see Figure 1i).

5 COMPRESSION CAPABILITIES PRIMER FOR
APPLICATION SCIENTISTS

In this section, we provide a brief overview of the compression

technologies discussed during the workshop for the benefit of ap-

plication scientists and facilities staff guiding users on adopting

compression. Much more detail regarding compression features,

performance, history, and impact is provided in our full report.

SZ (https://szcompressor.org) is a prediction-based error-bounded

lossy compressor. It is not only an off-the-shelf general-purpose

https://szcompressor.org
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lossy compressor but also a composable framework allowing users

to customize appropriate/effective compressors for specific applica-

tions or use cases. This framework allows users to create diverse

compressors by easily implementing/customizing specific meth-

ods in five different stages: data preprocessing (e.g., transforming

raw data to log domain for pointwise relative-error-bounded com-

pression [36]), prediction (e.g., Lorenzo, linear regression [37] and

spline interpolation [71]), quantizer (such as linear-scale quanti-

zation [56]), encoder (such as Huffman encoding), and lossless

compressor (such as Zstd [15]). It has many variants specialized for

particular applications and hardware devices.

ZFP (https://zfp.io) is primarily an in-memory compressed repre-

sentation for multidimensional floating-point arrays that supports

high-speed read and write random access at very fine granularity.

zfp offers an alternative number format for multidimensional ar-

rays that exhibit “smoothness” or autocorrelation, as is the case

with most fields representing physical quantities. Compared with

IEEE floating point and many recent variants, such as BFloat16,

TensorFloats, Posits, and Blaz, zfp provides much higher accuracy

per bit stored [40]. Error bounds can be specified, not just for a sin-

gle application of zfp compression [18], but also when zfp is used

in iterative methods [22], where compression errors may propagate

and cascade.

MGARD (https://github.com/CODARcode/MGARD) is a lossy

compression framework built on finite-element analysis andwavelet

theories. A primary way that MGARD distinguishes itself is its

robust mathematical notions of error bounds for quantities of in-

terest, compared with other compressors, and support for struc-

tured non-Cartesian grids not offered by most other compressors.

Another novel feature MGARD offers is data refactoring and pro-

gressive retrieval [38]. This mode archives data nearly losslessly

using multilevel decomposition and bitplane encoding and allows

for on-demand data retrieval with error control in an incremental

fashion. This has been further incorporated with erasure encoding

to reduce storage and network overhead while maintaining data

availability [66].

LC (https://github.com/burtscher/LC-framework/) is a frame-

work for automatically creating customized high-speed lossless and

guaranteed-error-bounded lossy data compression algorithms for

individual files or groups of files [6, 20, 21, 50]. It supports both

exhaustive search for the best algorithm in the search space and

a genetic-algorithm-based search for cases where the exhaustive

search would take too long. LC can search for the best algorithm

based solely on compression ratio or based on both compression

ratio and throughput. In the latter case, it outputs the Pareto front,

that is, a set of algorithms that represent different compression-

ratio versus speed tradeoffs. LC generates bit-for-bit compatible

parallelized CPU and GPU compressors.

SPERR (github.com/NCAR/SPERR) is a wavelet-based compres-

sor tailored for 2D and 3D scientific data compression [33]. Com-

pared with other established compressors, SPERR excels in com-

pression efficiency: SPERR most likely uses the least amount of

storage to achieve a specific compression quality, often by a com-

fortable margin [33]. SPERR also features two special decoding

modes: flexible-rate and multi-resolution, which allow decoding us-

ing a prefix of the compressed bitstream and producing different

resolutions, respectively.

DCTZ (https://github.com/swson/DCTZ) is a transform-based

lossy compressor inspired by the discrete cosine transform (DCT),

specifically DCT-II, and is designed to work with floating-point

(single- or double-precision) values in scientific and Internet-of-

Things datasets. DCTZ is a newer compressor introduced in 2019 [14,

45, 68, 69]. What distinguishes DCTZ from other compressors is

its specific near-orthogonal transforms to decorrelate data and its

quantization design.

TEZip (https://tezip.readthedocs.io/) or Time Evolutionary Zip

is developed at RIKEN R-CCS and designed to compress time-

evolutionary data by using deep learning for prediction. Inferring

subsequent frames progressively from previous inference results

could lead to gradual degradation in image accuracy. TEZip is

uniquely optimized for time-series-based compression and utilizes

the notion of key frames often used in video compression formats.

To mitigate and maintain a level of accuracy, it is essential to period-

ically incorporate inference based on the original image data. This

can be achieved through two approaches: Static Window-based

Prediction (SWP) and Dynamic Window-based Prediction (DWP).

TEZip uses both approaches that stabilize the inference quality by

adjusting the prediction window to ensure more reliable continuity

in the image sequence.

LibPressio (https://github.com/robertu94/libpressio) is not a

compressor itself, but it provides a common, lightweight inter-

face to many compressors, including all the compressors listed

above. LibPressio provides several features critical to the adoption

of compressors in scientific codes. (1) Consistent API : This allows
compressors and applications to evolve independently, even as com-

pressors change dramatically. (2) Common Integration Mechanisms:
Each compressor does not need to develop language bindings or I/O

library adapters. This enables applications to more easily adopt com-

pression. Compressors benefit from greatly reduced development

and maintenance costs. (3) Generic Implementations of Compressor
Features: Generic implementations mean that these features do not

need to be implemented separately for every compression library.

For example (i) embedding of provenance in the compressed stream,

(ii) automatic configuration of compressors [63], (iii) automatic CPU

parallelization of thread-safe compression libraries, (iv) prediction

of compression performance, (v) techniques to convert between

bound types, and (vi) standard configuration-file formats.

6 GAP ANALYSIS FOR APPLICATION
SCIENTISTS: RECOMMENDATIONS AND
GAPS FOR STUDIED APPLICATIONS AND
COMPRESSORS

Table 2 summarizes the gaps in device support, language and in-

tegration support, special features demanded by the applications,

and performance (including compressor Throughput, Compression

Ratio, and Quality of Interest) as well as recommendations for each

application class. To earn aV, the compressor needs to meet all of

the stated requirements as demonstrated by a paper documenting

the capability. To earn a_, the compressor needs to implement at

least 50% of the requirements (e.g., quality and size but not speed).

If a compressor meets less than 50% of the requirements, it earns a

&. If the compressor still needs more evaluation to assign a score, it

https://zfp.io
https://github.com/CODARcode/MGARD
https://github.com/burtscher/LC-framework/
github.com/NCAR/SPERR
https://github.com/swson/DCTZ
https://tezip.readthedocs.io/
https://github.com/robertu94/libpressio
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Molecular Climate Light Cosmology Siesmology Combustion Fusion Quantum System

Dynamics Sources Circuts Logs

SZ VVVV V	VV VV_V VV&V V__V VVVV⋆ VV	# VV	V VV&#

ZFP VVV_ V	VV VVV& VV_V V__V VVVV⋆ VV	V VV	# VV&#

MGARD V	&& V	&_ V	&& V	&& V_&& V	VV⋆ V	__ V		# V	&&

LC V	&& V	&& V	_V V	V_ V_V& V	V_ V	V# V		# V	&#

SPERR VV&# _	&_ _	&& &	&& __&& &	&_ &		_ _		& _	&&

DCTZ V	&# _	&# _	&& _	&# _&&# _	&# _		# _		& _	&#

TEZIP V	&& V	&& V	&& V	&& V&&& V	&& V		& V		& V	&&

Recommendation SZ(MSZ) SZ(CLIZ),ZFP SZ(ROIBIN-SZ),LC SZ(cuSZ),ZFP,LC SZ(cuSZp),ZFP SZ(cuSZ,MSZ),ZFP,MGARD MGARD→# SZ(cuSZx) #
LibPressio LibPressio LibPressio LibPressio LibPressio LibPressio LibPressio

Table 2: Compression Feature Analysis. Key: devices, languages and mechanisms, special features, performance (CR, QoI, BW),
⋆native QoI support ,V acceptable support,	 acceptable using libpressio,_ ≥50% support,& <50% support,# needs
evaluation for support. Acceptable performance indicates that domain scientists have evaluated and accepted this compressor’s
speed, size, and quality, but this is empirical and may not generalize. Recommendations are based on the highest scores in each
category.

is marked with a#– most frequently this happens for performance

when there is no automated way to check the preservation of quan-

tities of interest. The few compressors that go beyondV support

to natively support a user-definable bound for the quantities of

interest are marked with a
⋆
. More work is needed to support

this for more applications; see Section 7.2 for additional details on

needed work for native QoI bounds. In case of SZ, a specific SZ vari-

ant is recommended per application. LibPressio is recommended

whenever one or more compressors in the recommendations list

need LibPressio to achieve their score. One application, System

Logs, is a very new use case for lossy compression and does not

yet have extensive evaluation experience is rated as unknown – a

few compressors can be ruled out based on their throughput and

compression ratio characteristics. A full explanation of the scores

can be found in our full report.

It is important to note that a low score does not mean that a com-

pression is not useful. For example, device support, language, and

integrations, specialized features, and performance for compressors

improve regularly. These results represent a snapshot in time when

this paper was written. The authors will endeavor to update the

arXiv report on a regular cadence to reflect the new state of the art

as it develops. From the capability analysis presented in Table 2,

we can identify the following takeaways:

Takeaway 1: Many applications can already be well served by
existing lossy compressors.

Takeaway 2: Very few applications have all their constraints
and requirements satisfied by existing lossy compression, which calls
for more collaborations between application scientists and experts in
compression.

7 GAP ANALYSIS FOR COMPRESSION
RESEARCHERS

7.1 Use Cases and Hardware for Compression
The majority of applications considering compression need to save

storage (7 of 9) or increase throughput (5 of 9), with slightly fewer

applications looking to improve throughput. Of the 9 applications, 7

report that a compression ratio of at least 5 is required to adopt com-

pression, and many describe this requirement as an improvement

over lossless compression rather than no compression. Likewise,

applications that describe throughput as a priority want to see ap-

plication speedups that exceed what they can achieve with lossless

compression; 2 of the 9 applications want compression to help them

meet a real-time streaming bandwidth target. Takeaway 3: This
highlights that applications need specific throughput, compression,
and quality targets, indicating a weakness in prior benchmarking
approaches [72] that only consider one or two of these criteria.

Of the 9 studied workflows, 6 need to perform compression

on the CPU, a number that is expected to decrease to 4 out of

9, while 5 of the 9 applications require performing compression

on the GPU, a number that is expected to increase to 7 out of 9

soon. This shift largely represents the shift of applications from

CPUs to GPUs to leverage the GPUs in leadership-class computing

facilities. One application group—light sources—called out the use

of FPGAs as also increasingly important for their use cases. FPGAs

are already used in these applications, so incorporating them for

compression is consistent with other work in the field. One critical

pair of applications not included in this report—AI training and

inference—uses other forms of specialized hardware besides GPUs,

such as TPUs and Cerebras wafer-scale engines. We intend to study

use cases of compression in these and other applications in a future

version of the long report. Takeaway 4:Most applications use GPUs
for compression. A few applications are starting to consider other
accelerators (e.g., FPGA or AI accelerators).

Of the 9 applications, 3 describe the need for interoperable com-

pression and decompression on different hardware platforms; so

far, only two compressors fully meet this requirement, and only one

implements byte-for-byte interoperability. In some cases, this kind

of interoperability can be difficult to efficiently implement (e.g.,

Huffman tree construction on a GPU [62]), difficult to implement

correctly because of platform differences (e.g., LC reimplemented

core math function to ensure byte-for-byte compatibility between

CPUs and GPUs [21]), or difficult to implement on all platforms

because of platform limitations (e.g., lack of global memory in Cere-

bras requiring an alternative Huffman tree implementation [53]),

necessitating innovations in algorithms. More on this topic can

be found in Item 3 of Section 8.1. Takeaway 5: Interoperability be-
tween hardware is a common underserved need for compressors that
requires additional research and effort from compression developers.
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7.2 Quantities of Interest to Preserve
One area where compressors can improve significantly is the preser-

vation of higher-order quantities of interest. Of the 9 applications

surveyed, all but 1 indicated that they found it difficult to preserve

their quantities of interest with existing production lossy compres-

sors. Three major groups of quantities of interest need additional

focus by compression developers: derived quantities of interest,

topological features, and distributional features. Additionally, con-

figuration search and iterative error analysis are needed.

Derived quantities of interest are scalar values derived with an ex-

plicit formula from the data or its error (e.g., dSSIM and descriptive

statistics). At least 4 of the 9 applications have at least one of these

QOIs requiring preservation. While in many cases a relationship

exists between the error bound and the derived QoI (see [57] for an

example), it is nontrivial to explicitly derive this relationship. Some

work in this area has been done [8, 41], but these techniques are

either difficult to use, still requiring extensive mathematical proofs

to establish correctness, or are not fully integrated into production

compressors adopted by applications. Moreover, if one can derive

the relationships between application-derived QoI, the bound may

be very pessimistic, resulting in lower than otherwise required

compression ratios [63], and the run performance of the approach

may be unacceptably low [63] for applications with large datasets.

Takeaway 6:More work is needed on both theory and application to
make techniques for preserving derived quantities of interest available
to the applications that need them.

Topological features refer to the minima, maxima, and critical

points that exist in data and its integrals or derivatives. At least 3

of the 9 applications cite the need to preserve these kinds of QoIs.

While compressors exist for these types of bounds as well, they are

largely research prototypes with high overheads and lack integra-

tion into appropriate libraries and languages where applications

would use them [34], or they overpreserve the data by preserving

all derivatives as part of preserving the Sobolev norm of data [65],

resulting in lower than desirec performance. The accessibility of

the functionality aspect can be improved by the integration of exist-

ing or the development of new research prototypes of compressors

using frameworks such as LibPressio that export these functions au-

tomatically, but resource utilization improvements come from both

algorithmic improvements and productionizing the relevant codes.

Takeaway 7: The preservation of topological features requires im-
provements to performance and interface standardization/integration
to better serve applications.

Distributional features refer to the shape of the distribution of

values either in some window or globally. At least 2 of the 9 applica-

tions need to preserve these kinds of features either in the data itself

or in decompression errors. While the distribution of error bounds

of compressors has been studied and characterized [39], this work

is substantially out of date compared with current compressors and

is merely descriptive. Takeaway 8: Applications need prescriptive
protection of the distribution of data values and errors, which is not
supported by any major and possibly any research-grade compressor.

Another key aspect of the adoption of compressors is the simplic-

ity with which applications can specify their quantities of interest

and identify configurations of compressors that can meet their re-

quirements. Configuration search tools such as OptZConfig [63]

included with LibPressio can help with this process, but the over-

head of these methods can still be very high [48], and the tools are

not scalable to applications with a large number of fields that poten-

tially need to be configured differently. Takeaway 9: Configuration
search tools need lower overhead to help applications.

Lastly, more research is needed to study the effects of iterative

lossy compression to better support facilities and users who need

to understand the effects of iterative compression to migrate from

one compressor implementation to another or as part of more

advanced techniques such as lossy checkpoint restart [10]. The only

compressor for which a significant study of the effects of iterative

lossy compression exists is ZFP [22]. There has also been some

work considering PDEs where losses caused by a lossy restart are

recovered by additional iterations [10], but this may not apply to all

application types. Takeaway 10:More work is needed to understand
the cumulative errors of iterative lossy compression for compressors
other than ZFP and in applications other than PDE solvers.

7.3 Packaging and Integrations to Prioritize
Nearly all studied applications (8 of 9) use Python somewhere in

their data analysis stack, so integration with Python is critical to

the adoption of lossy compressors. Only 3 of the studied families

of compressors have their own Python bindings, often with a sub-

set of features, and Python packaging. The availability of Python

bindings extends to 100% of the compressors with LibPressio bind-

ings and most but not all features
2
. However, LibPressio does not

automatically improve the packaging. Takeaway 11: Compression
developers better serve applications by targeting Python. Implement-
ing compressors using LibPressio provides this automatically.

Moreover, 5 of the 9 application areas utilize a lower-level lan-

guage as a key component of their software stack. Of these 5 ap-

plications, 4 use C++ and 1 uses Fortran90. Fortran 2003 added

minimal support for variable-length strings and C-style pointers,

making it possible but complicated for compressors to support

Fortran. Having individual compressors add support for Fortran

2003 or later via LibPressio is possible but would require substan-

tial effort. For Fortran90, however, lacking this minimal support

leaves no practical path to direct integration of compressors with-

out resorting to nonstandard compiler extensions or the adoption

of I/O libraries for Fortran that support compression, such as HDF5;

and even this approach may not be possible given the subset of

features of HDF5 available in Fortran90 [60]. Takeaway 12: There
is no practical way to support Fortran90 applications without the
iso_c_binding extension added in Fortran2003.

5 of 9 application domains report using HDF5 at some point in

their data analysis stack. There are numerous documented weak-

nesses with HDF5’s compression filters when using lossy compres-

sion: most notably, the lack of proper support for synchronizing

with GPU/accelerator codes and the size limitation on compres-

sion configurations. This could potentially be addressed through

implementing an HDF5 volume adapter to incorporate compres-

sion at a substantial increase in implementation complexity or via

improvements to the HDF5 filter interface. Takeaway 13: Many
applications use HDF5, so supporting it is important for compres-
sion developers. LibPressio can provide this support. Takeaway 14:

2
For example, ZFP’s array feature is not exported by LibPressio.
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HDF5’s filter interface needs substantial improvements to be suitable
for more error-bounded lossy compressors.

7.4 Application-Specific Compression Needs
and Future Research Directions

The need for greater support for data structures was cited by 3

of the 9 applications. Of these, 2 needed support for uncorrelated

dimensions passed as a dense tensor. Without this feature, the

compression ratio of compressors is unduly hampered by trying

to relate unrelated elements of data stored in a dense tensor. The

research compressor CLIz [28] supports this feature by identifying

uncorrelated dimensions with autotuning, but this technique has

not been adopted by major compressors. Takeaway 15: Support
for uncorrelated dimensions in dense tensors is important for many
applications, but an uncommon feature in compressors.

Multiple applications reporte needing support for random ac-

cess decompression by block. SZ2 (but not SZ3), ZFP, and SPERR

include an API for these functions, but they are low-level and not

featured by higher-level abstractions in LibPressio that would work

between compressors. LibPressio has functionality that can be used

to implement a similar function generically with size and runtime

overhead compared to native compressors. Takeaway 16: Many
compressors need random access by block decompression, but this
feature is not widely implemented.

A third of the applications, 3 of 9, need greater optimizations

to meet bandwidth requirements during streaming. Light Sources

need careful co-design between the compressor and the data re-

duction pipeline infrastructure to meet bandwidth requirements

with available hardware, including optimizations to streaming, GPU

kernel launches, and compression algorithms to meet hardware re-

quirements. Fusion and system log applications also report the need

to support streaming of data to alleviate bandwidth requirements.

Streaming differs from traditional compression tasks in that the en-

tire data is not available at once. Takeaway 17: For streaming data,
decisions need to be made to balance throughput and compression
ratios, an area requiring further study.

Of the 9 applications, 2 cited the need to support additional op-

erations on compressed data. For example, System Logs require

the ability to perform queries (à la SQL) on compressed data; no

current compressor supports this operation. Takeaway 18: Homo-
morphic compression [4] is an open and active research area in lossy
compression; but since this is a newly identified need for applications,
it requires further study.

Some specific features are needed by individual applications,

such as support for unstructured grid data. Some research-grade

compressors do support this feature [49] but are not widely adopted

nor supported by higher-level abstractions such as LibPressio. With-

out this support, compressorsmust treat this data as one-dimensional,

which may limit the correlations that compressors can leverage to

preserve quality and increase compression ratios. Takeaway 19:
A few applications reported needs for compressing unstructured grids,
which is an area that needs more research and integration. While

some data-processing frameworks support compression of hetero-

geneous columns of data streamed over a network (i.e., streaming

dataframes) [32], these frameworks do not include support for

modern lossy compression and need further study. Takeaway 20:

Streaming and compressed dataframes are an open area of research
in compression.

8 GAP ANALYSIS FOR FACILITIES
8.1 Retention Policies for Compressed Data
While 44% of the studied applications cite a need for only ephemeral

compression—that is, used as part of the workflow but discarded

afterward (for example to accelerate MPI All Reduce [25])—the

remaining 55% of the applications need long-term stability and

support of the format of their compressed data to facilitate adoption.

The most common duration cited was at least 5-10 years.

First, left unchecked, long retention periods combined with the

increasing rates of data production and comparatively slower de-

creases in storage costs will eventually overwhelm storage systems.

Takeaway 21: Facilities may help alleviate storage demands by en-
couraging the adoption of compression and appropriate stewardship
of storage resources through asking applicants how they plan to in-
corporate data reduction techniques, including data compression, as
part of large-scale allocations.

Second, the 5-10 year retention policy demanded by most appli-

cations means that many datasets need to live beyond the life span

of a typical computing system. For example, considering systems

introduced since 2008, the Argonne Leadership Computing Facility

deprecates machines about every 6.4 years after they have been

delivered. This means that plans to port compression libraries as

part of the I/O stack from system to system are important as they

enable continuity of data between systems. Current production

compressors such as SZ, ZFP, and MGARD have each been suc-

cessfully ported from CPU-based systems to systems such as Theta

based on the Knights Landing architecture to GPU systems such as

Aurora and Frontier, suggesting these kinds of ports are possible.

Takeaway 22: Facilities can help by asking applications with long
retention requirements to plan for potential data format migrations
from system to system as part of their data management plans.

Third, bit-for-bit reproducibility of error-bounded lossy com-

pressors with the introduction of changing hardware is a daunting

task. Only one of the production compressors – LC – fully imple-

ments bit-for-bit reproducable compression across CPUs and GPUs.

This required reimplimenting mathematical primitives to ensure

consistent results between hardware platforms [21]. Performance

portability libraries such as Kokkos, Raja, and Sycl are insufficient

as they stand today on their own: if they provide the full set of prim-

itives, they delegate to the standard library for implementations

of functions like std::log2. They need to be compiled against a

portable libc implementation such as llvm-libc and be compiledwith

-mno-fma or similar to obtain bit-for-bit reproducibility [21]. Other

compressors implement error-bound reproducibility – i.e., the error

bound is still correctly respected, but the decompressed values may

differ within the error bound – but still benefit from performance

portability frameworks that provide parallelism primitives to ease

porting to new platforms. More research and development effort is

needed for performance portability layers and techniques to sup-

port applications that need this kind of bit-for-bit reproducibility.

Takeaway 23: Facilities can help by ensuring the availability of per-
formance, portability, and correctness of libraries to ease porting to
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new platforms, and with options for high-performance bit-for-bit con-
sistent mathematical primitives (e.g., IEEE 754, std::log2, disabling
FMA, etc.) made available on new systems as differences in these
lower-level primitives can yield incorrect results.

8.2 Installing Compressors
Understanding how scientists install dependencies can inform how

to best support them. Surprisingly, only one application domain

reported using site modules as a significant way to deliver their

application to supercomputers. Likewise, a large number of appli-

cations (55%) still compile all their dependencies from source as

part of a manual installation process, further limiting the adoption

of any dependencies, including compressors. 7 of 9 applications

report the use an external package manager such pip, Anaconda, or

Spack. The LibPressio maintainers make an effort to ensure that all

supported compressors are installable via Spack [23], but this repre-

sents only 44% of the applications. Support in the Python packaging

ecosystem for native libraries, especially around large complex C++

dependencies and GPU libraries, is lacking [2], making it difficult

to support a large, complex, native ecosystem such as compression

libraries, but some of the production compressors have Python pip

and/or conda packages. Takeaway 24: Given that applications are
increasingly prioritizing non-site provided package sources, facilities
should consider deploying site-wide caches and default configura-
tions (e.g., /etc/spack/packages.yaml or /etc/pip.conf) that
are specialized for their particular site to ensure that users get optimal
performance and fast package installations.

9 RELATEDWORK
The first signifigant paper considering the state of the practice for

error-bounded lossy compression in HPC applications is a 2019

paper [12] that describes 7 use cases for lossy compression: visual-

ization, reducing streaming intensity, reducing storage footprint,

reducing I/O time, accelerating checkpoint restart, reducing mem-

ory footprint, and accelerating computation. The paper highlights

one compressor per use case.

In 2020, research on lossy compression became more standard-

ized with the introduction of the SDRBench Benchmark [73]. SDR-

Bench includes datasets from 14 applications in 10 domains. This

moved the state of the practice forward by presenting a consistent

set of data for compression researchers to target while trying to

achieve the best rate-distortion curve (least distortion per bit rate),

typically using the PSNR to measure distortion. This was further

improved in 2021, when the library LibPressio was introduced [64],

which provides a consistent interface over the existing compres-

sors, reducing sources of errors when comparing compressors (e.g.,

misunderstanding the differing definitions of error bounds or how

dimension or data-type information is specified).

Since then, scientific lossy compressors have flourished. A recent

survey of compression technologies by Di et al. [17] focuses on

how the compressors function. It describes 10 compression prin-

ciples: pointwise data prediction, quantization, wavelets, domain

transforms, bit-plane codings, Tucker and singular value decom-

positions, sampling, filtering, lossless encoding, and deep neural

networks. It discusses 46 distinct general compressors at a high

level and 7 in detail. It concludes with a brief survey of the com-

pression principles for specialized compressors covering 7 appli-

cation areas (molecular dynamics, quantum chemistry, quantum

circuit, climate, cosmology, seismology, light sources, and feder-

ated learning), and four additional specialized compressor features:

topological feature preservation (e.g., minima, maxima, and critical

points), multi-resolution data, communication optimization, and

gradient sparsification. It calls out the need for an additional sur-

vey on compression on accelerators. However, this paper does not

emphasize the needs of applications or gaps in how compressors

address them.

A 2025 paper [11] considers 4 application domains: climate, in-

strument data (i.e., light sources), numerical methods, and AI with

2 categories of compression techniques: compression on the GPU

and scheduling compressed I/O focusing only on technologies de-

veloped within the joint laboratory for extreme scale computing

(JLESC). It identified the following four open problems: the upper

bound of compressibility, compressed communication optimization,

compression for AI in science as applied to AI model pre-taining,

and combining lossy compression and encryption for increased

performance in distributed integrated research infrastructure.

10 CONCLUSIONS
In this report, we present 24 important takeaways that informAppli-

cation Scientists, Compression Researchers, and Facilities to drive

the use of lossy compression in scientific applications drawn from

the most comprehensive study of application needs, compressor

capabilities, and gap analysis ever conducted to assess the state of

the practice in lossy compression.

The authors of this report are well aware that there are many

more applications, including within the domains studied here, that

are not adequately represented in this effort. For example, AI pre-

training, fine-tuning, inference, and reasoning could be included in

a future version of the full report. Application scientists, compres-

sion researchers, and facilities should contact the corresponding

authors to incorporate their needs into this study and to improve

the understanding of use cases of lossy compression for scientific

data.
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